OPTIMASI SUHU DAN TEKANAN KEMPA PADA PEMBUATAN PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L) NURUSSHOLEHATUL AMANAH

Ukuran: px
Mulai penontonan dengan halaman:

Download "OPTIMASI SUHU DAN TEKANAN KEMPA PADA PEMBUATAN PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L) NURUSSHOLEHATUL AMANAH"

Transkripsi

1 OPTIMASI SUHU DAN TEKANAN KEMPA PADA PEMBUATAN PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L) NURUSSHOLEHATUL AMANAH DEPARTEMEN TEKNOLOGI INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 013

2

3 PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA Dengan ini saya menyatakan bahwa skripsi berjudul Optimasi Suhu dan Tekanan Kempa Pada Pembuatan Papan Partikel Dari Bungkil Jarak Kepyar (Ricinus communis L) adalah benar karya saya dengan arahan dari dosen pembimbing dan belum diajukan dalam bentuk apapun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini. Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor. Bogor, November 013 Nurussholehatul Amanah NIM F

4 ABSTRAK NURUSSHOLEHATUL AMANAH. F Optimasi Suhu dan Tekanan Kempa Pada Pembuatan Papan Partikel Dari Bungkil Jarak Kepyar (Ricinus communis L). Dibawah bimbingan IKA AMALIA KARTIKA. Bungkil jarak kepyar memiliki kadar protein 48.07% dan kadar serat 1.8%. Kadar protein dan serat yang tinggi ini potensial untuk dimanfaatkan sebagai bahan baku papan partikel. Penelitian ini bertujuan mengetahui pengaruh suhu dan tekanan kempa terhadap sifat fisik dan mekanik papan partikel serta mengetahui suhu dan tekanan kempa optimum dalam pembuatan papan partikel dari bungkil jarak kepyar. Penelitian ini dirancang menggunakan Central Composite Design (CCD), analisis data menggunakan ANOVA (α = 0.05) dan Response Surface Method (RSM). Suhu 180 o C dan tekanan 00 kgf/cm menghasilkan papan partikel terbaik dalam penelitian ini, yakni MOR 4.17 kgf/cm, MOE kgf/cm, pengembangan tebal 13.33%, daya serap air 78.18% dan kadar air 5.85%. Suhu kempa mempengaruhi seluruh respon yang diujikan sedangkan tekanan kempa hanya mempengaruhi kadar air dan daya serap air. Suhu dan tekanan kempa optimum berdasarkan model regresi MOR pada pembuatan papan partikel dari bungkil jarak kepyar adalah 180 o C dan 186 kgf/cm. Kata kunci: Bungkil jarak kepyar, papan partikel, optimasi, suhu, tekanan. ABSTRACT NURUSSHOLEHATUL AMANAH. F Optimization of Pressing Temperature and Pressure on Particleboard Production from Castor Cake Meal (Ricinus communis L). Supervised by IKA AMALIA KARTIKA. Castor cake meal contains 48.07% of protein and 1.8% of fiber. The high protein and fiber contents are potential to be used as particleboard raw material. This research aimed to determine the effect of pressing temperature and pressure on physical and mechanical properties of particleboard, and to obtain the optimum temperature and pressure in production of particleboard from pressing castor cake meal. This research designed by using Central Composite Design (CCD), data were analyzed by ANOVA (α = 0.05) and Response Surface Method (RSM). Temperature of 180 o C and pressure of 00 kgf/cm produced the best particleboard with MOR of 4.17 kgf/cm, MOE of kgf/cm, thickness swelling of 13.33%, water absorption of 78.18% and moisture content of 5.85%. Temperature effected all tested responses, whereas pressing pressure effected only the moisture content and the water absorption of particleboard. The optimum pressing temperature and pressure based on regression model of MOR in production of particleboard from castor cake meal were 180 C and 186 kgf/cm. Keywords: castor cake meal, particleboard, optimization, temperature, pressure.

5 OPTIMASI SUHU DAN TEKANAN KEMPA PADA PEMBUATAN PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L) NURUSSHOLEHATUL AMANAH Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknologi Pertanian pada Departemen Teknologi Industri Pertanian DEPARTEMEN TEKNOLOGI INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 013

6

7 Judul Skripsi : Optimasi Suhu dan Tekanan Kempa Pada Pembuatan Papan Partikel Dari Bungkil Jarak Kepyar (Ricinus communis L) Nama : Nurussholehatul Amanah NIM : F Disetujui oleh Dr Ir Ika Amalia Kartika, MT Pembimbing Diketahui oleh Prof Dr Ir Nastiti Siswi Indrasti Ketua Departemen Tanggal Lulus:

8 PRAKATA Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta ala atas segala karunia-nya sehingga skripsi ini berhasil diselesaikan. Tema yang dipilih dalam penelitian yang dilaksanakan sejak bulan Juni 013 ini ialah papan partikel, dengan judul Optimasi Suhu dan Tekanan Kempa Pada Pembuatan Papan Partikel Dari Bungkil Jarak Kepyar (Ricinus communis L). Terima kasih penulis ucapkan kepada Dr Ir Ika Amalia Kartika, MT selaku dosen pembimbing. Di samping itu, penghargaan penulis sampaikan kepada Bapak Mahdy dari Laboratorium Bio Komposit Departemen Teknologi Hasil Hutan dan Ibu Egna dari Laboratorium DIT Departemen Teknologi Industri Pertanian yang telah membantu penulis selama pengumpulan data. Ungkapan terima kasih juga disampaikan kepada Umik dan Abah, seluruh keluarga, Kanda, Diar, Iddea, Ariska, dan Nami atas segala doa, motivasi dan kasih sayangnya. Semoga skripsi ini bermanfaat dan memberikan kontribusi yang nyata kepada para pembaca. Bogor, November 013 Nurussholehatul Amanah

9 DAFTAR ISI DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN PENDAHULUAN 1 Latar Belakang 1 Tujuan Penelitian Ruang Lingkup Penelitian BAHAN DAN METODE Waktu dan Tempat Penelitian Bahan dan Alat 3 Metode 3 Analisis Data 4 HASIL DAN PEMBAHASAN 6 Karakteristik Bungkil Jarak Kepyar 6 Optimasi Pembuatan Papan Partikel dan Karakteristik Sifat Fisik dan Mekaniknya 7 SIMPULAN DAN SARAN 1 Simpulan 1 Saran 1 DAFTAR PUSTAKA 1 LAMPIRAN 4 RIWAYAT HIDUP 8 vi vi vii

10 DAFTAR TABEL 1 Kombinasi antara level dan faktor-faktor optimasi 4 Kombinasi perlakuan penelitian 5 3 Komposisi bungkil jarak kepyar 6 4 Hasil uji fisik dan mekanik papan partikel dari bungkil jarak kepyar berukuran 100 mesh 8 5 Analisis varian pengaruh suhu dan tekanan kempa terhadap kadar air 8 6 Analisis varian pengaruh suhu dan tekanan kempa terhadap daya serap air selama jam 11 7 Analisis varian pengaruh suhu dan tekanan kempa terhadap daya serap air selama 4 jam 1 8 Analisis varian pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama jam 14 9 Analisis varian pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama 4 jam Analisis varian pengaruh suhu dan tekanan kempa terhadap MOE Analisis varian pengaruh suhu dan tekanan kempa terhadap MOR 19 DAFTAR GAMBAR 1 Plot kontur pengaruh suhu dan tekanan kempa terhadap kadar air 9 Grafik 3D pengaruh suhu dan tekanan kempa terhadap kadar air 10 3 Plot kontur pengaruh suhu dan tekanan kempa terhadap daya serap air selama jam 11 4 Grafik 3D pengaruh suhu dan tekanan kempa terhadap daya serap air selama jam 1 5 Plot kontur pengaruh suhu dan tekanan kempa terhadap daya serap air selama 4 jam 13 6 Grafik 3D pengaruh suhu dan tekanan kempa terhadap daya serap air selama 4 jam 13 7 Plot kontur pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama jam 15 8 Grafik 3D pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama jam 15 9 Plot kontur pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama 4 jam Grafik 3D pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama 4 jam Plot kontur pengaruh suhu dan tekanan kempa terhadap MOE 18 1 Grafik 3D pengaruh suhu dan tekanan kempa terhadap MOE Plot kontur pengaruh suhu dan tekanan kempa terhadap MOR 0 14 Grafik 3D pengaruh suhu dan tekanan kempa terhadap MOR 0

11 DAFTAR LAMPIRAN 1 Prosedur analisis karakterisasi bahan baku (AOAC 1995) 4 Prosedur pengujian sifat fisik dan mekanik papan partikel (ASTM D ) 6

12

13 PENDAHULUAN Latar Belakang Tanaman jarak kepyar atau kaliki (Ricinus communis L) merupakan tanaman yang mudah tumbuh bahkan di lahan marginal. Tanaman ini berasal dari benua Afrika, yaitu di sekitar wilayah Afrika Timur (Chevellier 001). Tanaman jarak kepyar memiliki potensi yang cukup besar sebagai penghasil minyak kastor dan sumber bioenergi. Lombok, Lampung, Sulawesi dan Jawa adalah daerah di Indonesia yang telah mengembangkan tanaman ini. Namun pada tahun 01 Indonesia hanya berhasil memproduksi jarak kepyar ton pada ha lahan tanam, jauh lebih rendah dibandingkan dengan India sebagai pengekspor jarak kepyar tertinggi di dunia, yakni 1.63 juta ton pada 1.1 juta ha lahan tanam (FAO 013). Meningkatnya minat untuk mengembangkan sumber energi terbarukan, produksi bioenergi cair dari minyak nabati, castor oil diusulkan sebagai salah satu pilihan penting untuk mengurangi gas rumah kaca. Disamping itu, menurut Anandan et al. (005), biji jarak kepyar memiliki kadar protein yang tinggi, yakni 34 sampai 36%. Kadar protein tinggi yang dimiliki biji jarak kepyar ini berpotensi menghasilkan produk-produk lain yang bermanfaat bagi manusia. Pemaanfaatan yang lebih maksimal dari biji jarak ini adalah penggunaan bungkil hasil ekstraksi minyak dari biji jarak kepyar yang masih mengandung protein tinggi. Papan partikel merupakan produk panel yang terbuat dari partikel-partikel kayu melalui proses kempa yang diikat dengan perekat (Bowyer et al. 003). Namun, persediaan kayu sebagai bahan baku papan partikel semakin terbatas akibat eksploitasi hutan yang berlebihan. Selain itu, perekat yang umum digunakan pada industri papan partikel berupa urea formaldehida dan fenol formaldehida mengeluarkan emisi formaldehida yang menyebabkan pencemaran lingkungan dan gangguan kesehatan (Roffael 1993). Dengan demikian diperlukan bahan baku dan perekat alternatif yang mampu menghasilkan papan partikel dengan kualitas yang baik. Sejumlah besar penelitian telah dilakukan untuk menemukan alternatif bahan baku dan perekat yang lebih ramah lingkungan, antara lain pemanfaatan ampas biji jarak pagar dengan protein yang terkandung dalam ampas tersebut sebagai perekatnya (Lestari dan Kartika 01), ampas tanaman bunga matahari dengan protein yang terkandung dalam ampas tersebut sebagai perekatnya (Evon et al. 010) dan serat kayu dengan protein kedelai sebagai perekatnya (Li et al. 009). Pemanfaatan bungkil jarak kepyar sebagai bahan baku sekaligus perekat alternatif papan partikel dianggap signifikan karena memiliki kadar protein tinggi sebagai perekat antara partikel papan dan kadar serat yang cukup tinggi sebagai bahan substitusi kayu. Pada dasarnya sifat papan partikel dipengaruhi oleh bahan baku pembentuknya, jenis perekat dan proses kempa. Proses kempa yang optimal dianggap mampu meningkatkan kualitas papan yang dihasilkan. Berdasarkan penelitian Li et al. (009), umumnya korelasi antara suhu dan waktu kempa berbanding terbalik dalam meningkatkan daya rekat antara protein dan permukaan serat yang menyebabkan kekuatan mekanik papan partikel lebih tinggi. Selain

14 waktu dan suhu kempa, faktor lainnya yang mempengaruhi proses kempa adalah tekanan kempa. Ye et al. (005) menyatakan bahwa suhu dan tekanan kempa papan partikel memainkan peran penting pada sifat mekaniknya. Optimasi terhadap faktor-faktor yang mempengaruhi pembuatan papan partikel perlu dilakukan. Hal ini untuk memaksimalkan produksi papan partikel dari bungkil jarak kepyar. Penggunaan metode yang tepat dapat menentukan titiktitik optimal dengan jumlah perlakuan dan waktu yang lebih singkat, dan Response Surface Method (RSM) merupakan metode yang memudahkan peneliti untuk mendapatkan desain penelitian, pengolahan data, dan solusi optimasi sekaligus. RSM juga dapat digunakan untuk menganalisa respon yang dipengaruhi oleh faktor-faktor yang telah ditentukan, sehingga metode ini menjadi pilihan karena mampu mengoptimalkan respon. Tujuan Penelitian Penelitian ini bertujuan mengetahui pengaruh suhu dan tekanan kempa terhadap sifat fisik dan mekanik papan partikel, serta mengetahui suhu dan tekanan kempa optimum dalam pembuatan papan partikel dari bungkil jarak kepyar. Ruang Lingkup Penelitian Ruang lingkup penelitian ini adalah melihat pengaruh variasi suhu dan tekanan terhadap kualitas papan partikel yang dihasilkan dari bungkil jarak kepyar berukuran 100 mesh dengan waktu kempa selama 6 menit. Standar pengujian yang digunakan adalah ASTM D dan JIS A Penelitian ini dirancang menggunakan Central Composite Design (CCD) dengan nilai maksimum dan minimum suhu kempa sebesar 180 dan 160 o C, dan nilai maksimum dan minimum tekanan kempa sebesar 00 dan 160 kgf/cm. Analisis data menggunakan ANOVA (α = 0.05), dan analisis regresi dengan Response Surface Method (RSM). Penelitian ini menganalisis kadar air, daya serap air, pengembangan tebal, kekuatan lentur atau Modulus of Elasticity (MOE) dan keteguhan patah atau Modulus of Rupture (MOR) papan partikel. BAHAN DAN METODE Waktu dan Tempat Penelitian Penelitian ini dilaksanakan sejak bulan Juni hingga Agustus 013. Penelitian dilaksanakan di Laboratorium Bio-Komposit, Departemen Teknologi Hasil Hutan, Fakultas Kehutanan dan di Laboratorium DIT, Departemen Teknologi Industri Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Bogor.

15 3 Bahan dan Alat Bahan utama yang digunakan dalam penelitian ini adalah bungkil jarak kepyar yang diperkecil ukurannya menjadi 100 mesh. Bungkil jarak kepyar ini diperoleh dari PT Kimia Farma, Semarang. Bahan lainnya yang digunakan untuk analisis, yaitu larutan H SO 4 pekat, H SO N, H SO N, NaOH 6 N, NaOH 1.5 N, katalis CuSO 4 :Na SO 4, asam borat %, indikator mensel, pelarut heksan, alkohol dan aquades. Alat yang digunakan untuk pembuatan papan berupa saringan 100 mesh, mesin hotpress, kertas teflon ukuran 10 x 10 cm, dan plat baja berukuran 10 x 10 x 0.5 cm. Alat yang digunakan untuk analisis yaitu peralatan gelas, inkubator, Universal Testing Machine (UTM), jangka sorong, oven, mistar, cawan porselen dan aluminium, pendingin balik, tanur, erlenmeyer vakum, corong vakum dan pompa vakum. Metode Karakterisasi Bahan Baku Sebanyak 3 kg bahan baku berupa bungkil jarak kepyar diperkecil ukurannya menjadi 100 mesh dan selanjutnya dikeringkan hingga kadar airnya ± 10%. Bungkil jarak kepyar yang sudah kering dan homogen dianalisis proksimat berupa kadar air, kadar protein, kadar lemak, kadar serat kasar, kadar abu, dan kadar karbohidrat. Prosedur analisis proksimat dapat dilihat pada Lampiran 1. Pembuatan Lembaran Papan Partikel Pembuatan papan partikel dilakukan dengan metode kempa dan menggunakan cetakan berupa plat baja berukuran 10 cm x 10 cm x 0.5 cm. Pada saat pembentukan lembaran diusahakan seluruh campuran partikel target tersebar merata agar dihasilkan kerapatan papan yang seragam. Adapun kerapatan target yang diinginkan adalah 0.9 g/cm 3. Antara serbuk bungkil jarak kepyar dan lempengan plat dilapisi kain teflon supaya mempermudah proses pemisahan antara lembaran papan dan plat baja pasca pengempaan. Proses kempa dilakukan pada variasi suhu 160 hingga 180 o C, variasi tekanan 160 hingga 00 kgf/cm, dan waktu kempa selama 6 menit. Pengujian Sifat Fisik dan Mekanik Papan Partikel Menurut Lestari dan Kartika (01), setelah pengempaan, papan partikel perlu dikondisikan selama 14 hari pada suhu 30 o C untuk menghilangkan tegangan pada papan pasca pengempaan. Papan partikel yang telah dikondisikan kemudian dipotong menjadi contoh uji berdasarkan ASTM D dan hasilnya dibandingkan dengan JIS A Pengujian sifat fisik dan mekanik papan partikel meliputi kerapatan, kadar air, daya serap air selama jam dan 4 jam, pengembangan tebal selama jam dan 4 jam, kekuatan lentur atau Modulus of Elasticity (MOE), dan keteguhan patah atau Modulus of Rupture (MOR). Prosedur analisis sifat fisik dan mekanik papan partikel dijelaskan lebih lanjut pada Lampiran.

16 4 Analisis Data Penelitian ini menggunakan metode Response Surface Method (RSM) sebagai penentu titik optimum dari setiap respon yang diuji. Menurut Iriawan dan Astuti (006), RSM merupakan sekumpulan teknik matematika dan statistika yang berguna untuk menganalisis permasalahan dimana beberapa variabel bebas (faktor X) mempengaruhi variabel respon Y dengan tujuan mengoptimalkan respon. RSM merupakan cara yang efektif untuk melihat sistem respon ketika taraf dari faktor-faktor yang terlibat berubah (Harvey 000). Menurut Montgomery (001), langkah pertama dari RSM adalah menemukan hubungan antara respon Y dan faktor X melalui persamaan polinomial orde pertama dan digunakan model regresi linear, atau yang lebih dikenal dengan model polinomial orde pertama: Y = β 0 + = β Pada model polinomial orde kedua, biasanya terdapat kelengkungan dan digunakan model regresi orde kedua yang fungsinya kuadratik: Y = β o + = β β - = = = β Keterangan: Y = Respon pengamatan β o = Titik potong β i = Koefisien linier β ii = Koefisien kuadratik β ij = Koefisien interaksi perlakuan X i = Kode perlakuan untuk faktor suhu X j = Kode perlakuan untuk faktor tekanan = Galat Rancangan eksperiman orde kedua dipilih untuk menentukan titik optimum dalam setiap respon penelitian ini. Menurut Lubis (010), untuk menentukan kondisi operasi optimum pada orde kedua diperlukan rancangan komposit terpusat (central composite design) dalam pengumpulan data percobaan. Faktor Tabel 1 Kombinasi antara level dan faktor-faktor optimasi Level Suhu ( o C) Tekanan (kgf/cm ) Menurut Montgomery (001) Central Composite Design (CCD) adalah rancangan faktorial k atau faktorial sebagian (fractional factorial) yang diperluas melalui penambahan titik-titik pengamatan pada pusat agar memungkinkan

17 pendugaan koefisien parameter permukaan ordo kedua (kuadratik). Variabel bebas atau faktor yang digunakan dalam pembuatan papan partikel dari bungkil jarak kepyar adalah suhu (X 1 ) dan tekanan (X ). Tabel 1 di atas menunjukkan kombinasi antara faktor dan level yang dipilih dengan rentang tertentu. Penelitian ini dilakukan dengan 8 kali ulangan untuk titik pusat dan kali ulangan untuk titik lainnya (Tabel ). Data hasil penelitian ini diolah menggunakan perangkat lunak Statistical Analysis System (SAS) 9.1. Tabel Kombinasi perlakuan penelitian Run Faktor X 1 X Montgomery (001) juga menjelaskan bahwa RSM dapat dinyatakan secara grafik dalam gambar 3D dan kontur untuk memvisualisasikan bentuk dari permukaan respon. Plot kontur adalah suatu seri garis atau kurva yang mengidentifikasi nilai-nilai peubah uji pada respon yang konstan sehingga plot kontur memegang peranan penting dalam mempelajari analisis permukaan respon. Setelah menemukan titik stasioner kemudian menggolongkan permukaan respon disekitar daerah yang sangat dekat dari titik stasioner, sehingga dapat ditentukan 5

18 6 apakah titik stasioner merupakan titik respon maksimum atau minimum atau titik pelana (saddle point). HASIL DAN PEMBAHASAN Karakteristik Bungkil Jarak Kepyar Jarak kepyar memiliki buah berbentuk bulat, seperti kapsul, dapat berambut maupun tidak. Biji berbintik menyerupai serangga dengan bentuk variatif (Mardjono 000). Kandungan minyak dalam biji jarak kepyar cukup tinggi, yakni 45 55%. Sebagian besar biji jarak kepyar mengandung gliserida asam risinoleat, risin, dan lektin (Chevallier 001). Menurut Perdomo et al. (013), lemak dan protein terletak pada bagian internal endosperma. Beberapa protein dan pati terletak di lapisan terluar dari endosperma biji jarak kepyar. Risin adalah komponen utama dari endosperma dan jumlahnya 1 5% dari berat kering biji jarak kepyar (Zhang et al. 013). Risin merupakan protein yang dimiliki jarak kepyar yang bersifat racun pada mamalia (Chevallier 001). Sifat-sifat bahan baku papan partikel, antara lain kerapatan, bentuk dan ukuran bahan baku, kadar air dan kandungan ekstraktifnya perlu diperhatikan untuk mendapatkan kualitas papan partikel yang baik (Bowyer et al. 003). Berdasarkan Tabel 3, kadar protein bungkil jarak kepyar yang digunakan pada penelitian ini sebesar 48.07% lebih tinggi dibandingkan dengan penelitian Akande et al. (01) yang menggunakan bahan baku dari Nigeria. Kadar protein tinggi pada bahan baku penelitian ini diharapkan menjadi perekat alami yang dimiliki oleh bungkil jarak kepyar sebagai bahan baku papan partikel. Evon et al. (010) menyatakan bahwa sebagai bahan pengikat serat, protein dapat membentuk ikatan kompleks yang mampu meningkatkan daya kohesi antar permukaan serat. Menurut Lambuth (1977), perekatan protein terjadi saat molekul protein berdispersi dengan substrat sehingga saat protein ini unfold akan meningkatkan area kontak interaksi dengan substrat. Parameter Tabel 3 Komposisi bungkil jarak kepyar Hasil Penelitian Sebelumnya (Akande et al. 01) Hasil Penelitian (%bb) Kadar protein Kadar abu Kadar lemak Kadar air Kadar serat kasar Kadar karbohidrat * * (by difference) Kadar air dan serat yang terkandung pada bungkil jarak kepyar dalam penelitian ini masing-masing sebesar 9.73% dan 1.8% (Tabel 3). Kadar air dan

19 serat ini juga diharapkan mampu secara signifikan mempengaruhi sifat mekanik papan partikel. Kadar air merupakan promotor untuk sifat adhesi perekat bungkil jarak kepyar dengan serat dalam produksi papan dengan metode kempa panas. Menurut Lambuth (1994), air bertindak sebagai plastisizer dan memungkinkan molekul protein berkembang dan terjerat selama pemanasan, hal ini berakibat pada kekuatan ikatan saat sebagian air menguap. 7 Optimasi Pembuatan Papan Partikel dan Karakteristik Sifat Fisik dan Mekaniknya Papan partikel memiliki kelebihan dibandingkan kayu solid, antara lain tidak memiliki cacat berupa mata kayu dan retak-retak seperti kayu pada umumnya, ukuran dan kerapatan dapat disesuaikan dengan kebutuhan, dan lebih isotropik atau memiliki sifat elastis yang sama ke semua arah pada setiap titik papan partikel (Maloney 003). Sifat papan partikel yang fleksibel ini memungkinkan papan partikel dibuat dari partikel berbagai ukuran. Penelitian ini menggunakan partikel berukuran 100 mesh yang secara umum menghasilkan sifat fisik dan mekanik papan partikel lebih baik apabila dibandingkan dengan penelitian Kautsar (013) yang juga berbahan baku bungkil jarak kepyar dengan ukuran partikel lebih besar (80 mesh). Ukuran partikel yang digunakan memiliki dampak yang signifikan terhadap kesesuaian kinerja. Semakin kecil ukuran partikel maka semakin besar luas permukaan ikatan adhesif protein pada bahan tersebut (Kumar et al. 00). Di lain pihak, papan partikel memiliki kelemahan stabilitas dimensi yang rendah. Pengembangan tebal papan partikel sekitar 10 sampai 5% dari kondisi kering ke basah melebihi pengembangan tebal kayu utuh. Pengembangan panjang dan tebal pada papan partikel ini sangat besar pengaruhnya pada aplikasinya terutama bila digunakan sebagai bahan bangunan (Haygreen dan Bowyer 1996). Penelitian ini menghasilkan papan partikel sesuai dengan target kerapatannya (0.9 g/cm 3 ) dan tergolong papan partikel berkerapatan tinggi karena mempunyai kerapatan lebih besar dari 0.8 g/cm 3 (Maloney 003). Kondisi ini berimplikasi pada kualitas papan partikel yang dihasilkan semakin baik. Kerapatan merupakan faktor penting yang banyak digunakan sebagai pedoman dalam memperoleh gambaran tentang kekuatan papan partikel yang diinginkan (Maloney 003). Menurut Haygreen dan Bowyer (1996), kerapatan papan partikel berhubungan langsung dengan porositasnya, yaitu proporsi volume rongga kosong, sehingga semakin tinggi kerapatan papan partikel maka kekuatan dan kekakuannya juga semakin tinggi. Berdasarkan hasil uji fisik dan mekanik papan partikel dari bungkil jarak kepyar berukuran 100 mesh (Tabel 4), papan partikel belum memenuhi standar JIS A dan SNI kecuali parameter kerapatan dan kadar air.

20 8 Tabel 4 Hasil uji fisik dan mekanik papan partikel dari bungkil jarak kepyar berukuran 100 mesh Parameter Uji Nilai JIS A SNI Kerapatan (g/cm 3 ) Kadar Air (%) Daya Serap Air Jam (%) Daya Serap Air 4 Jam (%) Pengembangan Tebal Jam (%) Pengembangan Tebal 4 Jam (%) MOE (kgf/cm ) MOR (kgf/cm ) Pengaruh Suhu dan Tekanan Kempa Terhadap Kadar Air Kadar air merupakan sifat fisik papan partikel yang menunjukkan banyaknya kandungan air dalam kayu atau produk kayu (Bowyer et al. 003). Berdasarkan JIS A kadar air papan partikel pada penelitian ini, yakni 5.85 sampai 8.98%, telah memenuhi standar (Tabel 4). JIS A menentukan standar kadar air yang terkandung dalam papan partikel adalah 5 13%. Menurut Lestari dan Kartika (01), kadar air papan partikel menjadi faktor penting dalam menjaga stabilitas dimensi papan. Semakin tinggi kadar air yang terkandung dalam papan partikel maka semakin rendah kestabilan dimensi dan kualitasnya. Apabila kadar air papan lebih kecil dari 5% atau lebih besar dari 13% maka papan partikel tersebut akan mudah rapuh sehingga kualitasnya ikut menurun. Tabel 5 Analisis varian pengaruh suhu dan tekanan kempa terhadap kadar air Source df SS MS F P Model X * X * X * X 1 X X * (Linear) * (Quadratic) * (Cross Product) Error (Lack of fit) * Signifikan (P < 0.05) Pengujian lack of fit bertujuan mengetahui apakah model yang digunakan tepat atau tidak. Berdasarkan Tabel 5 nilai lack of fit tidak signifikan karena nilai P lebih besar dari 0.05, artinya model polinomial orde kedua di bawah ini kurang cocok untuk mengoptimasi kadar air. Model polinomial orde pertama cenderung

21 lebih cocok untuk mengoptimalkan kadar air bila dilihat dari nilai P model linier yang lebih kecil dibandingkan dengan model kuadratik. KA = *X *X *X *X 1 X *X (R = ) Koefisien determinasi dinyatakan sebagai nilai R merupakan ukuran seberapa besar pengaruh variabel bebas (suhu dan tekanan kempa) terhadap respon. Nilai R berkisar antara 0 dan 1. Apabila nilai R dikalikan 100%, maka hal ini menunjukkan persentase keragaman (informasi) di dalam variabel respon yang dapat diberikan oleh model regresi yang didapatkan. Semakin besar nilai R, semakin baik model regresi yang diperoleh. Hasil perhitungan data mengenai pengaruh suhu dan tekanan kempa terhadap kadar air diperoleh R sebesar yang memiliki arti bahwa pengaruh suhu dan tekanan kempa terhadap perubahan kadar air ialah sebesar 94.61%. Kemungkinan pengaruh lain di luar suhu dan tekanan kempa ialah kadar air bahan baku dan waktu kempa. Nilai R ini tergolong baik karena memiliki nilai mendekati 1. Tabel 5 menunjukkan bahwa parameter suhu dan tekanan signifikan mempengaruhi kadar air papan partikel (KA). Semakin tinggi suhu dan tekanan maka nilai kadar air papan partikel cenderung semakin rendah. Kecenderungan ini ditunjukkan oleh grafik kontur kadar air terhadap suhu dan tekanan kempa (Gambar 1). 9 Gambar 1 Plot kontur pengaruh suhu dan tekanan kempa terhadap kadar air Grafik 3D kadar air menunjukkan titik stasioner minimum dengan titik kritis pada o C dan 4.5 kgf/cm, dan optimum pada titik 5.5% (Gambar ). Ketika suhu dan tekanan kempa ditingkatkan hingga o C dan 4.5 kgf/cm maka kadar air akan menurun. Namun, ketika suhu dan tekanan ditingkatkan lebih besar dari o C dan 4.5 kgf/cm maka kadar air akan kembali naik. Keadaan ini diduga karena suhu tinggi selama proses kempa yang menyebabkan bagian atas dan bawah permukaan papan kehilangan air dengan cepat dan mengalami pengerasan sehingga air terperangkap di bagian dalam papan. Fenomena ini terjadi seperti halnya fenomena case hardening, yaitu suatu fenomena yang terjadi pada proses pengeringan, dimana proses difusi dari inti menuju permukaan menjadi terhambat akibat lapisan kulit bagian luar membentuk lapisan yang kedap air.

22 10 Menurut Christianto (008), case hardening juga dapat disebabkan oleh adanya perubahan kimia pada bahan, misalnya penggumpalan protein pada permukaan papan karena adanya panas dan terbentuknya dekstrin dari pati atau karbohidrat jika dikeringkan akan membentuk permukaan papan yang masif dan keras. Gambar Grafik 3D pengaruh suhu dan tekanan kempa terhadap kadar air Papan partikel dengan kadar air minimum (5.85%) memiliki kerapatan papan partikel yang tinggi, yakni 0.9 g/cm 3. Kecenderungan nilai kadar air papan yang semakin rendah diikuti dengan kerapatannya yang semakin tinggi terjadi pada penelitian ini ketika suhu dan tekanan kempa tertinggi pada pembuatan papan partikel, yakni 180 o C dan 00 kgf/cm. Hal ini sesuai dengan pernyataan Kollman et al. (1975) bahwa papan partikel yang memiliki kerapatan tinggi, partikelnya akan semakin kompak dan padat sehingga tidak banyak terdapat rongga atau pori antar jalinan partikel yang dapat diisi oleh air. Setiawan (008) juga menyebutkan bahwa semakin tinggi kerapatan papan partikel maka air yang terkandung didalamnya semakin rendah. Papan partikel dengan kerapatan yang tinggi memiliki ikatan yang kuat antara partikel dan perekatnya sehingga air sulit mengisi kembali rongga yang terdapat dalam papan partikel karena kemungkinan rongga tersebut telah terisi oleh perekatnya (Prasetyarini 009). Pengaruh Suhu dan Tekanan Kempa Terhadap Daya Serap Air Daya serap air merupakan salah satu sifat fisik dari papan partikel yang menunjukkan kemampuan papan partikel dalam menyerap air (Ginting 009). Papan partikel yang berkualitas baik adalah papan partikel yang dapat menyerap air serendah mungkin. Pengujian daya serap air papan partikel dilakukan selama jam dan 4 jam. Berdasarkan hasil pengujian diperoleh nilai daya serap air papan partikel selama jam dan 4 jam masing-masing pada kisaran 3.81 sampai 99.69% dan sampai 109.3% (Tabel 4). Tingginya nilai daya serap air papan partikel pada penelitian ini tidak memungkinkan untuk digunakan sebagai bahan bangunan eksterior ataupun interior. JIS A tidak menetapkan standar untuk daya serap air papan partikel, namun menurut Lestari dan Kartika (01) uji ini perlu dilakukan untuk mengetahui ketahanan papan partikel terhadap air terutama saat digunakan untuk keperluan eksterior dimana papan mengalami kontak langsung dengan kondisi cuaca (kelembaban dan hujan).

23 Tabel 6 Analisis varian pengaruh suhu dan tekanan kempa terhadap daya serap air selama jam Source df SS MS F P Model X * X * X X 1 X X (Lack of fit) * * Signifikan (P < 0.05) Berdasarkan Tabel 6, nilai lack of fit signifikan, artinya model polinomial orde kedua di bawah ini tepat digunakan sebagai model regresi daya serap air papan selama jam terhadap suhu dan tekanan kempa. DSA = *X *X 0.06*X *X 1 X 0.01*X (R = ) Berdasarkan hasil perhitungan data mengenai pengaruh suhu dan tekanan kempa terhadap daya serap air selama jam diperoleh R sebesar yang memiliki arti bahwa pengaruh suhu dan tekanan kempa terhadap perubahan daya serap air selama jam ialah sebesar 51.43%. Nilai R ini kurang baik karena memiliki nilai jauh lebih kecil dari 1. Tabel 6 juga menunjukkan bahwa parameter suhu dan tekanan signifikan mempengaruhi daya serap air papan partikel selama jam (DSA). Semakin tinggi suhu dan tekanan maka daya serap air selama jam cenderung semakin rendah. Kecenderungan ini ditunjukkan oleh grafik kontur daya serap air selama jam terhadap suhu dan tekanan kempa (Gambar 3). 11 Gambar 3 Plot kontur pengaruh suhu dan tekanan kempa terhadap daya serap air selama jam Grafik 3D daya serap air selama jam menunjukkan titik stasioner maksimum dengan titik kritis pada o C dan 150 kgf/cm, dan optimum pada titik 10.% (Gambar 4). Ketika suhu dan tekanan lebih besar dari o C dan 150 kgf/cm maka daya serap air selama jam akan menurun. Nilai daya serap air selama jam yang tinggi ini diduga karena jenis bahan baku yang digunakan

24 1 berupa partikel kaya protein dan serat. Ikatan hidrogen antara serat (hydroxy groups) dan protein (polar groups) membuat papan partikel ini higroskopis. Sutigno (1994) yang diacu dalam Jatmiko (006) menyatakan bahwa kualitas papan partikel bergantung pada jenis dan ukuran partikel yang digunakan. Partikel yang mempunyai bahan berupa serbuk yang bersifat higroskopis akan mudah dan cepat menyerap air. Gambar 4 Grafik 3D pengaruh suhu dan tekanan kempa terhadap daya serap air selama jam Tabel 7 menunjukkan nilai lack of fit signifikan, artinya model polinomial orde kedua di bawah ini tepat digunakan sebagai model regresi daya serap air papan selama 4 jam terhadap suhu dan tekanan kempa. DSA4 = *X 1 0.6*X *X *X 1 X *X (R = ) Berdasarkan hasil perhitungan data mengenai pengaruh suhu dan tekanan kempa terhadap daya serap air selama 4 jam diperoleh R sebesar yang memiliki arti bahwa pengaruh suhu dan tekanan kempa terhadap perubahan daya serap air selama 4 jam ialah sebesar 57.90%. Nilai R ini kurang baik karena memiliki nilai jauh lebih kecil dari 1. Tabel 7 Analisis varian pengaruh suhu dan tekanan kempa terhadap daya serap air selama 4 jam Source df SS MS F P Model X * X * X X 1 X X (Lack of fit) * * Signifikan (P < 0.05) Pada Tabel 7 juga dapat dilihat bahwa parameter suhu dan tekanan signifikan mempengaruhi daya serap air papan partikel selama 4 jam (DSA4).

25 Semakin tinggi suhu dan tekanan maka daya serap air selama 4 jam cenderung semakin rendah. Kecenderungan ini ditunjukkan oleh grafik kontur daya serap air selama 4 jam terhadap suhu dan tekanan kempa (Gambar 5). 13 Gambar 5 Plot kontur pengaruh suhu dan tekanan kempa terhadap daya serap air selama 4 jam Grafik 3D daya serap air selama 4 jam (Gambar 6) menunjukkan titik stasioner saddle point, artinya terdapat nilai yang sama dari beberapa perlakuan dalam penelitian ini sehingga respon cenderung stabil. Selain itu titik kritis daya serap air selama 4 jam berada pada o C dan kgf/cm, dan optimum pada titik 10.8%. Perbedaan titik optimum daya serap air selama jam (10.%) dan 4 jam (10.8%) yang tidak berbeda nyata kemungkinan disebabkan oleh kapasitas kapiler kosong papan partikel telah terisi sebagian besar saat perendaman papan selama jam dan mulai cenderung stabil saat perendaman 4 jam. Gambar 6 Grafik 3D pengaruh suhu dan tekanan kempa terhadap daya serap air selama 4 jam Berdasarkan kecenderungan daya serap air selama jam dan 4 jam yang semakin kecil saat kondisi suhu dan tekanan kempa semakin tinggi, kemungkinan menyebabkan efektifitas kekuatan ikatan antar partikel semakin baik dan kompak. Kondisi ini berimplikasi terhadap semakin minimnya saluran kapiler kosong di dalam papan partikel. Djalal (1984) dalam Jatmiko (006) berpendapat bahwa terdapat beberapa faktor yang mempengaruhi besarnya penyerapan air papan partikel yaitu adanya saluran kapiler yang menghubungkan antar ruang kosong, volume ruang kosong antar partikel, dalamnya penetrasi perekat terhadap partikel dan luas permukaan partikel yang tidak ditutupi perekat.

26 14 Pengaruh Suhu dan Tekanan Kempa Terhadap Pengembangan Tebal Pengukuran pengembangan tebal dilakukan pada 1 contoh uji yang sama dengan daya serap air. Menurut Ginting (009), pengukuran pengembangan tebal dimaksudkan untuk mengetahui perubahan tebal papan partikel akibat adanya sejumlah air yang masuk setelah papan direndam dalam periode waktu tertentu ( dan 4 jam). Kualitas papan partikel dapat ditinjau dari pengembangan tebalnya. Semakin tinggi nilai pengembangan tebal maka semakin rendah kestabilan dimensi dan kualitasnya, demikian juga sebaliknya. Berdasarkan hasil pengujian diperoleh nilai pengembangan tebal papan partikel selama jam dan 4 jam masing-masing pada kisaran 6.67 sampai % dan sampai 8.85% (Tabel 4). Umumnya nilai pengembangan tebal dari penelitian ini masih berada di bawah standar JIS A (maksimal 1%). Nilai pengembangan tebal yang cukup tinggi ini menyebabkan papan partikel dalam penelitian ini tidak dapat digunakan untuk keperluan eksterior dan interior karena sifat mekanis yang dimiliki akan segera menurun secara drastis dalam waktu yang singkat. Tabel 8 Analisis varian pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama jam Source df SS MS F P Model X * X X X 1 X X (Lack of fit) * * Signifikan (P < 0.05) Berdasarkan Tabel 8, nilai lack of fit signifikan, artinya model polinomial orde kedua di bawah ini tepat digunakan sebagai model regresi pengembangan tebal papan selama jam terhadap suhu dan tekanan kempa. PT = *X *X 0.018*X *X 1 X *X (R = 0.634) Hasil perhitungan data mengenai pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama jam diperoleh R sebesar yang memiliki arti bahwa pengaruh suhu dan tekanan kempa terhadap perubahan pengembangan tebal selama jam ialah sebesar 63.4%. Nilai R ini kurang baik karena memiliki nilai jauh lebih kecil dari 1. Tabel 8 juga menunjukkan bahwa hanya parameter suhu yang signifikan mempengaruhi pengembangan tebal papan partikel selama jam (PT). Semakin tinggi suhu maka nilai pengembangan tebal papan partikel selama jam akan semakin kecil, kecenderungan ini ditunjukkan oleh grafik kontur pengembangan tebal papan partikel selama jam terhadap suhu dan tekanan kempa (Gambar 7).

27 15 Gambar 7 Plot kontur pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama jam Grafik 3D pengembangan tebal papan partikel selama jam (Gambar 8) menunjukkan titik stasioner maksimum yang selaras dengan daya serap air selama jam. Pengembangan tebal papan partikel selama jam memiliki titik kritis pada o C dan 15.7 kgf/cm, dan optimum pada titik 3.6%. Setiawan (008) menyatakan bahwa pengembangan tebal diduga ada hubungan dengan absorbsi air karena semakin banyak air yang diabsorbsi dan memasuki struktur partikel maka semakin banyak pula perubahan dimensi yang dihasilkan. Hal tersebut dibuktikan dengan tingginya nilai daya serap air. Gambar 8 Grafik 3D pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama jam Nilai lack of fit yang ditunjukkan oleh Tabel 9 lebih kecil dari 0.05, artinya model polinomial orde kedua di bawah ini tepat digunakan sebagai model regresi pengembangan tebal selama 4 jam terhadap suhu dan tekanan kempa. PT4 = *X *X 0.01*X *X 1 X *X (R = 0.688) Hasil perhitungan data mengenai pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama 4 jam diperoleh R sebesar yang memiliki arti bahwa pengaruh suhu dan tekanan kempa terhadap perubahan pengembangan tebal selama 4 jam ialah sebesar 68.8%. Nilai R ini kurang baik karena memiliki nilai jauh lebih kecil dari 1.

28 16 Tabel 9 Analisis varian pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama 4 jam Source df SS MS F P Model X * X X X 1 X X (Lack of fit) * * Signifikan (P < 0.05) Tabel 9 juga menunjukkan hanya parameter suhu yang signifikan mempengaruhi pengembangan tebal papan partikel selama 4 jam (PT4). Semakin tinggi suhu maka nilai pengembangan tebal papan partikel selama 4 jam akan semakin kecil, kecenderungan ini ditunjukkan oleh grafik kontur pengembangan tebal papan partikel selama 4 jam (Gambar 9). Gambar 9 Plot kontur pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama 4 jam Berdasarkan grafik 3D pengembangan tebal papan partikel selama 4 jam (Gambar 10), titik stasioner yang dihasilkan adalah saddle point yang selaras dengan daya serap air selama 4 jam, artinya terdapat nilai yang sama dari beberapa perlakuan dalam penelitian ini sehingga pengembangan tebal papan partikel selama 4 jam cenderung stabil. Gambar 10 juga memperlihatkan titik kritis pengembangan tebal papan partikel selama 4 jam terletak pada o C dan kgf/cm, dan optimum pada titik 11.4%.

29 17 Gambar 10 Grafik 3D pengaruh suhu dan tekanan kempa terhadap pengembangan tebal selama 4 jam Pengaruh Suhu dan Tekanan Kempa Terhadap Modulus of Elasticity Kekuatan lentur atau Modulus of Elasticity (MOE) menunjukkan perbandingan antara tegangan dan regangan di bawah batas elastis sehingga benda akan kembali ke bentuk semula apabila beban dilepaskan (Mardikanto et al. 009). Kekuatan lentur merupakan ukuran ketahanan suatu benda untuk mempertahankan bentuk yang berhubungan dengan kekakuan (Haygreen dan Bowyer 1996). Semakin tinggi keteguhan lentur papan partikel maka kualitas papan partikel tersebut ikut meningkat. Menurut Maloney (003), keteguhan lentur dipengaruhi oleh kandungan dan jenis bahan perekat yang digunakan, serta daya ikat rekat dan panjang serat. Berdasarkan hasil pengujian MOE papan partikel dari bungkil jarak kepyar (Tabel 4) diperoleh kisaran nilai sebesar sampai kgf/cm. Tabel 10 Analisis varian pengaruh suhu dan tekanan kempa terhadap MOE Source df SS MS F P Model X * X X * X 1 X X (Lack of fit) * * Signifikan (P < 0.05) Berdasarkan analisis varian (Tabel 10), MOE memiliki nilai lack of fit lebih kecil dari 0.05, artinya model polinomial orde kedua di bawah ini tepat digunakan sebagai model regresi MOE terhadap suhu dan tekanan kempa. MOE = *X *X +.86*X *X 1 X *X (R = 0.546) Hasil perhitungan data mengenai pengaruh suhu dan tekanan kempa terhadap MOE diperoleh R sebesar 0.546, artinya pengaruh suhu dan tekanan

30 18 kempa terhadap perubahan MOE ialah sebesar 54.6%. Nilai R ini kurang baik karena memiliki nilai jauh lebih kecil dari 1. Pada Tabel 10 juga dapat dilihat bahwa hanya parameter suhu yang signifikan mempengaruhi MOE. Hal ini sesuai dengan pendapat Evon et al. (010), MOE papan partikel meningkat selaras dengan peningkatan suhu kempa. Oleh karena itu, semakin tinggi suhu (hingga 185 o C) maka nilai MOE cenderung meningkat, kecenderungan ini ditunjukkan oleh grafik kontur MOE (Gambar 11). Gambar 11 Plot kontur pengaruh suhu dan tekanan kempa terhadap MOE Grafik 3D MOE (Gambar 1) menunjukkan bahwa MOE terhadap suhu dan tekanan kempa memiliki titik stasioner minimum dengan titik kritis pada o C dan 145 kgf/cm, dan optimum pada titik 956. kgf/cm, artinya nilai MOE minimum diperoleh saat o C dan 145 kgf/cm. Berdasarkan model regresi orde kedua dari MOE dapat diperoleh nilai MOE minimum papan partikel berdasarkan standar JIS A (0 400 kgf/cm ) dengan mengiterasikan suhu dan tekanan kempa hingga 46 o C dan 66 kgf/cm. Kondisi proses ini tidak memungkinkan untuk menghasilkan papan partikel dengan MOE minimum berdasarkan standar JIS A karena suhu yang disarankan oleh model regresi orde kedua MOE ini jauh melebihi suhu degradasi protein, yakni 19 o C (Mo et al. 1999). Gambar 1 Grafik 3D pengaruh suhu dan tekanan kempa terhadap MOE Pengaruh Suhu dan Tekanan Kempa Terhadap Modulus of Rupture Keteguhan patah atau Modulus of Rupture (MOR) merupakan kekuatan lentur maksimum hingga material tersebut patah (Mardikanto et al. 009). Haygreen dan Bowyer (1996) juga berpendapat bahwa keteguhan patah adalah beban maksimum yang mampu ditahan oleh papan. Semakin tinggi MOR suatu

31 papan patikel maka kualitas yang dimiliki papan partikel tersebut semakin baik. Berdasarkan hasil pengujian MOR papan partikel dari bungkil jarak kepyar (Tabel 4) diperoleh kisaran nilai sebesar.87 sampai 4.17 kgf/cm. Rendahnya sifat mekanik papan partikel pada penelitian ini kemungkinan disebabkan oleh rasio penggunaan serat dan protein pada papan partikel. Kandungan serat dalam bungkil jarak kepyar dianggap tidak cukup untuk menghasilkan papan partikel yang kuat. Hal ini bila dibandingkan dengan penelitian Mo et al. (001) dan Li et al. (009) yang masing-masing menggunakan rasio 1:1 dan 1:1.43 antara serat sebagai penguat papan dan protein sebagai perekatnya. Tabel 11 Analisis varian pengaruh suhu dan tekanan kempa terhadap MOR Source df SS MS F P Model X * X X X 1 X X (Lack of fit) * * Signifikan (P < 0.05) Berdasarkan analisis varian (Tabel 11), MOR memiliki nilai lack of fit lebih kecil dari 0.05, artinya model polinomial orde kedua di bawah ini tepat digunakan sebagai model regresi MOR terhadap suhu dan tekanan kempa. MOR = *X *X *X *X 1 X *X (R = ) Hasil perhitungan data mengenai pengaruh suhu dan tekanan kempa terhadap MOR diperoleh R sebesar yang memiliki arti bahwa pengaruh suhu dan tekanan kempa terhadap perubahan MOR ialah sebesar 35.96%. Nilai R ini kurang baik karena memiliki nilai jauh lebih kecil dari 1. Tabel 11 juga menunjukkan bahwa hanya parameter suhu yang signifikan mempengaruhi MOR. Semakin tinggi suhu kempa maka MOR akan semakin besar, kecenderungan ini ditunjukkan oleh grafik kontur MOR (Gambar 13). Suhu kempa berperan untuk mendenaturasi protein (selama proses penguapan air) hingga membentuk ikatan kompleks dan mampu meningkatkan daya kohesi antar permukaan serat sehingga kekuatan mekaniknya lebih baik (Evon et al. 010). Grafik 3D MOR pada Gambar 14 di bawah ini menunjukkan titik stasioner minimum dengan titik kritis pada 166 o C dan 160 kgf/cm, dan optimum pada titik 6.4 kgf/cm, artinya nilai MOR minimum berdasarkan analisis regresi diperoleh saat kondisi proses 166 o C dan 160 kgf/cm. Berdasarkan model regresi orde kedua dari MOR dapat diperoleh nilai MOR minimum papan partikel berdasarkan standar JIS A (8 kgf/cm ) dengan cara mengiterasikan suhu dan tekanan kempa hingga 14 o C dan 34 kgf/cm. Kondisi proses ini tidak memungkinkan untuk diterapkan dalam pembuatan papan partikel dari bungkil 19

32 0 jarak kepyar apabila ditinjau dari suhu tersebut karena melebihi suhu degradasi protein (19 o C). Hal ini mengakibatkan protein menjadi terlalu panas dan terdegradasi sehingga menghasilkan kepingan kecil protein dan membentuk rongga pada molekul protein sehingga kekuatan rekat protein akan menurun (Mo et al. 1999). Oleh karena itu nilai MOR akan semakin baik seiring dengan meningkatnya suhu kempa hingga 185 o C. Gambar 13 Plot kontur pengaruh suhu dan tekanan kempa terhadap MOR Perekatan protein pada penelitian ini terjadi saat proses pemanasan berlangsung. Menurut Verbeek dan Berg (009), peningkatan suhu lingkungan protein mengakibatkan struktur protein terganggu (pergerakan rantai polipeptida), sehingga ikatan asam amino unfold dan terjadi pembentukan ikatan baru antara residu asam amino pada rantai yang terpisah dan molekul serat. Air yang terkandung dalam bahan baku berfungsi sebagai plastisizer, berperan mengurangi suhu eksotermik dan meningkatkan pergerakan rantai polipeptida protein. Hal ini memungkinkannya untuk berinteraksi dengan serat (selulosa) dan mengakibatkan kekuatan ikatan antar molekul yang lebih kompak sehingga kekuatan mekanik papan partikel lebih tinggi. Air yang tidak menguap secara sempurna akan menggumpal dan terkumpul didalam papan yang menyebabkan penurunan sifat mekanik papan partikel (Li et al. 009). Menurut Mo et al. (004), umumnya protein memiliki struktur yang terdiri atas kelompok hidrofilik yang terekspos di luar dan kelompok hidrofobik berada di dalam struktur protein. Saat protein terdenaturasi, molekul protein unfold, meningkatkan potensi adhesi kompleks protein dan membuat molekul reaktif protein berinteraksi dengan selulosa, yakni berupa ikatan hidrogen antara gugus hidroksi selulosa dan gugus polar protein. Gambar 14 Grafik 3D pengaruh suhu dan tekanan kempa terhadap MOR

33 1 SIMPULAN DAN SARAN Simpulan Pengujian sifat fisik dan mekanik papan partikel berbahan baku bungkil jarak kepyar berukuran 100 mesh menghasilkan kerapatan 0.88 sampai 0.9 g/cm 3, kadar air 5.85 sampai 8.98%, daya serap air selama jam 3.81 sampai 99.69%, daya serap air selama 4 jam sampai 109.3%, pengembangan tebal selama jam 6.67 sampai %, pengembangan tebal selama 4 jam sampai 8.85%, MOE sampai kgf/cm dan MOR.87 sampai 4.17 kgf/cm. Suhu kempa berpengaruh terhadap seluruh respon yang diujikan, sedangkan tekanan kempa hanya mempengaruhi kadar air dan daya serap air. Koefisien determinasi (R ) variabel respon pada penelitian ini relatif rendah (<85%). Suhu dan tekanan kempa optimum berdasarkan kondisi model regresi MOR pada pembuatan papan partikel dari bungkil jarak kepyar adalah 180 o C dan 186 kgf/cm. Kondisi ini menghasilkan MOR (1.5 kgf/cm ) dan MOE ( kgf/cm ) yang belum memenuhi standar JIS A dan SNI Saran Berdasarkan hasil penelitian ini disarankan untuk meningkatkan nilai MOR dan MOE dengan menambahkan serat ke dalam bahan baku papan partikel. Serat yang umumnya digunakan dapat diperoleh dari jerami atau bagas karena kandungan selulosa yang cukup tinggi pada masing-masing sumber serat tersebut, yakni 3.1 dan 33.4% (Howard et al. 003). Selain itu, menambahkan perekat nabati ke dalam papan partikel dari bungkil jarak kepyar juga disarankan untuk meningkatkan kerekatan antar partikel papan sehingga tercapai nilai MOR dan MOE yang diinginkan. Sebaiknya juga dilakukan verifikasi titik optimum variabel respon pada penelitian ini untuk mengetahui validasi titik optimum tersebut. DAFTAR PUSTAKA Akande TO, Odunsi AA, Olabude OS, Ojediran TK. 01. Physical and Nutrient Characterisation of Raw and Processed Castor (Ricinus communis L) Seeds in Nigeria. World J Agricul Sci. 8(1): Anandan S, Kumar A, Ghosh JGK, Ramachandra KS Effect of Different Physical and Chemical Treatments on Detoxification of Ricin in Castor Cake. Anim Feed Sci Technol. 10(1): doi: /j.anifeedsci [AOAC] Association of Official Analytical Chemistry Official Method of Analysis of the Association of Official Analyticak Chemistry. Washington DC (US): AOAC. [ASTM] American Society for Testing and Material Standard Test Methods for Small Clear Specimens of Timber. West Conshohocken (US): ASTM D143.

34 Bowyer JL, Shmulsky R, Haygreen JG Forest Prod and Wood Sci. United States of America: Blackwell. Chevallier A Encyclopedia of Medical Plants: The Definitive Australian Reference Guide to 550 Key Herbs with All Their Uses as Remedies for Common Ailments. Australia: Dorling Kindersley. Christianto B Pengeringan pada produk (tapel) dengan microwave, (pre treatment: blower) [skripsi]. Depok (ID): Universitas Indonesia. Djalal M Peranan kerapatan kayu dan kerapatan lembaran terhadap sifatsifat flakeboard dari kayu albizia dan getah perca [disertasi]. Bogor (ID): Institut Pertanian Bogor. Evon P, Vanderbossche V, Pontailer P, Rigal L Thermo-Chemical Behaviour of Raffinate Resulting from Aqueous Extraction of Sunflower whole Plant in Twin-Screw Extruder: Manufacturing of Biodegradable Agromaterials by Thermo-Pressing. Advance Material Research. 11:63 7. [FAO] Food and Agricultural Organization Food and Agricultural Organization of the United Nations FAOSTAT [internet]. United State of America: FAO. [diacu 013 Okt 31]. Tersedia dari: faostat-gateway/go/to/home/e. Ginting SH Oriented strand board dari tiga jenis bambu [skripsi]. Medan (ID): Universitas Sumatra Utara. Harvey D Modern Analytical Chemistry. New York (US): McGraw Hill. Haygreen JG, Bowyer JL Hasil Hutan dan Ilmu Kayu, Suatu Pengantar [Cetakan Ketiga]. Hadikusumo SA, penerjemah. Yogyakarta (ID): Gadjah Mada University Press. Terjemahan dari: Forest Product and Wood Science, an Introduction. Howard RL, Abotsi E, Rensburg JEL, and Howard S Lignocellulose Biotechnology: Issue of Bioconversion and Enzyme Production [review]. African J Biotech. (1): Iriawan N, Astuti SP Mengolah Data Statistik dengan Mudah Menggunakan Minitab 14. Yogyakarta (ID): Andi. Jatmiko A Kualitas papan partikel pada berbagai kadar perekat likuida tandan kosong kelapa sawit [skripsi]. Bogor (ID): Institut Pertanian Bogor. [JIS A] Japanese Standard Association Particleboard. Tokyo (JP): JIS A Kautsar IQ Pembuatan binderless papan partikel dari bungkil jarak kepyar (Ricinus communis L) [skripsi]. Bogor (ID): Institut Pertanian Bogor. Kollman FFP, Kuenzi E, Stamm AJ Principles of Wood Science and Technology II Wood Based Materials. New York (US): Springer-Verlag Berlin Heidelberg. Kumar R, Choudhary V, Mishra S, Varma IK, Mattiason B. 00. Adhesive and Plastics Based on Soy Protein Products. Indust Crop Prod. 16(3): doi: /s (0) Lambuth AL Soybean Glues. In: Keist, I.S. (Ed), Handbook of Adhesives, second ed. New York (US): Van Nostrand Reinhold. Lambuth AL Protein Adhesives for Wood. In: Pizzi A, Mittal KL. (Ed), Handbook of Adhesive Technology. New York (US): Marcel Dekker. Lestari S, Kartika IA. 01. Pembuatan Papan Partikel dari Ampas Biji Jarak Pagar pada Berbagai Kondisi Proses. JAII. 1(1):11-17.

35 Li X, Li Y, Zhong Z, Wang D, Ratto JA, Sheng K, Sun XS Mechanical and Water Soaking Properties of Medium Density Fiberboard with Wood Fiber and Soybean Protein Adhesive. Bior Tech. 100(14): doi: /j. biortech Lubis A Kajian penggunaan metode respon permukaan untuk optimasi pasca panen (studi kasus perlakuan konsentrasi dan suhu penyimpanan buah manggis) [skripsi]. Bogor (ID): Institut Pertanian Bogor. Maloney TM Modern Particleboard and Dry Process Fiberboard Manufacturing. San Francisco (US): Miller Freeman. Mardikanto TR, Karlinasari L, Bahtiar ET Sifat Mekanis Kayu. Bogor (ID): IPB Pr. Mardjono R Plasma Nutfah dan Galur-Galur Unggul Jarak dalam Monograf Jarak. Malang (ID): Balai Penelitian Tembakau dan Tanaman Serat. Mo X, Hu J, Sun S, Ratto JA Compression and Tensile Strength of Low- Density Straw-Protein Particleboard. Indust Crop Prod. 14(1):1 9. doi: /S (00) Mo X, Sun XS, Wang D Thermal Properties and Adhesion Strength of Modified Soybean Storage Proteins. J Am Oil Chem Soc. 81(4): doi: /s Mo X, Sun XS, Wang Y Effect of Molding Temperature and Pressure on Properties of Soy Protein Polymers. J App Polym Sci. 73(13): doi:10.100/(sici) ( )73:13<595::aid-app6>3.0.co;-i. Montgomery DC Design and Analysis of Experimental 5th Edition. New York (US): John Wiley & Son. Perdomo FA, Osorio AAA, Herrera G, Leal JFV, Artamonov JDM, Malo BM, Garcia MER Physicochemical Characterization of Seven Mexican Ricinus communis L Seeds and Oil Contents. Biom Bioen. 48:17 4. doi: /j.biombioe Prasetyarini SR Keteguhan rekat internal papan partikel ampas tebu dengan swa adhesi dan perekat urea formaldehida [skripsi]. Bogor (ID): Institut Pertanian Bogor. Roffael E Formaldehyde Release from Particle Board and Other Wood Based Panels. Kuala Lumpur (MY): FRIM Kepong. [SNI] Standar Nasional Indonesia SNI Mutu Papan Partikel Jakarta (ID): Dewan Standarisasi Nasional. Setiawan B Papan partikel dari sekam padi [skripsi]. Bogor (ID): Institut Pertanian Bogor. Verbeek CJR, Berg LE Recent Developments in Thermo Mechanical Processing of Proteinous Bioplastics [review]. Recent Patent Material Sci. (3): doi:10.174/ Ye X, Julson J, Kuo M, Myers D Biocomposite Hardboard from Renewable Biomass Bonded with Soybean Based Adhesive. Transac ASABE. 48(4): doi: / Zhang Z, Triplett OA, Nguyen KT, Melchior WB, Taylor K, Jackson LS, Tolleson WH Thermal Inactivation Reaction Rates for Ricin are Influenced by ph and Carbohydrates. Food Chem Toxicol. 58: doi: /j.fct

36 4 Lampiran 1 Prosedur analisis karakterisasi bahan baku (AOAC 1995) 1. Kadar Air Sebanyak sampai 10 gram bahan ditimbang di dalam cawan yang telah kering dan diketahui bobotnya, kemudian dikeringkan ke dalam oven 105 o C selama jam atau hingga bobot mencapai seimbang. Sebelum ditimbang cawan yang telah dikeluarkan dari oven dimasukan ke dalam desikator untuk didinginkan sampai bobot mencapai konstan. Kadar air dapat dihitung berdasarkan kehilangan berat, yaitu selisih antara bobot awal sampel dan bobot akhir sampel, dengan menggunakan rumus sebagai berikut: ( = Keterangan: a = Bobot awal sampel (gram) b = Bobot akhir sampel (gram) a a 00. Kadar Lemak Sampel dari analisis kadar air (sampel bebas air) diekstraksi dengan pelarut organik heksana dalam alat soxhlet selama 6 jam. Contoh yang hampir bebas pearut dikeringkan ke dalam oven selama kurang dari 1 menit dan dipastikan pelarut telah menguap sempurna sebelum dimasukkan ke dalam desikator. Selanjutnya ditimbang sampai bobotnya konstan. Kadar lemak dihitung dengan menggunakan rumus berikut: ( = Kadar Abu Sebanyak sampai 10 gram bahan ditempatkan dalam cawan porselen yang telah diketahui bobotnya. Kemudian dibakar sampai tidak berasap dan diabukan dalam tanur pada suhu 600 o C selama 5 jam, selanjutnya ditimbang. Kadar abu dihitung dengan rumus: ( = Serat Kasar Sampel sebanyak 1 gram dimasukkan ke dalam labu erlenmeyer 300 ml kemudian ditambahkan 100 ml HSO N. Bahan selanjutnya dihidrolisis di dalam otoklaf bersuhu 105 C selama 15 menit. Bahan didinginkan, kemudian ditambahkan 50 ml NaOH 1.5 N dan dihidrolisis kembali di dalam otoklaf bersuhu 105 C selama 15 menit. Bahan disaring dengan menggunakan kertas saring yang telah dikeringkan dan diketahui bobotnya. Setelah itu kertas saring dicuci berturut-turut dengan menggunakan air panas, 5 ml HSO N, air panas lagi kemudian 5 ml alkohol. Residu dan kertas saring dikeringkan dalam oven bersuhu 110 C selama 1

37 sampai jam. Kadar serat kasar dapat dihitung dengan menggunakan rumus berikut ini: 5 ( = a 00 Keterangan: a = Bobot kertas saring akhir (gram) b = Bobot kertas saring awal (gram) c = Bobot contoh (gram) 5. Kadar Protein Sampel sebanyak 0.1 gram dimasukkan ke dalam labu Kjedhal. Katalis ditimbang sebanyak 1 gram yang terdiri atas CuSO4:NaSO4 (5:6). Selanjutnya ditambahkan.5 ml HSO4 pekat dan didekstruksi hingga cairan bewarna hijau jernih. Setelah didinginkan sampai suhu kamar, bahan yang telah didestruksi dipindahkan ke dalam alat destilasi dan ditambahkan 15 ml NaOH 50% (sampai larutan menjadi basa). Hasil sulingan ditampung ke dalam erlenmeyer 00 ml yang berisi HCl 0.0 N sampai tertampung tidak kurang dari 50 ml destilat, kemudian hasilnya didestilasi dengan NaOH 0.0 N disertai penambahan indikator mensel (campuran metil red dan metil blue) 3 sampai 4 tetes. Perlakuan tersebut juga dilakukan terhadap blanko. Kadar protein dapat dihitung dengan menggunakan rumus berikut ini: ( = (a Keterangan: a = Titrasi blanko (ml) b = Titrasi contoh (ml) c = Bobot contoh (gram)

38 6 Lampiran Prosedur pengujian sifat fisik dan mekanik papan partikel (ASTM D ) 1. Kerapatan Contoh uji dalam kondisi kering diukur bobot dan dimensinya. Pengukuran dimensi meliputi panjang, lebar, dan tebal untuk mengetahui volume contoh uji. Kerapatan papan dapat dihitung dengan menggunakan rumus: ( = ( (. Kadar Air Sampel berukuran 4 x 4 cm atau 4 sampai 7 gram ditimbang di dalam cawan yang telah kering dan diketahui bobotnya, kemudian dikeringkan ke dalam oven 105 o C selama jam atau hingga bobot mencapai seimbang. Sebelum ditimbang cawan yang telah dikeluarkan dari oven dimasukan ke dalam desikator untuk didinginkan sampai bobot mencapai konstan. Kadar air dapat dihitung berdasarkan kehilangan berat, yaitu selisih antara bobot awal sampel dan bobot akhir sampel, dengan menggunakan rumus sebagai berikut: ( = Keterangan: a = Bobot awal sampel (gram) b = Bobot akhir sampel (gram) a a Daya Serap Air (DSA) Contoh uji daya serap air yang berukuran.5 x.5 cm diukur bobot awalnya kemudian direndam dalam air selama dan 4 jam. Selanjutnya diukur bobot akhir contoh uji setelah direndam selama dan 4 jam. Daya serap air dapat diukur menggunakan rumus berikut: ( = Keterangan: a = Bobot awal sampel (gram) b = Bobot akhir sampel (gram) a a Pengembangan Tebal (PT) Contoh uji berukuran.5 x.5 cm diukur tebal awalnya kemudian direndam dalam air selama dan 4 jam. Selanjutnya diukur ketebalan akhir contoh uji setelah direndam selama dan 4 jam. Pengembangan tebal dapat diukur menggunakan rumus berikut:

39 7 Keterangan: a = Tebal awal sampel (cm) b = Tebal akhir sampel (cm) ( = a a Modulus of Elasticity (MOE) Contoh uji berukran.5 x 10 cm disiapkan dalam kondisi kering. Uji MOE ini dilakukan dengan menggunakan alat Universal Testing Macine (UTM). Nilai MOE papan partikel dapat dihitung menggunakan rumus: ( = 4 Keterangan: P = Perubahan beban yang digunakan (kgf) L = Panjang bentang (cm) y = Perubahan defleksi setiap perubahan beban (cm) b = Lebar contoh uji (cm) h = Tebal contoh uji (cm) 6. Modulus of Rupture (MOR) Contoh uji berukran.5 x 10 cm disiapkan dalam kondisi kering. Uji MOR ini dilakukan dengan menggunakan alat Universal Testing Macine (UTM). Nilai MOR papan partikel dapat dihitung menggunakan rumus: ( = Keterangan: P = Beban maksimum (kgf) L = Panjang bentang (cm) b = Lebar contoh uji (cm) h = Tebal contoh uji (cm)

40 8 RIWAYAT HIDUP Penulis bernama Nurussholehatul Amanah lahir pada 0 Desember 1990 di Jember, Jawa Timur. Lahir sebagai anak ke-4 dari 5 bersaudara, dari pasangan Alimakki dan Nailah. Tahun 009 penulis lulus dari SMA Negeri 1 Jember dan pada tahun yang sama melanjutkan pendidikannya di Departemen Teknologi Industri Pertanian (TIN), Fakultas Teknologi Pertanian (Fateta), Institut Pertanian Bogor (IPB) angkatan 46. Selama masa perkuliahan penulis aktif sebagai anggota tari Fateta, ELODEA, pada tahun 010 sampai 01. Pada tahun tersebut pula penulis aktif pada kegiatan pecinta alam tingkat departemen, MATIPALA. Penulis juga aktif dalam kepanitian tenis meja tingkat nasional yang diselanggarakan oleh UKM Tenis Meja IPB pada tahun 011 sampai 01. Penulis melaksanakan kegiatan Praktik Lapangan di PT Momenta Agricultura, Lembang, Bandung. PT Momenta Agricultura merupakan perusahaan yang bergerak dibidang produksi dan pemasaran sayuran dan buah-buahan organik.

PEMBUATAN BINDERLESS PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L) IDDEA QODRIAZA KAUTSAR

PEMBUATAN BINDERLESS PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L) IDDEA QODRIAZA KAUTSAR PEMBUATAN BINDERLESS PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L) IDDEA QODRIAZA KAUTSAR DEPARTEMEN TEKNOLOGI INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI INDUSTRI PERTANIAN INSTITUT PERTANIAN

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Sifat Fisis Papan Semen 4.1.1. Kadar Air Nilai rata-rata kadar air papan semen sekam hasil pengukuran disajikan pada Gambar 7. 12 Kadar air (%) 9 6 3 0 JIS A5417 1992:

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN Sifat fisis papan partikel yang diuji meliputi kerapatan, kadar air, daya serap air dan pengembangan tebal. Sifat mekanis papan partikel yang diuji meliputi Modulus of Elasticity

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 7 BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dilaksanakan di Laboratorium Biokomposit dan pengujian sifat fisis dan mekanis dilaksanakan di Laboratorium Rekayasa dan Desain

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 8 BAB III METODE PENELITIAN 3.1 Bahan dan Alat Penelitian ini menggunakan bahan-bahan berupa tandan kosong sawit (TKS) yang diperoleh dari pabrik kelapa sawit di PT. Perkebunan Nusantara VIII Kertajaya,

Lebih terperinci

BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian 3.2 Alat dan Bahan Test Specification SNI

BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian 3.2 Alat dan Bahan Test Specification SNI BAB III METODOLOGI 3.1 Waktu dan Tempat Penelitian Persiapan bahan baku, pembuatan dan pengujian sifat fisis papan partikel dilaksanakan di Laboratorium Bio-Komposit sedangkan untuk pengujian sifat mekanis

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei - Oktober Pembuatan

METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan Mei - Oktober Pembuatan METODE PENELITIAN Waktu dan Tempat Penelitian ini dilaksanakan pada bulan Mei - Oktober 2015. Pembuatan papan dan pengujian sifat fisis dilakukan di Laboratorium Teknologi Hasil Hutan, Program Studi Kehutanan,

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 19 BAB IV HASIL DAN PEMBAHASAN 4.1 Sifat Akustik Papan Partikel Sengon 4.1.1 Koefisien Absorbsi suara Apabila ada gelombang suara bersumber dari bahan lain mengenai bahan kayu, maka sebagian dari energi

Lebih terperinci

PEMBUATAN PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L.) DENGAN PERLAKUAN PENDAHULUAN STEAM EXPLOSION

PEMBUATAN PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis L.) DENGAN PERLAKUAN PENDAHULUAN STEAM EXPLOSION E-Jurnal Agroindustri Indonesia Juni 015 Vol. 4 No. 1, p ISSN: 5-334 Available online at: http://tin.fateta.ipb.ac.id/journal/e-jaii PEMBUATAN PAPAN PARTIKEL DARI BUNGKIL JARAK KEPYAR (Ricinus communis

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan mulai bulan Februari hingga Juni 2009 dengan rincian waktu penelitian terdapat pada Lampiran 3. Penelitian dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 3 BAB II TINJAUAN PUSTAKA 2.1 Tandan Kosong Sawit Jumlah produksi kelapa sawit di Indonesia dari tahun ke tahun mengalami peningkatan, pada tahun 2010 mencapai 21.958.120 ton dan pada tahun 2011 mencapai

Lebih terperinci

III. METODOLOGI. 3.3 Pembuatan Contoh Uji

III. METODOLOGI. 3.3 Pembuatan Contoh Uji III. METODOLOGI 3.1 Waktu dan Tempat Penelitian Persiapan bahan baku dan pembuatan papan partikel dilaksanakan di Laboratorium Kimia Hasil Hutan dan Laboratorium Bio-Komposit sedangkan untuk pengujian

Lebih terperinci

TINJAUAN PUSTAKA. perabot rumah tangga, rak, lemari, penyekat dinding, laci, lantai dasar, plafon, dan

TINJAUAN PUSTAKA. perabot rumah tangga, rak, lemari, penyekat dinding, laci, lantai dasar, plafon, dan TINJAUAN PUSTAKA A. Papan Partikel A.1. Definisi papan partikel Kayu komposit merupakan kayu yang biasa digunakan dalam penggunaan perabot rumah tangga, rak, lemari, penyekat dinding, laci, lantai dasar,

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN METODOLOGI PENELITIAN Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan pada bulan Mei sampai Agustus 204 di Workshop Program Studi Kehutanan Fakultas Kehutanan Universitas Sumatera Utara untuk membuat

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN B. Tahapan Proses Pembuatan Papan Serat 1. Pembuatan Matras a. Pemotongan serat Serat kenaf memiliki ukuran panjang rata-rata 40-60 cm (Gambar 18), untuk mempermudah proses pembuatan

Lebih terperinci

4 PENGARUH KADAR AIR PARTIKEL DAN KADAR PARAFIN TERHADAP KUALITAS PAPAN KOMPOSIT

4 PENGARUH KADAR AIR PARTIKEL DAN KADAR PARAFIN TERHADAP KUALITAS PAPAN KOMPOSIT 48 4 PENGARUH KADAR AIR PARTIKEL DAN KADAR PARAFIN TERHADAP KUALITAS PAPAN KOMPOSIT 4.1 Pendahuluan Berdasarkan hasil penelitian sebelumnya, kekuatan papan yang dihasilkan masih rendah utamanya nilai MOR

Lebih terperinci

Pemanfaatan Limbah Kulit Buah Nangka sebagai Bahan Baku Alternatif dalam Pembuatan Papan Partikel untuk Mengurangi Penggunaan Kayu dari Hutan Alam

Pemanfaatan Limbah Kulit Buah Nangka sebagai Bahan Baku Alternatif dalam Pembuatan Papan Partikel untuk Mengurangi Penggunaan Kayu dari Hutan Alam Pemanfaatan Limbah Kulit Buah Nangka sebagai Bahan Baku Alternatif dalam Pembuatan Papan Partikel untuk Mengurangi Penggunaan Kayu dari Hutan Alam Andi Aulia Iswari Syam un 1, Muhammad Agung 2 Endang Ariyanti

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 17 BAB IV HASIL DAN PEMBAHASAN 4.1 Sifat Fisis Papan Partikel 4.1.1 Kerapatan Kerapatan merupakan perbandingan antara massa per volume yang berhubungan dengan distribusi partikel dan perekat dalam contoh

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 PAPAN PARTIKEL 2.1.1 Definisi dan Pengertian Papan partikel adalah suatu produk kayu yang dihasilkan dari hasil pengempaan panas antara campuran partikel kayu atau bahan berlignoselulosa

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 21 4.1 Geometri Strand pada Tabel 1. BAB IV HASIL DAN PEMBAHASAN Hasil pengukuran nilai rata-rata geometri strand pada penelitian ini tertera Tabel 1 Nilai rata-rata pengukuran dimensi strand, perhitungan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 9 BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian ini dilakukan dari bulan Juni sampai dengan bulan Oktober 2010. Tempat yang dipergunakan untuk penelitian adalah sebagai berikut : untuk pembuatan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 8 BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dilakukan pada bulan Januari 2011 sampai Agustus 2011. Pemotongan kayu dilakukan di Work Shop Laboratorium Peningkatan Mutu Kayu,

Lebih terperinci

6 PENGARUH SUHU DAN LAMA PENGEMPAAN TERHADAP KUALITAS PAPAN KOMPOSIT

6 PENGARUH SUHU DAN LAMA PENGEMPAAN TERHADAP KUALITAS PAPAN KOMPOSIT 77 6 PENGARUH SUHU DAN LAMA PENGEMPAAN TERHADAP KUALITAS PAPAN KOMPOSIT 6.1 Pendahuluan Pengempaan merupakan salah satu faktor yang menentukan kualitas papan yang dihasilkan (USDA, 1972). Salah satu hal

Lebih terperinci

TINJAUAN PUSTAKA. Menurut Badan Standardisasi Nasional (2010) papan partikel merupakan

TINJAUAN PUSTAKA. Menurut Badan Standardisasi Nasional (2010) papan partikel merupakan TINJAUAN PUSTAKA Papan Partikel Menurut Badan Standardisasi Nasional (2010) papan partikel merupakan papan yang terbuat dari bahan berlignoselulosa yang dibuat dalam bentuk partikel dengan menggunakan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 23 BAB IV HASIL DAN PEMBAHASAN 4.1 Geometri Strand Hasil pengukuran geometri strand secara lengkap disajikan pada Lampiran 1, sedangkan nilai rata-ratanya tertera pada Tabel 2. Tabel 2 Nilai pengukuran

Lebih terperinci

Gambar 7 Desain peralatan penelitian

Gambar 7 Desain peralatan penelitian 21 III. METODE PENELITIAN 3.1. Bahan dan Alat Bahan utama yang digunakan dalam penelitian ini adalah tanah pemucat bekas yang diperoleh dari Asian Agri Group Jakarta. Bahan bahan kimia yang digunakan adalah

Lebih terperinci

PENGARUH SUHU PEREBUSAN PARTIKEL JERAMI (STRAW) TERHADAP SIFAT-SIFAT PAPAN PARTIKEL RINO FARDIANTO

PENGARUH SUHU PEREBUSAN PARTIKEL JERAMI (STRAW) TERHADAP SIFAT-SIFAT PAPAN PARTIKEL RINO FARDIANTO PENGARUH SUHU PEREBUSAN PARTIKEL JERAMI (STRAW) TERHADAP SIFAT-SIFAT PAPAN PARTIKEL RINO FARDIANTO DEPARTEMEN HASIL HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR 2009 PENGARUH SUHU PEREBUSAN PARTIKEL

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 22 BAB IV HASIL DAN PEMBAHASAN 4.1 Geometri Strand Hasil pengukuran geometri strand disajikan pada Tabel 4. Berdasarkan data, nilai rata-rata dimensi strand yang ditentukan dengan menggunakan 1 strand

Lebih terperinci

OPTIMASI KADAR HIDROGEN PEROKSIDA DAN FERO SULFAT

OPTIMASI KADAR HIDROGEN PEROKSIDA DAN FERO SULFAT VI. OPTIMASI KADAR HIDROGEN PEROKSIDA DAN FERO SULFAT Pendahuluan Penelitian pada tahapan ini didisain untuk mengevaluasi sifat-sifat papan partikel tanpa perekat yang sebelumnya diberi perlakuan oksidasi.

Lebih terperinci

DAFTAR LAMPIRAN. No. Judul Halaman. 1. Pelaksanaan dan Hasil Percobaan Pendahuluan a. Ekstraksi pati ganyong... 66

DAFTAR LAMPIRAN. No. Judul Halaman. 1. Pelaksanaan dan Hasil Percobaan Pendahuluan a. Ekstraksi pati ganyong... 66 DAFTAR LAMPIRAN No. Judul Halaman 1. Pelaksanaan dan Hasil Percobaan Pendahuluan... 66 a. Ekstraksi pati ganyong... 66 b. Penentuan kisaran konsentrasi sorbitol untuk membuat edible film 68 c. Penentuan

Lebih terperinci

BAB V ANALISIS DAN INTERPRETASI HASIL

BAB V ANALISIS DAN INTERPRETASI HASIL BAB V ANALISIS DAN INTERPRETASI HASIL Pada bab ini akan diuraikan analisis terhadap hasil pengolahan data. Pembahasan mengenai analisis hasil pengujian konduktivitas panas, pengujian bending, perhitungan

Lebih terperinci

Studi Awal Pembuatan Komposit Papan Serat Berbahan Dasar Ampas Sagu

Studi Awal Pembuatan Komposit Papan Serat Berbahan Dasar Ampas Sagu Studi Awal Pembuatan Komposit Papan Serat Berbahan Dasar Ampas Sagu Mitra Rahayu1,a), Widayani1,b) 1 Laboratorium Biofisika, Kelompok Keilmuan Fisika Nuklir dan Biofisika, Fakultas Matematika dan Ilmu

Lebih terperinci

PEMBUATAN PAPAN PARTIKEL DARI BAMBU DENGAN PEREKAT RESIN DAMAR DARA FEGY PRATIWI

PEMBUATAN PAPAN PARTIKEL DARI BAMBU DENGAN PEREKAT RESIN DAMAR DARA FEGY PRATIWI PEMBUATAN PAPAN PARTIKEL DARI BAMBU DENGAN PEREKAT RESIN DAMAR DARA FEGY PRATIWI DEPARTEMEN TEKNOLOGI INDUSTRI PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR 2015 PERNYATAAN MENGENAI

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Gambar 8 Histogram kerapatan papan.

BAB IV HASIL DAN PEMBAHASAN. Gambar 8 Histogram kerapatan papan. 17 BAB IV HASIL DAN PEMBAHASAN 4.1 Sifat Fisis Papan Komposit Anyaman Pandan 4.1.1 Kerapatan Sifat papan yang dihasilkan akan dipengaruhi oleh kerapatan. Dari pengujian didapat nilai kerapatan papan berkisar

Lebih terperinci

BAB III BAHAN DAN METODE

BAB III BAHAN DAN METODE BAB III BAHAN DAN METODE 3.1 Waktu dan Tempat Penelitian ini dilakukan selama tiga bulan dari bulan Mei sampai Juli 2011 bertempat di Laboratorium Biokomposit, Departemen Hasil Hutan, Fakultas Kehutanan,

Lebih terperinci

BAHAN DAN METODE. Penelitian di laksanakan bulan September - November Penelitian ini

BAHAN DAN METODE. Penelitian di laksanakan bulan September - November Penelitian ini BAHAN DAN METODE Waktu dan Tempat Penelitian di laksanakan bulan September - November 2016. Penelitian ini akan dilakukan di Work Shop (WS) dan Laboratorium Teknonologi Hasil Hutan (THH) Program Studi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 4.1 Mutu Kekakuan Lamina BAB IV HASIL DAN PEMBAHASAN Penyusunan lamina diawali dengan melakukan penentuan mutu pada tiap ketebalan lamina menggunakan uji non destructive test. Data hasil pengujian NDT

Lebih terperinci

KARAKTERISTIK FISIS DAN MEKANIS PAPAN PARTIKEL BAMBU BETUNG

KARAKTERISTIK FISIS DAN MEKANIS PAPAN PARTIKEL BAMBU BETUNG KARAKTERISTIK FISIS DAN MEKANIS PAPAN PARTIKEL BAMBU BETUNG HASIL PENELITIAN Oleh: Satria Muharis 071203013/Teknologi Hasil Hutan PROGRAM STUDI KEHUTANAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2011

Lebih terperinci

Papan partikel SNI Copy SNI ini dibuat oleh BSN untuk Pusat Standardisasi dan Lingkungan Departemen Kehutanan untuk Diseminasi SNI

Papan partikel SNI Copy SNI ini dibuat oleh BSN untuk Pusat Standardisasi dan Lingkungan Departemen Kehutanan untuk Diseminasi SNI Standar Nasional Indonesia Papan partikel ICS 79.060.20 Badan Standardisasi Nasional Daftar isi Daftar isi... i Prakata... ii 1 Ruang lingkup... 1 2 Acuan normatif... 1 3 Istilah dan definisi... 1 4 Klasifikasi...

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian ini dilakukan mulai Juli 2011 Januari 2012 dan dilaksanakan di Bagian Rekayasa dan Desain Bangunan Kayu, Bagian Kimia Hasil Hutan, Bagian Biokomposit

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. ALAT DAN BAHAN Bahan utama yang digunakan dalam penelitian ini adalah buah jarak pagar varietas Lampung IP3 yang diperoleh dari kebun induk jarak pagar BALITRI Pakuwon, Sukabumi.

Lebih terperinci

METODE PENELITIAN. Fakultas Kehutanan Univesitas Sumatera Utara Medan. mekanis kayu terdiri dari MOE dan MOR, kerapatan, WL (Weight loss) dan RS (

METODE PENELITIAN. Fakultas Kehutanan Univesitas Sumatera Utara Medan. mekanis kayu terdiri dari MOE dan MOR, kerapatan, WL (Weight loss) dan RS ( 12 METODE PENELITIAN Waktu dan Tempat Penelitian ini dilaksanakan pada bulan April 2017 - Juni 2017. Penelitian dilakukan di Laboratorium Teknologi Hasil Hutan Fakultas Kehutanan, dan Workshop Fakultas

Lebih terperinci

PENGARUH PERENDAMAN PANAS DAN DINGIN SABUT KELAPA TERHADAP KUALITAS PAPAN PARTIKEL YANG DIHASILKANNYA SISKA AMELIA

PENGARUH PERENDAMAN PANAS DAN DINGIN SABUT KELAPA TERHADAP KUALITAS PAPAN PARTIKEL YANG DIHASILKANNYA SISKA AMELIA i PENGARUH PERENDAMAN PANAS DAN DINGIN SABUT KELAPA TERHADAP KUALITAS PAPAN PARTIKEL YANG DIHASILKANNYA SISKA AMELIA DEPARTEMEN HASIL HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR 2009 i PENGARUH PERENDAMAN

Lebih terperinci

III. BAHAN DAN METODE PENELITIAN

III. BAHAN DAN METODE PENELITIAN 9 III. BAHAN DAN METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian pembuatan CLT dengan sambungan perekat yang dilakukan di laboratorium dan bengkel kerja terdiri dari persiapan bahan baku,

Lebih terperinci

Luthfi Hakim 1 dan Fauzi Febrianto 2. Abstract

Luthfi Hakim 1 dan Fauzi Febrianto 2. Abstract 21 KARAKTERISTIK FISIS PAPAN KOMPOSIT DARI SERAT BATANG PISANG (MUSA. SP) DENGAN PERLAKUAN ALKALI (PHYSICAL PROPERTIES OF COMPOSITE BOARD MADE FROM BANANA FIBER (MUSA SP.) WITH ALKALI TREATMENT) Luthfi

Lebih terperinci

BAB III BAHAN DAN METODE

BAB III BAHAN DAN METODE BAB III BAHAN DAN METODE 3.1. Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Januari - Mei 2009, bertempat di Laboratorium Produk Majemuk dan Laboratorium Penggergajian dan Pengerjaan,

Lebih terperinci

TINJAUAN PUSTAKA. Batang kelapa sawit mempunyai sifat yang berbeda antara bagian pangkal

TINJAUAN PUSTAKA. Batang kelapa sawit mempunyai sifat yang berbeda antara bagian pangkal TINJAUAN PUSTAKA Kelapa Sawit Menurut Hadi (2004), klasifikasi botani kelapa sawit dapat diuraikan sebagai berikut: Kingdom Divisi Kelas Ordo Familia Genus Spesies : Plantae : Magnoliophyta : Liliopsida

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Biokompsit Departemen Teknologi Hasil Hutan Fakultas Kehutanan, Laboratorium Kekuatan Bahan dan Laboratorium

Lebih terperinci

PAPAN PARTIKEL DARI CAMPURAN LIMBAH ROTAN DAN PENYULINGAN KULIT KAYU GEMOR (Alseodaphne spp)

PAPAN PARTIKEL DARI CAMPURAN LIMBAH ROTAN DAN PENYULINGAN KULIT KAYU GEMOR (Alseodaphne spp) Papan partikel dari campuran limbah rotan dan penyulingan PAPAN PARTIKEL DARI CAMPURAN LIMBAH ROTAN DAN PENYULINGAN KULIT KAYU GEMOR (Alseodaphne spp) Particle Board from Mixture of Rattan Waste and Gemor

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. BAHAN DAN ALAT Bahan utama yang digunakan dalam penelitian ini adalah bubuk susu kedelai bubuk komersial, isolat protein kedelai, glucono delta lactone (GDL), sodium trpolifosfat

Lebih terperinci

SIFAT FISIS-MEKANIS PAPAN PARTIKEL DARI KOMBINASI LIMBAH SHAVING KULIT SAMAK DAN SERAT KELAPA SAWIT DENGAN PERLAKUAN TEKANAN BERBEDA

SIFAT FISIS-MEKANIS PAPAN PARTIKEL DARI KOMBINASI LIMBAH SHAVING KULIT SAMAK DAN SERAT KELAPA SAWIT DENGAN PERLAKUAN TEKANAN BERBEDA SIFAT FISIS-MEKANIS PAPAN PARTIKEL DARI KOMBINASI LIMBAH SHAVING KULIT SAMAK DAN SERAT KELAPA SAWIT DENGAN PERLAKUAN TEKANAN BERBEDA SKRIPSI MARIA YUNITA PROGRAM STUDI TEKNOLOGI HASIL TERNAK FAKULTAS PETERNAKAN

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Kegiatan penelitian dilaksanakan di Laboratorium Teknologi Peningkatan Mutu Kayu untuk proses persiapan bahan baku, pembuatan panel CLT, dan pengujian

Lebih terperinci

= nilai pengamatan pada perlakuan ke-i dan ulangan ke-j µ = rataan umum α i ε ij

= nilai pengamatan pada perlakuan ke-i dan ulangan ke-j µ = rataan umum α i ε ij 5 Pengujian Sifat Binderless MDF. Pengujian sifat fisis dan mekanis binderless MDF dilakukan mengikuti standar JIS A 5905 : 2003. Sifat-sifat tersebut meliputi kerapatan, kadar air, pengembangan tebal,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Kegiatan penelitian dilaksanakan di Laboratorium Teknologi Peningkatan Mutu Kayu untuk proses persiapan bahan baku, pembuatan panel, dan pengujian

Lebih terperinci

Lampiran 1. Perhitungan bahan baku papan partikel variasi pelapis bilik bambu pada kombinasi pasahan batang kelapa sawit dan kayu mahoni

Lampiran 1. Perhitungan bahan baku papan partikel variasi pelapis bilik bambu pada kombinasi pasahan batang kelapa sawit dan kayu mahoni Lampiran 1. Perhitungan bahan baku papan partikel variasi pelapis bilik bambu pada kombinasi pasahan batang kelapa sawit dan kayu mahoni Kadar perekat urea formaldehida (UF) = 12% Ukuran sampel = 25 x

Lebih terperinci

PENGARUH RASIO SEMEN DAN PARTIKEL TERHADAP KUALITAS PAPAN SEMEN DARI LIMBAH PARTIKEL INDUSTRI PENSIL

PENGARUH RASIO SEMEN DAN PARTIKEL TERHADAP KUALITAS PAPAN SEMEN DARI LIMBAH PARTIKEL INDUSTRI PENSIL PENGARUH RASIO SEMEN DAN PARTIKEL TERHADAP KUALITAS PAPAN SEMEN DARI LIMBAH PARTIKEL INDUSTRI PENSIL SKRIPSI Oleh: RIZQI PUTRI WINANTI 111201013 PROGRAM STUDI KEHUTANAN FAKULTAS KEHUTANAN UNIVERSITAS SUMATERA

Lebih terperinci

SIFAT FISIS DAN MEKANIS PAPAN SEMEN DARI LIMBAH INDUSTRI PENSIL DENGAN BERBAGAI RASIO BAHAN BAKU DAN TARGET KERAPATAN

SIFAT FISIS DAN MEKANIS PAPAN SEMEN DARI LIMBAH INDUSTRI PENSIL DENGAN BERBAGAI RASIO BAHAN BAKU DAN TARGET KERAPATAN SIFAT FISIS DAN MEKANIS PAPAN SEMEN DARI LIMBAH INDUSTRI PENSIL DENGAN BERBAGAI RASIO BAHAN BAKU DAN TARGET KERAPATAN Oleh: Yunida Syafriani Lubis 111201033 PROGRAM STUDI KEHUTANAN FAKULTAS KEHUTANAN UNIVERSITAS

Lebih terperinci

ANALISIS SIFAT FISIS DAN MEKANIK PAPAN KOMPOSIT GIPSUM SERAT IJUK DENGAN PENAMBAHAN BORAKS (Dinatrium Tetraborat Decahydrate)

ANALISIS SIFAT FISIS DAN MEKANIK PAPAN KOMPOSIT GIPSUM SERAT IJUK DENGAN PENAMBAHAN BORAKS (Dinatrium Tetraborat Decahydrate) ANALISIS SIFAT FISIS DAN MEKANIK PAPAN KOMPOSIT GIPSUM SERAT IJUK DENGAN PENAMBAHAN BORAKS (Dinatrium Tetraborat Decahydrate) Hilda Trisna, Alimin Mahyudin Jurusan Fisika, FMIPA Universitas Andalas, Padang

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Indonesia merupakan negara penghasil ubi kayu terbesar ketiga didunia

BAB I PENDAHULUAN Latar Belakang. Indonesia merupakan negara penghasil ubi kayu terbesar ketiga didunia BAB I PENDAHULUAN 1. 1 Latar Belakang Indonesia merupakan negara penghasil ubi kayu terbesar ketiga didunia setelah Nigeria dan Thailand dengan hasil produksi mencapai lebih 23 juta ton pada tahun 2014

Lebih terperinci

TINJAUAN PUSTAKA. Papan partikel merupakan salah satu jenis produk komposit atau panel

TINJAUAN PUSTAKA. Papan partikel merupakan salah satu jenis produk komposit atau panel TINJAUAN PUSTAKA Papan Partikel Papan partikel merupakan salah satu jenis produk komposit atau panel kayu yang terbuat dari partikel-partikel kayu atau bahan berlignoselulosa lainnya, yang diikat menggunakan

Lebih terperinci

PENENTUAN UKURAN PARTIKEL OPTIMAL

PENENTUAN UKURAN PARTIKEL OPTIMAL IV. PENENTUAN UKURAN PARTIKEL OPTIMAL Pendahuluan Dalam pembuatan papan partikel, secara umum diketahui bahwa terdapat selenderness rasio (perbandingan antara panjang dan tebal partikel) yang optimal untuk

Lebih terperinci

I. PENDAHULUAN Latar Belakang

I. PENDAHULUAN Latar Belakang I. PENDAHULUAN Latar Belakang Papan partikel adalah salah satu jenis produk papan komposit yang dikembangkan untuk meningkatkan efisiensi pemanfaatan bahan baku kayu, serta mengoptimalkan pemanfaatan bahan

Lebih terperinci

KUALITAS PAPAN KOMPOSIT DARI SABUT KELAPA DAN LIMBAH PLASTIK BERLAPIS BAMBU DENGAN VARIASI KERAPATAN DAN LAMA PERENDAMAN

KUALITAS PAPAN KOMPOSIT DARI SABUT KELAPA DAN LIMBAH PLASTIK BERLAPIS BAMBU DENGAN VARIASI KERAPATAN DAN LAMA PERENDAMAN KUALITAS PAPAN KOMPOSIT DARI SABUT KELAPA DAN LIMBAH PLASTIK BERLAPIS BAMBU DENGAN VARIASI KERAPATAN DAN LAMA PERENDAMAN NaOH Quality of Composite Board Made from Coconut Fiber and Waste Plastic with Bamboo

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 13 BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian ini dilakukan mulai bulan April 2012 Juli 2012. Dilaksanakan di Laboratorium Bio Komposit, Laboratorium Rekayasa Departemen Hasil Hutan,

Lebih terperinci

PENGARUH PROPORSI CAMPURAN SERBUK KAYU GERGAJIAN DAN AMPAS TEBU TERHADAP KUALITAS PAPAN PARTIKEL YANG DIHASILKANNYA FATHIMA TUZZUHRAH ARSYAD

PENGARUH PROPORSI CAMPURAN SERBUK KAYU GERGAJIAN DAN AMPAS TEBU TERHADAP KUALITAS PAPAN PARTIKEL YANG DIHASILKANNYA FATHIMA TUZZUHRAH ARSYAD i PENGARUH PROPORSI CAMPURAN SERBUK KAYU GERGAJIAN DAN AMPAS TEBU TERHADAP KUALITAS PAPAN PARTIKEL YANG DIHASILKANNYA FATHIMA TUZZUHRAH ARSYAD DEPARTEMEN HASIL HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN

Lebih terperinci

METODE PENELITIAN. Kualitas Kayu Jabon (Anthocephalus cadamba M.) dilaksanakan mulai dari bulan. Hutan Fakultas Kehutanan Universitas Sumatera Utara.

METODE PENELITIAN. Kualitas Kayu Jabon (Anthocephalus cadamba M.) dilaksanakan mulai dari bulan. Hutan Fakultas Kehutanan Universitas Sumatera Utara. 9 METODE PENELITIAN Waktu dan Tempat Penelitian Penelitian yang berjudul Pengaruh Pra Perlakuan Pemadatan Terhadap Kualitas Kayu Jabon (Anthocephalus cadamba M.) dilaksanakan mulai dari bulan April 2017

Lebih terperinci

17 J. Tek. Ind. Pert. Vol. 19(1), 16-20

17 J. Tek. Ind. Pert. Vol. 19(1), 16-20 KUALITAS PAPAN KOMPOSIT DARI LIMBAH BATANG KELAPA SAWIT (Elaeis guineensis Jacq) DAN POLYETHYLENE (PE) DAUR ULANG THE QUALITY OF COMPOSITE BOARD MADE OF WASTE OIL PALM STEM (Elaeis guineensis Jacq) AND

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN.1. Waktu dan Tempat Penelitian ini dilaksanakan dari bulan November 2008 sampai bulan Februari 2009. Tempat pembuatan dan pengujian glulam I-joist yaitu di Laboratorium Produk

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan di Laboratorium Kimia/Biokimia Hasil Pertanian

III. METODE PENELITIAN. Penelitian ini dilaksanakan di Laboratorium Kimia/Biokimia Hasil Pertanian III. METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilaksanakan di Laboratorium Kimia/Biokimia Hasil Pertanian Jurusan Teknologi Hasil Pertanian, Universitas Lampung pada bulan Juli

Lebih terperinci

Kadar air % a b x 100% Keterangan : a = bobot awal contoh (gram) b = bobot akhir contoh (gram) w1 w2 w. Kadar abu

Kadar air % a b x 100% Keterangan : a = bobot awal contoh (gram) b = bobot akhir contoh (gram) w1 w2 w. Kadar abu 40 Lampiran 1. Prosedur analisis proksimat 1. Kadar air (AOAC 1995, 950.46) Cawan kosong yang bersih dikeringkan dalam oven selama 2 jam dengan suhu 105 o C dan didinginkan dalam desikator, kemudian ditimbang.

Lebih terperinci

BAB III METODOLOGI. Tabel 6 Ukuran Contoh Uji Papan Partikel dan Papan Serat Berdasarkan SNI, ISO dan ASTM SNI ISO ASTM

BAB III METODOLOGI. Tabel 6 Ukuran Contoh Uji Papan Partikel dan Papan Serat Berdasarkan SNI, ISO dan ASTM SNI ISO ASTM BAB III METODOLOGI 3.1 Lokasi dan Waktu Penelitian Penelitian dilaksanakan di laboratorium Produk Majemuk Kelompok Peneliti Pemanfaatan Hasil Hutan Pusat Penelitian dan Pengembangan Hasil Hutan Bogor.

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 19 4.1. Sifat Fisis IV. HASIL DAN PEMBAHASAN Sifat fisis papan laminasi pada dasarnya dipengaruhi oleh sifat bahan dasar kayu yang digunakan. Sifat fisis yang dibahas dalam penelitian ini diantaranya adalah

Lebih terperinci

III. BAHAN DAN METODE

III. BAHAN DAN METODE III. BAHAN DAN METODE A. Bahan dan Alat Bahan yang digunakan adalah kulit buah manggis, ethanol, air, kelopak bunga rosella segar, madu dan flavor blackcurrant. Bahan kimia yang digunakan untuk keperluan

Lebih terperinci

PEMBUATAN PAPAN PARTIKEL MENGGUNAKAN PEREKAT POLIVINIL ACETAT (PVAc) DENGAN BAHAN PENGAWET BORAKS DAN IMPRALIT COPPER KHROM BORON (CKB)

PEMBUATAN PAPAN PARTIKEL MENGGUNAKAN PEREKAT POLIVINIL ACETAT (PVAc) DENGAN BAHAN PENGAWET BORAKS DAN IMPRALIT COPPER KHROM BORON (CKB) Jurnal Riset Industri Hasil Hutan Vol.1, No.2, Desember 2009 : 7 12 PEMBUATAN PAPAN PARTIKEL MENGGUNAKAN PEREKAT POLIVINIL ACETAT (PVAc) DENGAN BAHAN PENGAWET BORAKS DAN IMPRALIT COPPER KHROM BORON (CKB)

Lebih terperinci

TINJAUAN PUSTAKA. sedangkan diameternya mencapai 1 m. Bunga dan buahnya berupa tandan,

TINJAUAN PUSTAKA. sedangkan diameternya mencapai 1 m. Bunga dan buahnya berupa tandan, [ TINJAUAN PUSTAKA Batang Kelapa Sawit Kelapa sawit (Elaeis guineensis Jacq) merupakan tumbuhan tropis yang berasal dari Nigeria (Afrika Barat). Tinggi kelapa sawit dapat mencapai 24 m sedangkan diameternya

Lebih terperinci

METODE PENELITIAN Kerangka Pemikiran

METODE PENELITIAN Kerangka Pemikiran METDE PENELITIAN Kerangka Pemikiran Sebagian besar sumber bahan bakar yang digunakan saat ini adalah bahan bakar fosil. Persediaan sumber bahan bakar fosil semakin menurun dari waktu ke waktu. Hal ini

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Sifat Fisis Sifat fisis dari panel CLT yang diuji yaitu, kerapatan (ρ), kadar air (KA), pengembangan volume (KV) dan penyusutan volume (SV). Hasil pengujian sifat fisis

Lebih terperinci

PENGARUH KOMPOSISI FACE-CORE TERHADAP SIFAT FISIK DAN MEKANIS ORIENTED STRAND BOARD DARI BAMBU DAN ECENG GONDOK

PENGARUH KOMPOSISI FACE-CORE TERHADAP SIFAT FISIK DAN MEKANIS ORIENTED STRAND BOARD DARI BAMBU DAN ECENG GONDOK Jurnal Perennial, 2012 Vol. 8 No. 2: 75-79 ISSN: 1412-7784 Tersedia Online: http://journal.unhas.ac.id/index.php/perennial PENGARUH KOMPOSISI FACE-CORE TERHADAP SIFAT FISIK DAN MEKANIS ORIENTED STRAND

Lebih terperinci

TINJAUAN PUSTAKA. Tabel 1. Produksi Kayu Gergajian dan Perkiraan Jumlah Limbah. Produksi Limbah, 50 %

TINJAUAN PUSTAKA. Tabel 1. Produksi Kayu Gergajian dan Perkiraan Jumlah Limbah. Produksi Limbah, 50 % TINJAUAN PUSTAKA Limbah Penggergajian Eko (2007) menyatakan bahwa limbah utama dari industri kayu adalah potongan - potongan kecil dan serpihan kayu dari hasil penggergajian serta debu dan serbuk gergaji.

Lebih terperinci

PRISMA FISIKA, Vol. III, No. 3 (2015), Hal ISSN :

PRISMA FISIKA, Vol. III, No. 3 (2015), Hal ISSN : SINTESIS DAN ANALISIS SIFAT FISIK DAN MEKANIK PAPAN KOMPOSIT DARI LIMBAH PELEPAH SAWIT DAN SABUT KELAPA Erwan 1), Irfana Diah Faryuni 1)*, Dwiria Wahyuni 1) 1) Jurusan Fisika Fakultas Matematika dan Ilmu

Lebih terperinci

PENGARUH KADAR RESIN PEREKAT UREA FORMALDEHIDA TERHADAP SIFAT-SIFAT PAPAN PARTIKEL DARI AMPAS TEBU AHMAD FIRMAN ALGHIFFARI

PENGARUH KADAR RESIN PEREKAT UREA FORMALDEHIDA TERHADAP SIFAT-SIFAT PAPAN PARTIKEL DARI AMPAS TEBU AHMAD FIRMAN ALGHIFFARI PENGARUH KADAR RESIN PEREKAT UREA FORMALDEHIDA TERHADAP SIFAT-SIFAT PAPAN PARTIKEL DARI AMPAS TEBU AHMAD FIRMAN ALGHIFFARI DEPARTEMEN HASIL HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR 2008 PENGARUH

Lebih terperinci

VARIASI KADAR PEREKAT PHENOL FORMALDEHIDA TERHADAP KUALITAS PAPAN PARTIKEL DARI CAMPURAN PARTIKEL KELAPA SAWIT DAN SERUTAN MERANTI

VARIASI KADAR PEREKAT PHENOL FORMALDEHIDA TERHADAP KUALITAS PAPAN PARTIKEL DARI CAMPURAN PARTIKEL KELAPA SAWIT DAN SERUTAN MERANTI 1 VARIASI KADAR PEREKAT PHENOL FORMALDEHIDA TERHADAP KUALITAS PAPAN PARTIKEL DARI CAMPURAN PARTIKEL KELAPA SAWIT DAN SERUTAN MERANTI SKRIPSI ANDRIAN TELAUMBANUA 111201059/TEKNOLOGI HASIL HUTAN PROGRAM

Lebih terperinci

SIFAT FISIK MEKANIK PAPAN GYPSUM BERBAHAN PENGISI ALTERNATIF LIMBAH SERUTAN ROTAN

SIFAT FISIK MEKANIK PAPAN GYPSUM BERBAHAN PENGISI ALTERNATIF LIMBAH SERUTAN ROTAN Sifat fisik mekanik papan gypsum berbahan pengisi alternatif limbah serutan rotan....desi Mustika Amaliyah, Saibatul Hamdi SIFAT FISIK MEKANIK PAPAN GYPSUM BERBAHAN PENGISI ALTERNATIF LIMBAH SERUTAN ROTAN

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Sifat-sifat Dasar dan Laboratorium Terpadu, Bagian Teknologi Peningkatan Mutu Kayu, Departemen Hasil

Lebih terperinci

III. METODOLOGI PENELITIAN

III. METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. BAHAN DAN ALAT Bahan-bahan dasar yang digunakan dalam penelitian ini adalah biji karet, dan bahan pembantu berupa metanol, HCl dan NaOH teknis. Selain bahan-bahan di atas,

Lebih terperinci

Medan (Penulis Korespondensi : 2 Staf Pengajar Studi Kehutanan, Fakultas Pertanian, Universitas Sumatera Utara

Medan (Penulis Korespondensi :   2 Staf Pengajar Studi Kehutanan, Fakultas Pertanian, Universitas Sumatera Utara VARIASI KOMPOSISI PEREKAT UREA FORMALDEHIDA DAN BAHAN PENGISI STYROFOAM TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT. (The Variation of Urea Formaldehyde Resin and Padding Styrofoam

Lebih terperinci

PENGARUH KOMPOSISI PEREKAT UREA FORMALDEHIDA DAN BAHAN PENGISI STYROFOAM TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT SKRIPSI

PENGARUH KOMPOSISI PEREKAT UREA FORMALDEHIDA DAN BAHAN PENGISI STYROFOAM TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT SKRIPSI PENGARUH KOMPOSISI PEREKAT UREA FORMALDEHIDA DAN BAHAN PENGISI STYROFOAM TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT SKRIPSI Oleh : ZAINAL ABIDIN SYAH POLEM 071203032 PROGRAM STUDI

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Indonesia merupakan negara agraris yang kaya akan tanaman penghasil kayu yang banyak dimanfaatkan untuk berbagai keperluan, baik untuk keperluan industri besar, industri

Lebih terperinci

MATERI DAN METODE. Materi Penelitian

MATERI DAN METODE. Materi Penelitian 23 MATERI DAN METODE Materi Penelitian Tempat dan Waktu Penelitian dilaksanakan di aboratorium Biokomposit, aboratorium Keteknikan Kayu dan aboratorium Kayu Solid, Departemen Hasil Hutan Fakultas Kehutanan

Lebih terperinci

III. BAHAN DAN METODE. Penelitian ini dilaksanakan di laboratorium Balai Riset dan Standardisasi Industri

III. BAHAN DAN METODE. Penelitian ini dilaksanakan di laboratorium Balai Riset dan Standardisasi Industri III. BAHAN DAN METODE 3.1. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan di laboratorium Balai Riset dan Standardisasi Industri Lampung, Laboratorium Pengolahan Hasil Pertanian, Laboratoriun

Lebih terperinci

PENGARUH LAMA WAKTU PENUMPUKAN KAYU KARET (Hevea brasiliensis Muell. Arg.) TERHADAP SIFAT - SIFAT PAPAN PARTIKEL TRIDASA A SAFRIKA

PENGARUH LAMA WAKTU PENUMPUKAN KAYU KARET (Hevea brasiliensis Muell. Arg.) TERHADAP SIFAT - SIFAT PAPAN PARTIKEL TRIDASA A SAFRIKA PENGARUH LAMA WAKTU PENUMPUKAN KAYU KARET (Hevea brasiliensis Muell. Arg.) TERHADAP SIFAT - SIFAT PAPAN PARTIKEL TRIDASA A SAFRIKA DEPARTEMEN HASIL HUTAN FAKULTAS KEHUTANAN INSTITUT PERTANIAN BOGOR 2008

Lebih terperinci

PAPAN PARTIKEL TANPA PEREKAT DARI BAMBU ANDONG DAN KAYU SENGON MENGGUNAKAN PERLAKUAN OKSIDASI SUHASMAN

PAPAN PARTIKEL TANPA PEREKAT DARI BAMBU ANDONG DAN KAYU SENGON MENGGUNAKAN PERLAKUAN OKSIDASI SUHASMAN PAPAN PARTIKEL TANPA PEREKAT DARI BAMBU ANDONG DAN KAYU SENGON MENGGUNAKAN PERLAKUAN OKSIDASI SUHASMAN SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI DISERTASI DAN SUMBER

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang. areal perkebunan kelapa sawit di Indonesia dari tahun seluas 8,91 juta

BAB I PENDAHULUAN. 1.1 Latar Belakang. areal perkebunan kelapa sawit di Indonesia dari tahun seluas 8,91 juta BAB I PENDAHULUAN 1.1 Latar Belakang Perkebunan kelapa sawit telah berkembang dengan pesat di Indonesia. Luas areal perkebunan kelapa sawit di Indonesia dari tahun 2011-2012 seluas 8,91 juta Ha 9,27 juta

Lebih terperinci

SIFAT FISIS MEKANIS PAPAN PARTIKEL DARI LIMBAH KAYU GERGAJIAN BERDASARKAN UKURAN PARTIKEL

SIFAT FISIS MEKANIS PAPAN PARTIKEL DARI LIMBAH KAYU GERGAJIAN BERDASARKAN UKURAN PARTIKEL SIFAT FISIS MEKANIS PAPAN PARTIKEL DARI LIMBAH KAYU GERGAJIAN BERDASARKAN UKURAN PARTIKEL NATURE OF FISIS MECHANICAL PARTICLE BOARD FROM RIPSAW WASTE OF PURSUANT TO SIZE MEASURE PARTICLE Saibatul Hamdi

Lebih terperinci

III. METODOLOGI F. ALAT DAN BAHAN

III. METODOLOGI F. ALAT DAN BAHAN III. METODOLOGI F. ALAT DAN BAHAN 1. Alat Alat-alat yang dipergunakan dalam penelitian ini merupakan rangkaian peralatan proses pembuatan faktis yang terdiri dari kompor listrik,panci, termometer, gelas

Lebih terperinci

BAHAN DAN METODE. Waktu dan Tempat Penelitian. Bahan dan Alat

BAHAN DAN METODE. Waktu dan Tempat Penelitian. Bahan dan Alat BAHAN DAN METODE Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Desember 2007 sampai Juli 2008. Pembuatan OSB dilakukan di Laboratorium Biokomposit, pembuatan contoh uji di Laboratorium

Lebih terperinci

APLIKASI METODE RESPON PERMUKAAN DAN GOAL PROGRAMMING UNTUK OPTIMASI SIFAT FISIK DAN MEKANIK TABLET OBAT

APLIKASI METODE RESPON PERMUKAAN DAN GOAL PROGRAMMING UNTUK OPTIMASI SIFAT FISIK DAN MEKANIK TABLET OBAT APLIKASI METODE RESPON PERMUKAAN DAN GOAL PROGRAMMING UNTUK OPTIMASI SIFAT FISIK DAN MEKANIK TABLET OBAT Ivan Aris Nugroho 1) dan Abdullah Shahab 2) 1) Program Studi Magister Manajemen Teknologi, Institut

Lebih terperinci

KARAKTERISTIK KOMPOSIT TANPA PEREKAT (BINDERLESS COMPOSITE) DARI LIMBAH PENGOLAHAN KAYU

KARAKTERISTIK KOMPOSIT TANPA PEREKAT (BINDERLESS COMPOSITE) DARI LIMBAH PENGOLAHAN KAYU KARAKTERISTIK KOMPOSIT TANPA PEREKAT (BINDERLESS COMPOSITE) DARI LIMBAH PENGOLAHAN KAYU Ragil Widyorini* Abstrak Berbagai upaya dilakukan untuk meminimalkan emisi formaldehida dari produk-produk panel.

Lebih terperinci

VARIASI SUHU DAN WAKTU PENGEMPAAN TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT DENGAN PEREKAT PHENOL FORMALDEHIDA

VARIASI SUHU DAN WAKTU PENGEMPAAN TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT DENGAN PEREKAT PHENOL FORMALDEHIDA VARIASI SUHU DAN WAKTU PENGEMPAAN TERHADAP KUALITAS PAPAN PARTIKEL DARI LIMBAH BATANG KELAPA SAWIT DENGAN PEREKAT PHENOL FORMALDEHIDA (The variation of Temperature and Pressing Time on Particle Board Quality

Lebih terperinci

Ira Lestari Simbolon 1, Tito Sucipto 2, Rudi Hartono 2 1 Alumni Program Studi Kehutanan, Fakultas Kehutanan, Universitas Sumatera Utara, Jl.

Ira Lestari Simbolon 1, Tito Sucipto 2, Rudi Hartono 2 1 Alumni Program Studi Kehutanan, Fakultas Kehutanan, Universitas Sumatera Utara, Jl. Pengaruh Ukuran Partikel dan Komposisi Semen- Partikel terhadap Kualitas Papan Semen dari Cangkang Kemiri (Aleurites Moluccana Wild) ( Effect of Particle Size and Composition of Particles cement for quality

Lebih terperinci