Perancangan dan Implementasi Kontroler Nonlinier Quadratic Regulator untuk Kestabilan Hover pada Quadcopter

Ukuran: px
Mulai penontonan dengan halaman:

Download "Perancangan dan Implementasi Kontroler Nonlinier Quadratic Regulator untuk Kestabilan Hover pada Quadcopter"

Transkripsi

1 1 Perancangan dan Implementasi Kontroler Nonlinier Quadratic Regulator untuk Kestabilan Hover pada Quadcopter Sonny Prismanto, Rusdhianto Effendi AK Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS Jl. Arief Rahman Hakim, Surabaya Abstrak Quadcopter merupakan jenis pesawat tanpa awak yang memiliki kemampuan untuk take off, landing, hover, way point tracking, acrobatic, dan lain sebagainya. Seiring dengan perkembangan teknologi modern, saat ini quadcopter memiliki banyak kegunaan diantaranya pengawasan area, pengambilan foto/video, pelaksanaan misi yang beresiko tinggi dan lain-lain. Kestabilan hover pada quadcopter sangatlah penting dan harus dimiliki quadcopter agar quadcopter dapat melakukan berbagai macam manuver. Kontrol hover merupakan prioritas utama dalam setiap upaya pengendalian quadcopter baik pada pengendalian fase take-off, landing, dan tracking trajectory, hal ini dikarenakan kesalahan yang kecil saja yang terjadi pada sudut atau ketinggian quadcopter dapat menyebabkan quadcopter berubah posisi baik terhadap sumbu x, y, maupun z. Pada Tugas Akhir ini, digunakan kontroler Nonlinier Quadratik Regulator (NQR dengan nilai parameter didapat dari hasil tuning untuk mengatasi masalah hover. Didapatkan nilai parameter kontrol LQR dari hasil tuning diperoleh parameter R=1 dan Q=9000 untuk gerak translasi maupun rotasi, dimana pada simulasi dapat terbang hover pada ketinggian 3 m, dan dapat mengatasi gangguan. Kata Kunci Quadcopter, Hover, NQR, Kontrol Optimal. I. PENDAHULUAN Teknologi autopilot atau pesawat tanpa awak saat ini sangat berkembang. Teknologi autopilot memiliki banyak manfat diantaranya untuk pengamatan lalu lintas kendaraan, sarana pengantar barang, teknologi pengintai, pengawasan daerah- daerah berbahaya( daerah bencana, pertambangan dan lain sebagainya. Salah satu teknologi autopilot yang sedang berkembang adalah quadcopter. Quadcopter adalah kendaraan yang memiliki potensi utuk lepas landas (take off, melayang(hover, terbang manuver, dan pendarat(landing di berbagai daerah. Prinsip kerja dari quadcopter mirip dengan helicopter dimana quadcopter dapat melakukan teka off dan landing secara vertical. Akan tetapi quadcopter adalah sistem yang tidak stabil sehingga berpotensi menjadi sulit untuk terbang. Dalam pemanfaatan quadcopter kestabilan hover sangatlah penting dan harus dimiliki quadcopter agar dapat dimanfaatkan secara maksimal. Oleh karena itu dibutuhkan suatu cara untuk mengatur kestabilan hover dari quadcopter ini agar dapat mempertahankan posisinya secara stabil meski terjadi gangguan pada saat hover. Dalam penelitian ini membahas tentang kestabilan hover pada quadcopter dengan kontroler Nonlinear Quadratik Regulator. Dimana kontroler ini dapat menstabilkan gerak rotasi roll dan pitch serta gerak translasi X,Y dan Z. II. TEORI PENUNJANG Dalam bab ini dibahas mengenai teori-teori yang berkaitan dengan topik penelitian yang dilakukan. Dasar teori pada bab ini meliputi pendahuluan tentang quadcopter, perangkat keras penyusun quadcopter, kontroler Nonlinear Quadratic Regulator, dan beberapa teori mengenai pemodelanfisik dari quadcopter. A. Pergerakan Quadcopter Quadcopter memiliki 6 defree of freedom (DoF dengan 12 keluaran, 6 keluaran dari 12 keluaran ini menentukan attitude dari quadcopter. Variabel-variabel tersebut adalah x = posisi quadcopter terhadap sumbu Xe y = posisi quadcopter terhadap sumbu Ye z = posisi quadcopter terhadap sumbu Ze u = kecepatan quadcopter diukur pada sumbu Xb v = kecepatan quadcopter diukur pada sumbu Yb w = kecepatan quadcopter diukur pada sumbu Zb φ = sudut roll terhadap sumbu Xe θ = sudut pitch terhadap sumbu Ye ψ = sudut yaw terhadap sumbu Ze p = kecepatan sudut roll diukur pada sumbu Xb q = kecepatan sudut pitch diukur pada sumbu Yb r = kecepatan sudut yaw diukur pada sumbu Zb Quadcopter memiliki 4 buah rotor sebagai penggerak baling-baling yang digunakan untuk menghasilkan gaya angkat. Untuk bergerak naik, diperlukan kecepatan yang sama dan cukup besar pada keempat rotornya. Secara garis besar, gerakan quadcopter terbagi menjadi empat yaitu gerakan throttle, gerakan roll, gerakan pitch, gerakan yaw. Untuk

2 2 melakukan pergerakan pada sumbu z maka cukup menambah/ mengurangi nilai throttle. Untuk mengatur pergerakan sumbu x dapat dilakukan dengan mengurangi atau menambah nilai dari pergerakan pitch, nilai pergerakan pitch sendiri didapat dari perubahan kecepatan motor 1dan 3. Untuk mengatur pergerakan sumbu y dapat dilakukan dengan mengurangi atau menambah nilai dari pergerakan roll, nilai pergerakan roll sendiri didapat dari perubahan kecepatan motor 2dan 4. Secara garis besar pergerakan quadcopter di tunjukkan Gambar 1. B. Pemodelan Quadcopter[1][2] Gambar 1 Pergerakan Quadcopter Dari analisis kinematika dan dinamika diperoleh Persamaan model matematika dari quadcopter seperti pada Persamaan U X 1 (cos sin cos sin sin m U Y 1 (sin sin cos cos sin m U Z g 1 (cos cos m I yy I zz U (1 p qr Ir q 2 Ixx Ixx Ixx I I I U q zz xx pr r q 2 I yy I yy I yy I xx I yy U r pq 4 I zz I zz Dengan melihat secara sederhana pada Persamaan 1, posisi pada sumbu Z, dan posisi sudut roll, pitch, yaw dapat dikontrol secara langsung, berturut-turut dengan menggunakan U 1, U 2, U 3,dan U 4. Kontrol pada posisi maju (X, dan menyamping (Y dapat dilakukan dengan mengatur sudut pitch dan (-roll dengan syarat gaya angkat (U 1 tidak sama dengan nol. Nilai input dari quadcopter merupakan gaya angkat tiap propeler yang dimodelkan secara teoritis adalah sebagai berikut: U1 b( U 2 bl( U 3 bl( U 4 d( Dengan nilai b adalah konstanta thrust, l adalah lebar frame dan d adalah konstanta drag dari quadcopter. C. Kontroler NQR. Kontroler yang digunakan pada penelitian ini adalah kontroler Nonlinear Quadratic Regulator (NQR. Istilah optimal mempunyai maksud hasil paling baik yang dapat dicapai dengan memperhatikan kondisi dan kendala dari suatu sistem. Dalam sistem kontrol optimal, istilah optimal seringkali merujuk pada minimal, misalnya meminimalkan bahan bakar (input, waktu dan kesalahan (error. Kontrol optimal secara umum ditujukan untuk memilih input plant u dengan indeks performansi yang minimum. Sistem kontrol yang baik adalah sistem kontrol yang mempunyai daya tanggap yang cepat dan stabil, tetapi tidak memerlukan energi yang berlebihan. Sistem kontrol demikian dapat dicapai melalui pengaturan indeks performansi yang tepat. Sistem kontrol yang dirancang berdasarkan optimasi indeks performansi disebut sistem kontrol optimal. Pada suatu sistem, indeks performansi dipilih sesuai dengan bagian yang akan dioptimalkan. Bentuk umum dari indeks performansi adalah sebagai berikut: Sebuah Model Dinamik dinyatakan dalam persamaan State Berikut: x = Ax + Bu (3 y = Cx (4 di mana x n*1 : State Sistem u m*n : State input y I*1 : State output A : Matrik Sistem A n*n B : Matrik Input B n*m C : Matrik Output C l*n Dengan meminimisasi energi (cost function/quadratic function melalui indeks performansi dalam interval [t 0, ] adalah : 1 J ( x T Qx u T Ru dt (5 2 t0 di mana t 0 : waktu awal (2.1 : waktu akhir Q : matrik semidefinit positif R : matrik definit positif Semakin besar harga Q, semakin memperbesar harga elemen penguatan K sehingga mempercepat sistem untuk mencapai keadaan tunak ( intermediate state cost function. Semakin besar harga R, maka akan memperkecil harga penguatan K dan memperlambat keadaan tunak (energy drive. State feedback control diberikan oleh persamaan berikut: u = Kx (6 Dimana K diperoleh dari persamaan berikut: K = R 1 B T P (7 Dimana matrik P bersifat unique, simetris, dan (2 merupakan (2.2 matrik definit positif. Nilai dari P dapat dicari dengan menyelesaikan Persamaan Ricatti, yang diformulasikan sebagai berikut: A T P + PA PBR 1 B T P + Q = 0 (8 Gambar 2 menunjukkan blok diagram dari system kontrol optimal secara keseluruhan.

3 3 dan baterai. Perancangan system elektronik quadcopter di tunjukkan oleh Gambar 3. Gambar 2. Diagram Blok Sistem Kontrol Optimal III. PERANCANGAN SISTEM A. Spesifikasi Sistem Quadcopter sebagai pesawat tanpa awak yang dapat bergerak dengan 6 dof (degree of freedom, terdiri dari 3 dof rotasi dan 3 dof translasi,akan dibuat menjadi spesifikasi sistem tertentu secara hardware maupun simulasi pada matlab dapat diuraikan sebagai berikut: a. Quadcopter dapat bergerak 6 derajat kebebasan, dan dapat mengikuti gerak translasi pada sumbu X maupun sumbu Y. b. Quadcopter dapat digerakkan secara manual dengan menggunakan remote control. c. Quadcopter dapat menjaga kondisi hover saat mode autonomous diaktifkan. d. Data-data sensor dan aktuator dikirimkan ke ground station. B. Perancangan Perangkat Keras Perancangan perangkat keras pada tugas akhir ini terdiri dari dua bagian yaitu rancang bagun mekanik quadcopter dan desain sistem elektronik. 1. Desain Mekanik Quadcopter Sistem mekanik yang baik akan mendukung pergerakan quadcopter menjadi lebih baik, oleh karena itu perancangan mekanik dalam hal ini frame dan dudukan motor haruslah proporsional dengan titik beban quadcopter. 2. Desain Sistem Elektronik Sistem elektronika yang ada pada quadcopter terdiri atas sistem kontroler yang berupa mikrokontroler dan beberapa sensor yang digunakan sebagai acuan dalam menentukan gerak terbangnya. Sensor yang digunakan adalah sensor ketinggian yang diukur menggunakan sensor ultrasonik ping, sensor orientasi untuk membaca sudut rotasi dari quadcopter yang diukur menggunakan sensor IMU (Inertial Measurement Unit. Rangkaian elektronika yang dirancang harus mampu menangani jumlah input/output sensor dan komponenkomponen yang digunakan dalam penunjang terbang quadcopter. Beberapa komponen seperti sensor-sensor, ESC, dan motor merupakan modul yang dapat langsung digunakan ketika dibeli dipasaran. Beberapa perangkat keras yang dibutuhkan dalam perancangan sistem quadcopter antara lain: mikrokontroler Arduino Mega, sensor Inertial Measurement Unit (IMU, sensor ultrasonic PING, modul komunikasi serial xbee, Radio Transmitter dan Receiver, laptop sebagai ground station, Elecronic Speed Controller (ESC, motor brushless, propeller, Gambar 3 Rancangan System Elektronik Quadcopter C. Perancangan Kontroler NQR pada Quadcopter Pada penelitian ini kontroler optimal NQR digunakan untuk mendapatkan sistem yang stabil, yaitu mendekati set point, matrik pembobot Q dan R didapat dengan melakukan tuning (trial and error. Setelah model Plant diperoleh dan telah divalidasi, barulah dirancang kontroler NQR. Karena model rotasi saling berhubungan satu sama lain maka ada 6 state dari model rotasi dan 6 state dari model translasi. Untuk menyelesaikan permasalahan optimasi pada model rotasi langkah pertama adalah mendefinsikan fungsi Hamiltonian dari model rotasi seperti persamaan. Berikut adalah penjelasannya: p p q q r r = f(x= p 1,042qr 0,562qΩ + q 1,042pr + 0,562pΩ + r U4 0, U2 0, U3 0, H = 1 2 x Qx + u Ru + λ f(x (10 Setelah itu menentukan syarat perlu dan cukup keoptimalan 1. Persamaan state x = H = f(x (11 λ Hasil penurunan H terhadap lamda akan menghasilkan f(x 2. Persamaan co-state λ = H = Qx + A λ (12 x Hasil penurunan H terhadap x menghasilkan Qx+A λ Maka di hasilkan matriks A dari model rotasi sebagai berikut: A = ( ,042r + 0, ,042q ,042r + 0, ,042q

4 4 (13 3. Syarat stasioner H u = 0 = Ru + B λ (14 Maka didapatkan matrik B sebagai berikut: B = , , ,08 (15 Maka diperoleh matriks A dan B untuk model rotasi pada persamaan 13 dan 15. Berbeda dengan model rotasi, model translasi dapat dikontrol secara independent karena satu sama lain tidak saling mempengaruhi. Akan tetapi karena modelnya tidak linier maka digunakan cara yang sama untuk menentukan matriks A dan B untuk model translasi. Berikut nilai dari matriks A dan B utuk gerak translasi x,y dan z: Gerak translasi X: A= B= 0 sinψsinφ + cosψcosθcosφ U1 0,775 Gerak translasi Y: A= B= 0 cosψcosφ + sinψsinθsinφ U1 Gerak translasi Z: A= B= cosθcosφ U1 0,775 0,775 (16 (17 (18 (19 (20 (21 Gambar 4 Simulasi Kontrol NQR Dengan mengubah-ubah matrik pembobot Q dan R akan mendapatkan variasi gain K, nilai matriks pembobot Q dan R yang menghasilkan respons paling baik adalah Qrot = Qtrans = (22 (23 Dengan nilai pembobot matriks R adalah 1untuk gerak rotasi dan translasi. Berikut adalah hasil simulasi kontroler NQR tanpa gangguan dengan kondisi awal untuk roll, pitch, x, dan y sebesar 0 dan untuk z sebesar 3. Bobot matriks R=1 sedangkan bobot matriks Q untuk gerak rotasi adalah matriks diagonal 6x6 dengan nlai diagonal 9000 sedangkan untuk gerak translasi adalah matriks diagonal 2x2 dengan nilai diagonal Gain matrik K dihitung dengan menggunakan library ARE (Aljabar Riccati Equation pada matlab, menghitung gain kontrol K dilakukan dengan mengetik perintah berikut: >>S=ARE(A,B*inv(R*B',Q; >>K=inv(R*B'*S A. Simulasi Kontroler NQR IV. PENGUJIAN DAN ANALISA Simulasi kontrol NQR dilakukan dengan menggunakan matlab simulink sebagaimana Gambar 7 (a

5 5 Dari Gambar 6 dapat dilihat bahwa dengan menggunakan kontroler NQR sistem dapat stabil dan mampu menangani gangguan dengan baik, baik yang terjadi pada sudut roll, pitch maupun pada gerak translasi x,y, dan z. selain itu kontroler juga terlihat lebih kokoh, hal ini di karenakan konroler digunakan pada plant nonlinier sehingga seluruh parameter plant tidak di hilangkan. (b Quadcopter pada penelitian ini disimulasikan dengan simulasi 3D, hal ini dilakukan agar dapat dilihat pergerakan quadcopter lebih jelas sehingga dengan melihat pergerakan pada simulasi 3D ini tidak ragu lagi untuk mengimpelentasikannya pada plant quadcopter yang sebenarnya, hal ini dimaksudkan juga untuk meminimalisir kerusakan quadcopter akibat dari perencanaan/desain kontrol yang tidak matang. simulasi ditunjukkan pada Gambar 7 Gambar 5. Simulasi NQR x,y,z(a dan roll, pitch(b B. Simulasi Kontrol NQR Respon Terhadap Gangguan Pada simulasi ini, kontroler NQR dengan pemilihan pembobot Q adalah 9000 baik untuk gerak rotasi maupun translasi disimulasikan pada matlab simulink. Dengan nilai gangguan sebesar 0,5 meter untuk z yang diletakkan pada detik ke 10, sedangkan untuk roll, Pitch dan Yaw gangguan bernilai 0,3 radian yang diletakkan pada detik ke 15. Dimana sinyal gangguan dimasukkan ke dalam output dari plant. Respon sistem ditunjukkan pada Gambar 6. Gambar 7. Simulasi 3D Quadcopter (a C. Implementasi Implementasi tidak dapat dilakukan dikarenakan kontroler memiliki orde 6 untuk mengontrol pergerakan rotasi (roll, pitch, yaw dan orde 2 untuk pergerakan translasi (x,y,z sehingga mengalami kesulitan untuk membuat algoritma program pada Arduino, selain itu Arduino juga memiliki memory yang kecil untuk menyimpan algoritma pemrograman. Memory penyimpanan yang dimiliki oleh arduino mega adalah sebesar 236 KB, sedangkan program pengolahan sensor IMU dan komunikasi adalah sebesar 36 KB. Cuplikan program pengolahan sensor imu ditunjukkan oleh Gambar 8. (b (c Gambar 6. Simulasi NQR dengan gangguan z(a, roll(c, pitch(c Gambar 8. Cuplikan Program Pengolahan Sensor IMU pada Arduino

6 6 V. KESIMPULAN/RINGKASAN Dari hasil penelitian yang telah dilakukan, maka dapat diperoleh beberapa kesimpulan diantaranya: 1. Pada simulasi pengujian didapatkan nilai parameter dari Q dan R dengan melakukan tuning. Dengan hasil tuning adalah memperoleh nilai Q sebesar 9000, dan nilai R sebesar Pada simulasi kontrol NQR mampu mengatasi gangguan yang diberikan baik gangguan pada gerak translasi z, serta sudut roll maupun pada sudut pitch. 3. Simulasi dari quadcopter yang dijalankan pada Matlab dapat ditampilkan dalam bentuk 3D agar mempermudah dalam mempresentasikan pergerakan quadcopter. DAFTAR PUSTAKA [1]. Tommaso Bresciani, Modelling, Identification and Control of a Quadcopter Helicopter. Department of Automatic Control Lund University, October [2]. Luukkonen, Teppo, Modelling and control of quadcopter, Aalto University, Espoo, [3]. Jorge Miguel Brito Domingues, Quadcopter prototype, Grau de Mestre em Engenharia Mecânica, October [4]. Marcelo De Lellis Costa de Oliveira, Modeling, Identication and Control of a Quadcopter Aircraft, Czech Technical University in Prague, [5]. Dr J. F. Whidborne, Modelling And Linear Control Of A Quadcopter Cranfield University, [6]. Randal W. Beard, Quadcopter Dynamics and Control, Brigham Young University, October 3, [7]. Darmawan, Aria Perancangan Embedded Kontroler LQR Adaptive Menggunakan Mikrokontroler Untuk Pengaturan Kecepatan Motor DC, Tugas Akhir, ITS Surabaya, [8]. Gamayanti, Nurlita, Karakteristim Sistem Ordo Pertama Teknik Sistem Pengaturan, Jurusan Teknik Elektro FTI-ITS, Surabaya, [9]. Naidu, Desineni Subbaram, Optimal Control System, CRC Press LLC, USA, [10]. Colton, Shane The Balance Filter: Aa Simple Solution for Integrating Accelerometer and Gyroscope Measurements for a Bolancing Platfrom, MIT

Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter

Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: 2337-3539 (2301-9271 Prin B-234 Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter Tri

Lebih terperinci

Perancangan dan Implementasi Sistem Pengaturan Optimal LQRuntuk Menjaga Kestabilan Hover pada Quadcopter

Perancangan dan Implementasi Sistem Pengaturan Optimal LQRuntuk Menjaga Kestabilan Hover pada Quadcopter JURNAL TEKNIK ITS Vol., No. Sept. ISSN:-97 F-7 Perancangan dan Implementasi Sistem Pengaturan Optimal LQRuntuk Menjaga Kestabilan Hover pada Quadcopter Kardono, Rusdhianto Effendi AK, dan Ali Fatoni Jurusan

Lebih terperinci

TUGAS AKHIR - TE

TUGAS AKHIR - TE TUGAS AKHIR - TE 091399 PERANCANGAN DAN IMPLEMENTASI KONTROLER PID UNTUK PENGATURAN ARAH DAN PENGATURAN HEADING PADA FIXED-WING UAV (UNMANNED AERIAL VEHICLE) Hery Setyo Widodo NRP. 2208100176 Laboratorium

Lebih terperinci

Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada UAV Quadcopter

Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada UAV Quadcopter JRNAL TEKNIK POMITS Vol., No., (22) -5 Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada AV Quadcopter Ardy Seto Priambodo, Katjuk Astrowulan, Joko Susila Teknik Elektro,

Lebih terperinci

Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali Way-to-Way Point UAV Quadcopter

Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali Way-to-Way Point UAV Quadcopter JRNAL TEKNIK POMITS Vol. 2, No. 2, (203) ISSN: 2337-3539 (230-927 Print) B-23 Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali Way-to-Way Point AV Quadcopter Muhammad

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 JURNAL TEKNIK POMITS Vol., No., (23) -6 Pengendalian Rasio Bahan Bakar dan Udara Pada Boiler Menggunakan Metode Kontrol Optimal Linier Quadratic Regulator (LQR) Virtu Adila, Rusdhianto Effendie AK, Eka

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI KONTROLER PID UNTUK AUTONOMOUS MOVING FORWARD MANUEVER PADA QUADCOPTER

PERANCANGAN DAN IMPLEMENTASI KONTROLER PID UNTUK AUTONOMOUS MOVING FORWARD MANUEVER PADA QUADCOPTER PERANCANGAN DAN IMPLEMENTASI KONTROLER PID UNTUK AUTONOMOUS MOVING FORWARD MANUEVER PADA QUADCOPTER By : Zam Yusuf / 10105063 Dosen Pembimbing : Ir. Ali Fatoni,MT. AGENDA PRESENTASI 1. Pendahuluan. Perancangan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN BAB 1. 1.1 Latar Belakang Gerak terbang pada pesawat tanpa awak atau yang sering disebut Unmanned Aerial Vehicle (UAV) ada berbagais macam, seperti melayang (hovering), gerak terbang

Lebih terperinci

Proceeding Tugas Akhir-Januari

Proceeding Tugas Akhir-Januari Proceeding Tugas Akhir-Januari 214 1 Swing-up dan Stabilisasi pada Sistem Pendulum Kereta menggunakan Metode Fuzzy dan Linear Quadratic Regulator Renditia Rachman, Trihastuti Agustinah Jurusan Teknik Elektro,

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) F-62

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) F-62 JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: 2337-3539 (2301-9271 Print) F-62 Desain Linear Quadratic Tracking Untuk PendaratanVertikal Pada Pesawat Tanpa Awak Quadrotor Luthfi Andria, Ir. Katjuk Astrowulan,MSEE.

Lebih terperinci

PERANCANGAN KONTROL NON-LINIER UNTUK KESTABILAN HOVER PADA UAV TRICOPTER DENGAN SLIDING MODE CONTROL

PERANCANGAN KONTROL NON-LINIER UNTUK KESTABILAN HOVER PADA UAV TRICOPTER DENGAN SLIDING MODE CONTROL Presentasi Tesis PERANCANGAN KONTROL NON-LNER UNTUK KESTABLAN HOVER PADA UAV TRCOPTER DENGAN SLDNG MODE CONTROL RUDY KURNAWAN 2211202009 Dosen Pembimbing: DR. r. Mochammad Rameli r. Rusdhianto Effendie

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-58

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-58 JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) B-58 Swing-up dan Stabilisasi pada Sistem Pendulum Kereta menggunakan Metode Fuzzy dan Linear Quadratic Regulator Renditia Rachman,

Lebih terperinci

Perancangan Autonomous Landing pada Quadcopter dengan Menggunakan Behavior-Based Intelligent Fuzzy Control

Perancangan Autonomous Landing pada Quadcopter dengan Menggunakan Behavior-Based Intelligent Fuzzy Control 1 Perancangan Autonomous Landing pada Quadcopter dengan Menggunakan Behavior-Based Intelligent Fuzzy Control Chalidia Nurin Hamdani, Ir. Rusdhianto Effendie A.K., MT. dan Eka Iskandar, ST.,MT. Jurusan

Lebih terperinci

Perancangan Autonomous Landing pada Quadcopter Menggunakan Behavior-Based Intelligent Fuzzy Control

Perancangan Autonomous Landing pada Quadcopter Menggunakan Behavior-Based Intelligent Fuzzy Control JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: 2337-3539 (2301-9271 Print) E-63 Perancangan Autonomous Landing pada Quadcopter Menggunakan Behavior-Based Intelligent Fuzzy Control Chalidia Nurin Hamdani,

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI KONTROLER PID OPTIMAL UNTUK TRACKING LINTASAN GERAKAN LATERAL PADA UAV (UNMANNED AERIAL VEHICLE)

PERANCANGAN DAN IMPLEMENTASI KONTROLER PID OPTIMAL UNTUK TRACKING LINTASAN GERAKAN LATERAL PADA UAV (UNMANNED AERIAL VEHICLE) PERANCANGAN DAN IMPLEMENTASI KONTROLER PID OPTIMAL UNTUK TRACKING LINTASAN GERAKAN LATERAL PADA UAV (UNMANNED AERIAL VEHICLE) Rahmat Fauzi - 0906077 Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh

Lebih terperinci

Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing Pada Pesawat UAV Quadcopter

Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing Pada Pesawat UAV Quadcopter JURNAL TEKNIK ITS Vol, No Sept ISSN: -97 A-78 Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing Pada Pesawat UAV Quadcopter Teddy Sudewo, Eka Iskandar, dan

Lebih terperinci

Perbandingan Kontrol Manuver dan Pendaratan Quadrotor dengan PID, Gain Scheduling, dan PID Sinyal Kontrol Termodifikasi

Perbandingan Kontrol Manuver dan Pendaratan Quadrotor dengan PID, Gain Scheduling, dan PID Sinyal Kontrol Termodifikasi Perbandingan Kontrol Manuver dan Pendaratan Quadrotor dengan PD, Gain Scheduling, dan PD Sinyal Kontrol Termodifikasi mmanuel N. Ricardo, Katjuk Astrowulan, Eka skandar Jurusan Teknik Elektro, Fakultas

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Internasional Batam

BAB I PENDAHULUAN. 1 Universitas Internasional Batam BAB I PENDAHULUAN 1.1 Latar Belakang Pesawat terbang model UAV (Unmanned Aerial Vehicle) telah berkembang dengan sangat pesat dan menjadi salah satu area penelitian yang diprioritaskan. Beberapa jenis

Lebih terperinci

IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID)

IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID) IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID) Adnan Rafi Al Tahtawi Program Studi Teknik Komputer, Politeknik Sukabumi adnanrafi@polteksmi.ac.id

Lebih terperinci

Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben

Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben Prosiding ANNUAL RESEARCH SEMINAR Desember, Vol No. ISBN : 979-587-- UNSRI Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben Huda Ubaya,

Lebih terperinci

SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA

SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA 1022: Ahmad Ashari dkk. TI-59 SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA Ahmad Ashari, Danang Lelono, Ilona Usuman, Andi Dharmawan, dan Tri Wahyu Supardi Jurusan Ilmu

Lebih terperinci

metode pengontrolan konvensional yaitu suatu metode yang dapat melakukan penalaan secara mandiri (Pogram, 2014). 1.2 Rumusan Masalah Dari latar

metode pengontrolan konvensional yaitu suatu metode yang dapat melakukan penalaan secara mandiri (Pogram, 2014). 1.2 Rumusan Masalah Dari latar BAB I PENDAHULUAN 1.1 Latar Belakang Quadrotor adalah sebuah pesawat tanpa awak atau UAV (Unmanned Aerial Vehicle) yang memiliki kemampuan lepas landas secara vertikal atau VTOL (Vertical Take off Landing).

Lebih terperinci

Pendaratan Otomatis Quadcopter AR Drone Menggunakan Metode Linear Quadratic Regulator (LQR)

Pendaratan Otomatis Quadcopter AR Drone Menggunakan Metode Linear Quadratic Regulator (LQR) Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 10, Oktober 2017, hlm. 1028-1035 http://j-ptiik.ub.ac.id Pendaratan Otomatis Quadcopter AR Drone Menggunakan Metode

Lebih terperinci

KONTROL TRACKING PADA QUADROTOR MENGGUNAKAN NONLINEAR QUADRATIC TRACKING DENGAN EXTENDED KALMAN FILTER

KONTROL TRACKING PADA QUADROTOR MENGGUNAKAN NONLINEAR QUADRATIC TRACKING DENGAN EXTENDED KALMAN FILTER TESIS TE142599 KONTROL TRACKING PADA QUADROTOR MENGGUNAKAN NONLINEAR QUADRATIC TRACKING DENGAN EXTENDED KALMAN FILTER MOHAMMAD NUR 2214 202 008 DOSEN PEMBIMBING Dr. Trihastuti Agustinah, ST.,MT Ir. Rusdhianto

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2012) 1-6 1 JURNAL TEKNIK POMITS Vol., No., () -6 Perancangan dan Implementasi Kontrol Fuzzy-PID pada Pengendalian Auto Take-Off Quadcopter UAV Whanindra Kusuma, Rusdhianto Effendi AK, dan Eka Iskandar Jurusan Teknik

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN SISTEM

BAB III PERANCANGAN DAN PEMBUATAN SISTEM BAB III PERANCANGAN DAN PEMBUATAN SISTEM Pada bab ini menjelaskan tentang perancangan dan pembuatan sistem kontrol, baik secara software maupun hardware yang digunakan untuk mendukung keseluruhan sistem

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang UAV (Unmanned Aerial Vehicle) atau biasa disebut pesawat tanpa awak saat ini sedang mengalami perkembangan yang sangat pesat di dunia. Penggunaan UAV dikategorikan

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-47

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-47 JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) B-47 Swing-Up menggunakan Energy Control Method dan Stabilisasi Menggunakan Fuzzy-LQR pada Pendulum Cart System Agus Lesmana,

Lebih terperinci

Perancangan dan Implementasi Autonomous Landing Menggunakan Behavior-Based dan Fuzzy Controller pada Quadcopter

Perancangan dan Implementasi Autonomous Landing Menggunakan Behavior-Based dan Fuzzy Controller pada Quadcopter JRNAL TEKNIK ITS Vol., No., (Sept. ) ISSN: 3-97 A-9 Perancangan dan Implementasi Autonomous Landing Menggunakan Behavior-Based dan Fuzzy Controller pada Quadcopter Fadjri Andika Permadi, Rusdhianto Effendi

Lebih terperinci

Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe 1 Untuk Sistem Pendulum Kereta

Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe 1 Untuk Sistem Pendulum Kereta Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe Untuk Sistem Pendulum Kereta Helvin Indrawati, Trihastuti Agustinah Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember

Lebih terperinci

Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah

Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: 2301-9271 F-50 Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah Bardo Wenang, Rudy Dikairono, ST., MT.,

Lebih terperinci

Oleh: Dimas Avian Maulana Dosen Pembimbing: Subchan, Ph.D

Oleh: Dimas Avian Maulana Dosen Pembimbing: Subchan, Ph.D Oleh: Dimas Avian Maulana-1207100045 Dosen Pembimbing: Subchan, Ph.D Robot mobil adalah salah satu contoh dari wahana nir awak (WaNA) yang dapat dikendalikan dari jauh atau memiliki sistem pengendali otomatis

Lebih terperinci

KONTROL TRACKING FUZZY UNTUK SISTEM PENDULUM KERETA MENGGUNAKAN PENDEKATAN LINEAR MATRIX INEQUALITIES

KONTROL TRACKING FUZZY UNTUK SISTEM PENDULUM KERETA MENGGUNAKAN PENDEKATAN LINEAR MATRIX INEQUALITIES JURNAL TEKNIK ITS Vol. 4, No. 1, (15) ISSN: 337-3539 (31-971 Print) A-594 KONTROL TRACKING FUZZY UNTUK SISTEM PENDULUM KERETA MENGGUNAKAN PENDEKATAN LINEAR MATRIX INEQUALITIES Rizki Wijayanti, Trihastuti

Lebih terperinci

BAB 1 PENDAHULUAN. Dewasa ini perkembangan teknologi mengubah setiap sendi kehidupan manusia

BAB 1 PENDAHULUAN. Dewasa ini perkembangan teknologi mengubah setiap sendi kehidupan manusia BAB 1 PENDAHULUAN 1.1. Latar Belakang Dewasa ini perkembangan teknologi mengubah setiap sendi kehidupan manusia dan lingkungannya. Banyak dari teknologi itu yang berakibat buruk, digunakan untuk perang

Lebih terperinci

PERANCANGAN EMBEDDED KONTROLER LQR ADAPTIVE MENGGUNAKAN MIKROKONTROLER UNTUK PENGATURAN KECEPATAN MOTOR DC

PERANCANGAN EMBEDDED KONTROLER LQR ADAPTIVE MENGGUNAKAN MIKROKONTROLER UNTUK PENGATURAN KECEPATAN MOTOR DC PERANCANGAN EMBEDDED KONTROLER LQR ADAPTIVE MENGGUNAKAN MIKROKONTROLER UNTUK PENGATURAN KECEPATAN MOTOR DC Aria Darmawan, Ir. Rusdhianto Effendi A. K., MT., Ir. Ali Fatoni, MT. Jurusan Teknik Elektro FTI

Lebih terperinci

BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING

BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING 8 BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING 3. Algoritma Kontrol Pada Pesawat Tanpa Awak Pada makalah seminar dari penulis dengan judul Pemodelan dan Simulasi Gerak Sirip Pada Pesawat Tanpa Awak telah

Lebih terperinci

TUNING PARAMETER LINEAR QUADRATIC TRACKING MENGGUNAKAN ALGORITMA GENETIKA UNTUK PENGENDALIAN GERAK LATERAL QUADCOPTER

TUNING PARAMETER LINEAR QUADRATIC TRACKING MENGGUNAKAN ALGORITMA GENETIKA UNTUK PENGENDALIAN GERAK LATERAL QUADCOPTER TUGAS AKHIR TE91399 TUNING PARAMETER LINEAR QUADRATIC TRACKING MENGGUNAKAN ALGORITMA GENETIKA UNTUK PENGENDALIAN GERAK LATERAL QUADCOPTER Farid Choirul Akbar NRP 2212 1 8 Dosen Pembimbing Ir. Rusdhianto

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Pesawat tanpa awak atau Unmanned Aerial Vehicle (UAV) kini menjadi suatu kebutuhan di dalam kehidupan untuk berbagai tujuan dan fungsi. Desain dari

Lebih terperinci

ABSTRAK. Inverted Pendulum, Proporsional Integral Derivative, Simulink Matlab. Kata kunci:

ABSTRAK. Inverted Pendulum, Proporsional Integral Derivative, Simulink Matlab. Kata kunci: PROJECT OF AN INTELLIGENT DIFFERENTIALY DRIVEN TWO WHEELS PERSONAL VEHICLE (ID2TWV) SUBTITLE MODELING AND EXPERIMENT OF ID2TWV BASED ON AN INVERTED PENDULUM MODEL USING MATLAB SIMULINK Febry C.N*, EndraPitowarno**

Lebih terperinci

Kontrol Tracking Fuzzy untuk Sistem Pendulum Kereta Menggunakan Pendekatan Linear Matrix Inequalities

Kontrol Tracking Fuzzy untuk Sistem Pendulum Kereta Menggunakan Pendekatan Linear Matrix Inequalities JURNAL TEKNIK ITS Vol. 6, No. (17), 337-35 (31-98X Print) A49 Kontrol Tracking Fuzzy untuk Sistem Pendulum Kereta Menggunakan Pendekatan Linear Matrix Inequalities Rizki Wijayanti, Trihastuti Agustinah

Lebih terperinci

Desain Kontrol Optimal Fuzzy Menggunakan Pendekatan PDC Modifikasi Untuk Sistem Pendulum Kereta

Desain Kontrol Optimal Fuzzy Menggunakan Pendekatan PDC Modifikasi Untuk Sistem Pendulum Kereta JURNAL TEKNIK ITS Vol. 4, No., (5) ISSN: 337-3539 (3-97 Print) A-89 Desain Kontrol Optimal Fuzzy Menggunakan Pendekatan PDC Modifikasi Untuk Sistem Pendulum Kereta Syfa Almira dan Trihastuti Agustinah

Lebih terperinci

Pemodelan Sistem Kendali PID pada Quadcopter dengan Metode Euler Lagrange

Pemodelan Sistem Kendali PID pada Quadcopter dengan Metode Euler Lagrange IJEIS, Vol.4, No.1, April 2014, pp. 13~24 ISSN: 2088-3714 13 Pemodelan Sistem Kendali PID pada Quadcopter dengan Metode Euler Lagrange Andi Dharmawan 1, Yohana Yulya Simanungkalit* 2, Noorma Yulia Megawati

Lebih terperinci

Perancangan Kontroler State Dependent Riccati Equation Untuk Stabilisasi Pendulum Terbalik Dua Tingkat

Perancangan Kontroler State Dependent Riccati Equation Untuk Stabilisasi Pendulum Terbalik Dua Tingkat Perancangan Kontroler State Dependent Riccati Equation Untuk Stabilisasi Pendulum Terbalik Dua Tingkat Dyah Tri Utami 22659 Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh Nopember Kampus ITS, Keputih

Lebih terperinci

Penerapan Sistem Kendali PID untuk KestabilanTwin- Tiltrotor dengan Metode DCM

Penerapan Sistem Kendali PID untuk KestabilanTwin- Tiltrotor dengan Metode DCM IJEIS, Vol.5, No.2, October 2015, pp. 145~154 ISSN: 2088-3714 145 Penerapan Sistem Kendali PID untuk KestabilanTwin- Tiltrotor dengan Metode DCM Andi Dharmawan 1, Sani Pramudita* 2 1 Jurusan Ilmu Komputer

Lebih terperinci

Desain dan Implementasi Automatic Flare Maneuver pada Proses Landing Pesawat Terbang Menggunakan Kontroler PID

Desain dan Implementasi Automatic Flare Maneuver pada Proses Landing Pesawat Terbang Menggunakan Kontroler PID Desain dan Implementasi Automatic Flare Maneuver pada Proses Landing Pesawat Terbang Menggunakan Kontroler PID Mokhamad Khozin-2207100092 Bidang Studi Teknik Sistem Pengaturan, Jurusan Teknik Elektro,

Lebih terperinci

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC)

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC) PROSEDING DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC) Teguh Herlambang, Hendro Nurhadi Program Studi Sistem Informasi Universitas

Lebih terperinci

Calyptra : Jurnal Ilmiah Mahasiswa Universitas Surabaya Vol.4 No.2 (2015)

Calyptra : Jurnal Ilmiah Mahasiswa Universitas Surabaya Vol.4 No.2 (2015) Estimasi Parameter Model Height-Roll-Pitch-Yaw AR Drone dengan Least Square Method Steven Tanto Teknik Elektro / Fakultas Teknik steventanto@gmail.com Agung Prayitno Teknik Elektro / Fakultas Teknik prayitno_agung@staff.ubaya.ac.id

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada skripsi ini dilakukan beberapa pengujian dan percobaan untuk mendapatkan hasil rancang bangun Quadcopter yang stabil dan mampu bergerak mandiri (autonomous). Pengujian

Lebih terperinci

SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P

SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P2700213428 PROGRAM PASCASARJANA PROGRAM STUDI TEKNIK ELEKTRO UNIVERSITAS HASANUDDIN MAKASSAR 2014 ii DRAFT PROPOSAL JUDUL Sistem

Lebih terperinci

Desain dan Implementasi Self Tuning LQR Adaptif untuk Pengaturan Tegangan Generator Sinkron 3 Fasa

Desain dan Implementasi Self Tuning LQR Adaptif untuk Pengaturan Tegangan Generator Sinkron 3 Fasa Desain dan Implementasi Self Tuning LQR Adaptif untuk Pengaturan Tegangan Generator Sinkron 3 Fasa Oleh : Arif Hermawan (05-176) Dosen Pembimbing : 1. Dr.Ir.Mochammad Rameli 2. Ir. Rusdhianto Effendie

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pesawat udara tanpa awak atau Unmanned Aerial Vehicle (UAV) adalah sebuah pesawat terbang yang dapat dikendalikan secara jarak jauh oleh pilot atau dengan mengendalikan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 2 BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini teknologi di bidang penerbangan sudah sangat maju. Pesawat terbang sudah dapat dikendalikan secara jarak jauh sehingga memungkinkan adanya suatu pesawat

Lebih terperinci

III. METODE PENELITIAN. Perancangan sistem dilakukan dari bulan Juli sampai Desember 2012, bertempat di

III. METODE PENELITIAN. Perancangan sistem dilakukan dari bulan Juli sampai Desember 2012, bertempat di III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Perancangan sistem dilakukan dari bulan Juli sampai Desember 2012, bertempat di Laboratorium Terpadu Teknik Elektro, Jurusan Teknik Elektro, Universitas

Lebih terperinci

DESAIN KONTROLER FUZZY UNTUK SISTEM GANTRY CRANE

DESAIN KONTROLER FUZZY UNTUK SISTEM GANTRY CRANE DESAIN KONTROLER FUZZY UNTUK SISTEM GANTRY CRANE Rosita Melindawati (2211106002) Pembimbing : Dr. Trihastuti Agustinah, ST., MT. Bidang Studi Teknik Sistem Pengaturan JURUSAN TEKNIK ELEKTRO Fakultas Teknologi

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) E-13

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) E-13 JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) E-13 Pengaturan Kecepatan pada Simulator Parallel Hybrid Electric Vehicle (PHEV) Menggunakan Linear Quadratic Regulator (LQR)

Lebih terperinci

BAB I PENDAHULUAN I.1

BAB I PENDAHULUAN I.1 BAB I PENDAHULUAN I.1 Latar Belakang Unmanned Aerial Vehicle (UAV) banyak dikembangkan dan digunakan di bidang sipil maupun militer seperti pemetaan wilayah, pengambilan foto udara, pemantauan pada lahan

Lebih terperinci

PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR

PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR Oka Danil Saputra [1], Dr. Aris Triwiyatno, S.T., M.T. [2], Budi Setiyono, S.T., M.T. [2] Laboratorium Teknik Kontrol Otomatik, Jurusan Teknik

Lebih terperinci

terhadap gravitasi, sehingga vektor gravitasi dapat diestimasi dan didapatkan dari pengukuran. Hasil akselerasi lalu diintregasikan untuk mendapatkan

terhadap gravitasi, sehingga vektor gravitasi dapat diestimasi dan didapatkan dari pengukuran. Hasil akselerasi lalu diintregasikan untuk mendapatkan 1 BAB I PENDAHULUAN 1.1. Latar Belakang Penelitian Pada kurun waktu yang singkat, Unmanned Aerial Vehicle (UAV) telah menarik banyak perhatian warga sipil, karena keunggulan mesin ini yang dapat berfungsi

Lebih terperinci

Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe 1 untuk Sistem Pendulum-Kereta

Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe 1 untuk Sistem Pendulum-Kereta JURNAL TEKNIK POMITS Vol., No., () ISSN: 7-59 (-97 Print) B-7 Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe untuk Sistem Pendulum-Kereta Helvin Indrawati dan Trihastuti Agustinah Jurusan Teknik

Lebih terperinci

Kontrol Tracking Fuzzy Menggunakan Model Following untuk Sistem Pendulum Kereta

Kontrol Tracking Fuzzy Menggunakan Model Following untuk Sistem Pendulum Kereta JURNAL TENI ITS Vol. 5, No., (6) ISSN: 7-59 (-97 Print) A ontrol Traking Fuzzy Menggunakan Model Following untuk Sistem Pendulum ereta Jimmy Hennyta Satya Putra, Trihastuti Agustinah Teknik Elektro, Fakultas

Lebih terperinci

PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR

PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR Oka Danil Saputra *), Aris Triwiyatno dan Budi Setiyono Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus

Lebih terperinci

Studi Perancangan Sistem Kontrol Kinematik Dan Dinamik Non Linier Watanabe Pada Wahana Nirawak Quadrotor

Studi Perancangan Sistem Kontrol Kinematik Dan Dinamik Non Linier Watanabe Pada Wahana Nirawak Quadrotor Studi Perancangan Sistem Kontrol Kinematik Dan Dinamik Non Linier Watanabe Pada Wahana Nirawak Quadrotor Abstrak Steven Aurecianus, Estiyanti Ekawati dan Endra Joelianto Program Studi Teknik Fisika Institut

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1. Letak CoM dan poros putar robot pada sumbu kartesian.

BAB II DASAR TEORI. Gambar 2.1. Letak CoM dan poros putar robot pada sumbu kartesian. BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem yang dirancang. Teori-teori yang digunakan dalam realisasi skripsi ini antara

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan sistem ilmu pengetahuan dan teknologi semakin pesat di abad ke- 21 ini, khususnya dalam bidang penerbangan. Pada dekade terakhir dunia penerbangan mengalami

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu pengetahuan dan teknologi dalam bidang robotika pada saat ini berkembang dengan sangat cepat. Teknologi robotika pada dasarnya dikembangkan dengan tujuan untuk

Lebih terperinci

PENGENDALIAN OPTIMAL PADA SISTEM STEAM DRUM BOILER MENGGUNAKAN METODE LINEAR QUADRATIC REGULATOR (LQR) Oleh : Ika Evi Anggraeni

PENGENDALIAN OPTIMAL PADA SISTEM STEAM DRUM BOILER MENGGUNAKAN METODE LINEAR QUADRATIC REGULATOR (LQR) Oleh : Ika Evi Anggraeni PENGENDALIAN OPTIMAL PADA SISTEM STEAM DRUM BOILER MENGGUNAKAN METODE LINEAR QUADRATIC REGULATOR (LQR) Oleh : Ika Evi Anggraeni 206 00 03 Dosen Pembimbing : Dr. Erna Apriliani, M.Si Hendra Cordova, ST,

Lebih terperinci

DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY

DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY Reza Dwi Imami *), Aris Triwiyatno, and Sumardi Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus

Lebih terperinci

IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM

IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM Aretasiwi Anyakrawati, Pembimbing : Goegoes D.N, Pembimbing 2: Purwanto. Abstrak- Pendulum terbalik mempunyai

Lebih terperinci

Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor

Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor JURNAL TEKNIK POMITS Vol, No 1, (1) ISSN: 7-59 (1-971 Print) B-47 Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor Darmawan Rasyid Hadi Saputra dan Bambang Pramujati Jurusan Teknik

Lebih terperinci

DESAIN SISTEM KONTROL LQIT-GAIN SCHEDULLING PID UNTUK WAY POINT TRACKING CONTROL QUADROTOR UAV

DESAIN SISTEM KONTROL LQIT-GAIN SCHEDULLING PID UNTUK WAY POINT TRACKING CONTROL QUADROTOR UAV DESAIN SISTEM KONTROL LQIT-GAIN SCHEDULLING PID UNTUK WAY POINT TRACKING CONTROL QUADROTOR UAV Aditya Eka Mulyono ), Aris Triwiyatno 2), dan Sumardi 2) Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

Sistem Kontrol Altitude Pada UAV Model Quadcopter Dengan Metode PID

Sistem Kontrol Altitude Pada UAV Model Quadcopter Dengan Metode PID The 14 th ndustrial Electronics Seminar 2012 (ES 2012) Electronic Engineering Polytechnic nstitute of Surabaya (EEPS), ndonesia, October 24, 2012 Sistem Kontrol Altitude Pada UAV Model Quadcopter Dengan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Seiring perkembangan teknologi telekomunikasi dan dirgantara dapat menghasilkan suatu teknologi yang menggabungkan antara informasi suatu keadaan lokal tertentu dengan

Lebih terperinci

OPTIMALISASI CRANE ANTI AYUN KONTROLER PD-LQR DENGAN ALGORITMA UPSO UNTUK MENINGKATKAN EFESIENSI PROSES BONGKAR MUAT

OPTIMALISASI CRANE ANTI AYUN KONTROLER PD-LQR DENGAN ALGORITMA UPSO UNTUK MENINGKATKAN EFESIENSI PROSES BONGKAR MUAT OPTIMALISASI CRANE ANTI AYUN KONTROLER PD-LQR DENGAN ALGORITMA UPSO UNTUK MENINGKATKAN EFESIENSI PROSES BONGKAR MUAT Muh. Chaerur Rijal, ST, Dr. Ir. Ari Santoso, DEA 3, Ir. Rusdhianto Efendi, MT ) Jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin

BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin terbang yang berfungsi dengan kendali jarak jauh oleh pilot

Lebih terperinci

Pengaturan Kecepatan pada Simulator Parallel Hybrid Electric Vehicle Menggunakan Metode PID Linear Quadratic Regulator

Pengaturan Kecepatan pada Simulator Parallel Hybrid Electric Vehicle Menggunakan Metode PID Linear Quadratic Regulator JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: 2337-3539 (2301-9271 Print) E-31 Pengaturan Kecepatan pada Simulator Parallel Hybrid Electric Vehicle Menggunakan Metode PID Linear Quadratic Regulator Fanniesha

Lebih terperinci

Perancangan dan Implementasi Kontroler PID untuk Pengaturan Autonomous Car-Following Car

Perancangan dan Implementasi Kontroler PID untuk Pengaturan Autonomous Car-Following Car JURNAL TEKNIK POMITS Vol. 3, No., (204) ISSN: 2337-3539 (230-927 Print) E-3 Perancangan dan Implementasi Kontroler PID untuk Pengaturan Autonomous Car-Following Car Andreas Parluhutan Bonor Sinaga dan

Lebih terperinci

Desain dan Implementasi Model Reference Adaptive Control untuk Pengaturan Tracking Optimal Posisi Motor DC

Desain dan Implementasi Model Reference Adaptive Control untuk Pengaturan Tracking Optimal Posisi Motor DC Desain dan Implementasi Model Reference Adaptive Control untuk Pengaturan Tracking Optimal Posisi Motor DC Dinar Setyaningrum 22081000018 Teknik Sistem Pengaturan Institut Teknologi Sepuluh Nopember Rabu,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam mendisain sebuah sistem kontrol untuk sebuah plant yang parameterparameternya tidak berubah, metode pendekatan standar dengan sebuah pengontrol yang parameter-parameternya

Lebih terperinci

Desain dan Implementasi Kontroler Sliding Mode untuk Pengaturan Akselerasi pada Simulator Hybrid Electric Vehicle

Desain dan Implementasi Kontroler Sliding Mode untuk Pengaturan Akselerasi pada Simulator Hybrid Electric Vehicle PROCEDIG SEMIAR TUGAS AKHIR JUI 013 1 Desain dan Implementasi Kontroler Sliding Mode untuk Pengaturan Akselerasi pada Simulator Hybrid Electric Vehicle Suci Endah Sholihah, Mochammad Rameli, dan Rusdhianto

Lebih terperinci

PENGENDALI TEMPERATUR FLUIDA PADA HEAT EXCHANGER DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PREDIKTIF

PENGENDALI TEMPERATUR FLUIDA PADA HEAT EXCHANGER DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PREDIKTIF PENGENDALI TEMPERATUR FLUIDA PADA HEAT EXCHANGER DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PREDIKTIF Rr.rahmawati Putri Ekasari, Rusdhianto Effendi AK., Eka Iskandar Jurusan Teknik Elektro, Fakultas Teknologi

Lebih terperinci

DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY

DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY Reza Dwi Imami 1), Aris Triwiyatno 2), dan Sumardi 2) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro, Jln. Prof. Sudharto,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Mikrokontroller AVR Mikrokontroller adalah suatu alat elektronika digital yang mempunyai masukan serta keluaran serta dapat di read dan write dengan cara khusus. Mikrokontroller

Lebih terperinci

Sistem Navigasi Ruangan Quadcopter Dengan Menggunakan Sensor Ultrasonik

Sistem Navigasi Ruangan Quadcopter Dengan Menggunakan Sensor Ultrasonik Sistem Navigasi Ruangan Quadcopter Dengan Menggunakan Sensor Ultrasonik Yosa Rosario, Rudy Dikairono, ST., MT. dan Dr. Tri AriefSardjono,S.T., M.T Jurusan Teknik Elektro FTI, Institut Teknologi Sepuluh

Lebih terperinci

Sistem Kendali PID pada Modus Transisi Terbang Tiltrotor

Sistem Kendali PID pada Modus Transisi Terbang Tiltrotor IJEIS, Vol.5, No.2, October 2015, pp. 199~210 ISSN: 2088-3714 199 Sistem Kendali PID pada Modus Transisi Terbang Tiltrotor Syafrizal Akhzan* 1, Andi Dharmawan 2 1 Program Studi Elektronika dan Instrumentasi,

Lebih terperinci

BAB I PENDAHULUAN. pengendalian. Perkembangan teknologi MEMS (Micro Electro Mechanical System)

BAB I PENDAHULUAN. pengendalian. Perkembangan teknologi MEMS (Micro Electro Mechanical System) BAB I PENDAHULUAN 1 Latar Belakang Sensor adalah jenis tranduser yang digunakan untuk mengubah besaran mekanis, magnetis, panas, sinar, dan kimia menjadi tegangan dan arus listrik. Sensor sering digunakan

Lebih terperinci

Rancang Bangun Unmanned Aerial Vehicle (UAV) Empat Baling-baling (Quadrotor-Arducopter)

Rancang Bangun Unmanned Aerial Vehicle (UAV) Empat Baling-baling (Quadrotor-Arducopter) 1 Rancang Bangun Unmanned Aerial Vehicle (UAV) Empat Baling-baling (Quadrotor-Arducopter) Muhammad Arifudin Lukmana., dan Hendro Nurhadi Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle)

Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle) Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle) Rahmat Fauzi 2209106077 Pembimbing : Surabaya, 26 Januari 2012 Ir. Rusdhianto

Lebih terperinci

BAB III PERANCANGAN ALAT. berasal dari motor. Selain kuat rangka juga harus ringan. Rangka terdiri dari beberapa bagian yaitu:

BAB III PERANCANGAN ALAT. berasal dari motor. Selain kuat rangka juga harus ringan. Rangka terdiri dari beberapa bagian yaitu: BAB III PERANCANGAN ALAT 3.1. Rangka Drone Rangka atau frame merupakan struktur yang menjadi tempat dudukan untuk semua komponen. Rangka harus kaku dan dapat meminimalkan getaran yang berasal dari motor.

Lebih terperinci

Analisis dan Kontrol Optimal Sistem Gerak Satelit Menggunakan Prinsip Minimum Pontryagin

Analisis dan Kontrol Optimal Sistem Gerak Satelit Menggunakan Prinsip Minimum Pontryagin JURNAL SAINS DAN SENI POMITS Vol. 6, No.2, (2017) 2337-3520 (2301-928X Print) A 45 Analisis dan Kontrol Optimal Sistem Gerak Satelit Menggunakan Prinsip Minimum Pontryagin Putri Saraswati, Mardlijah, Kamiran

Lebih terperinci

PERANCANGAN MODEL PREDICTIVE TORQUE CONTROL (MPTC) UNTUK PENGATURAN KECEPATAN MOTOR INDUKSI 3 PHASA DENGAN ROBUST STATOR FLUX OBSERVER

PERANCANGAN MODEL PREDICTIVE TORQUE CONTROL (MPTC) UNTUK PENGATURAN KECEPATAN MOTOR INDUKSI 3 PHASA DENGAN ROBUST STATOR FLUX OBSERVER PERANCANGAN MODEL PREDICTIVE TORQUE CONTROL (MPTC) UNTUK PENGATURAN KECEPATAN MOTOR INDUKSI 3 PHASA DENGAN ROBUST STATOR FLUX OBSERVER Halim Mudia 1), Mochammad Rameli 2), dan Rusdhianto Efendi 3) 1),

Lebih terperinci

BAB III IMPLEMENTASI ALAT

BAB III IMPLEMENTASI ALAT BAB III IMPLEMENTASI ALAT Hal-hal yang perlu dipersiapkan yaitu pengetahuan mengenai sistem yang direncanakan dan peralatan pendukung sistem yang akan digunakan. Perancangan sistem meliputi perancangan

Lebih terperinci

Aplikasi Pilot In the Loop (PIL) untuk uji unjuk kerja dan kekokohan sistem kontrol proportional-derivative (PD) dengan Hardware in The Loop (HIL)

Aplikasi Pilot In the Loop (PIL) untuk uji unjuk kerja dan kekokohan sistem kontrol proportional-derivative (PD) dengan Hardware in The Loop (HIL) Available online at Website http://ejournal.undip.ac.id/index.php/rotasi Aplikasi Pilot In the Loop (PIL) untuk uji unjuk kerja dan kekokohan sistem kontrol proportional-derivative (PD) dengan Hardware

Lebih terperinci

UNIVERSITAS DIPONEGORO TUGAS AKHIR ISWAN PRADIPTYA L2E FAKULTAS TEKNIK JURUSAN TEKNIK MESIN

UNIVERSITAS DIPONEGORO TUGAS AKHIR ISWAN PRADIPTYA L2E FAKULTAS TEKNIK JURUSAN TEKNIK MESIN UNIVERSITAS DIPONEGORO RANCANG BANGUN WAHANA TERBANG TANPA AWAK QUADROTOR DENGAN SISTEM KENDALI KESTABILAN ORIENTASI ROLL DAN PITCH TUGAS AKHIR ISWAN PRADIPTYA L2E 006 058 FAKULTAS TEKNIK JURUSAN TEKNIK

Lebih terperinci

Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi

Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) F-153 Rancang Bangun Sistem Kontrol Level dan Pressure Steam Generator pada Simulator Mixing Process di Workshop Instrumentasi

Lebih terperinci

PERANCANGAN SISTEM KENDALI GERAK LATERAL WAY-TO-WAY POINT UAV QUADCOPTER MENGGUNAKAN KONTROLER PID FUZZY

PERANCANGAN SISTEM KENDALI GERAK LATERAL WAY-TO-WAY POINT UAV QUADCOPTER MENGGUNAKAN KONTROLER PID FUZZY TUGAS AKHIR TE141599 PERANCANGAN SISTEM KENDALI GERAK LATERAL WAY-TO-WAY POINT UAV QUADCOPTER MENGGUNAKAN KONTROLER PID FUZZY Rheco Ari Prayogo NRP 2213 106 021 Dosen Pembimbing Ir. Josaphat Pramudijanto,

Lebih terperinci

Purwarupa Sistem Integrasi Quadcopter dan Mobile Robot

Purwarupa Sistem Integrasi Quadcopter dan Mobile Robot IJEIS, Vol.2, No.1, April 2012, pp. 97~108 ISSN: 2088-3714 97 Purwarupa Sistem Integrasi Quadcopter dan Mobile Robot Andi Dharmawan* 1, Christian Antonia Lusiarta Putera 2 1 Jurusan Ilmu Komputer dan Elektronika,

Lebih terperinci

UNIVERSITAS INDONESIA PERANCANGAN DAN SIMULASI PENGENDALIAN SISTEM GERAK ROTASI QUADROTOR MENGGUNAKAN QUADRATIC GAUSSIAN (LQG) TESIS

UNIVERSITAS INDONESIA PERANCANGAN DAN SIMULASI PENGENDALIAN SISTEM GERAK ROTASI QUADROTOR MENGGUNAKAN QUADRATIC GAUSSIAN (LQG) TESIS UNIVERSITAS INDONESIA PERANCANGAN DAN SIMULASI PENGENDALIAN SISTEM GERAK ROTASI QUADROTOR MENGGUNAKAN LINEAR QUADRATIC GAUSSIAN (LQG) TESIS SUPRIYONO 8642475 FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO

Lebih terperinci

Purwarupa Sistem Otomasi Terbang Landas dan Mendarat Quadcopter

Purwarupa Sistem Otomasi Terbang Landas dan Mendarat Quadcopter IJEIS, Vol.2, No.1, April 2012, pp. 87~96 ISSN: 2088-3714 87 Purwarupa Sistem Otomasi Terbang Landas dan Mendarat Quadcopter Andi Dharmawan* 1, Irfan Nurudin Firdaus 2 1 Jurusan Ilmu Komputer dan Elektronika,

Lebih terperinci

BAB I PENDAHULUAN Tujuan. Merancang dan merealisasikan pesawat terbang mandiri tanpa awak dengan empat. baling-baling penggerak.

BAB I PENDAHULUAN Tujuan. Merancang dan merealisasikan pesawat terbang mandiri tanpa awak dengan empat. baling-baling penggerak. BAB I PENDAHULUAN 1.1. Tujuan Merancang dan merealisasikan pesawat terbang mandiri tanpa awak dengan empat baling-baling penggerak. 1.2. Latar Belakang Pesawat terbang tanpa awak atau UAV (Unmanned Aerial

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Robot merupakan sebuah alat yang berfungsi untuk membantu manusia dalam melaksanakan tugas-tugasnya. Banyak model robot yang dikembangkan oleh para peneliti,

Lebih terperinci