BAB III PERHITUNGAN BAGIAN-BAGIAN UTAMA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III PERHITUNGAN BAGIAN-BAGIAN UTAMA"

Transkripsi

1 BAB III PERHITUNGAN BAGIAN-BAGIAN UTAMA 3.1 Perancangan Sistem Kemudi Gokart Proses peracangan sistem kemudi gokart menggunakan metode analisa perancangan dengan melakukan perhitungan-perhitungan manual. Metode ini menggunakan rumus-rumus dan perhitungan yang terkait untuk menganalisa gaya tertentu dan titik berat yang terjadi pada sistem kemudi gokart. 3.2 Analisa Perancangan Sistem Kemudi Gokart Sistem kemudi yang direncanakan, yaitu akan dianalisa dengan prinsip Ackerman. Dimana Geometri Ackerman merupakan sudut setir di sebelah dalam roda lebih besar daripada sudut setir di sebelah luar roda. FAKULTAS TEKNIK 25

2 Gambar 3.1 Geometri Ackerman Dari gambar diatas dapat disimpulkan persamaan sebagai berikut : δ 0 = tan -1 L R t 2 (Thomas Gillespie.1992:277) Diketahui : L = 1,2 m R = 1 m t = 0,62 m (untuk roda depan) t = 0,64 m (untuk roda belakang) Maka dilakukan perhituangannya adalah : δ 0 = tan -1 (Thomas Gillespie.1992:277) FAKULTAS TEKNIK 26

3 δ 0 = tan -1,, = 42,5 = 42 δ i = tan -1 L R t 2 (Thomas Gillespie.1992:277) δ i = tan -1,, = 60,1 = 60 δ 0 = tan -1,, = 38,02 = 38 δ i = tan -1,, = 73 Untuk sudut yang kecil, seperti belokan pada biasanya, arctangen dari sudut tersebut hasilnya mendekati sudut belokan itu sendiri (dalam radian). Perilaku Ackerman yang sempurna pada kenyataannya sulit dicapai, tetapi hampir mendekati susunan trapezoidal yang ditunjukan pada gambar di bawah ini : FAKULTAS TEKNIK 27

4 Gambar.3.2 Susunan Diferensial Dari Steer Trapezoidal Tie Rods Ketika roda bergerak ke kanan atau ke kiri, ketidaksimetrian geometri menyebabkan sudut pada bagian dalam roda lebih besar dibandingkan sudut luar roda. Ketika tie rods diletakkan di belakang pusat roda, maka steering arm ball joints terletak di dalam sumbu steer dan menghasilkan clearences roda yang baik. Jika steer didesain dengan posisi tie rods terletak di depan dari pusat roda, steering arm ball joints harus terletak di luar dari sumbu rotasi steer pada roda dengan tujuan untuk mendapatkan pendekatan pada geometri ackerman. Perancanangan atau pembuatan desain yang sesuai dari geometri ackerman merupakan fungsi dari jarak roda kendaraan dan injakan poros sumbu depan. FAKULTAS TEKNIK 28

5 3.3 Data-Data Sistem Kemudi Gokart Gambar 3.3 Sistem Kemudi Gokart L = 1,2 m h r = 0,22 m a = 0,42 m K tf = N/der b = 0,78 m K tr = N/der T f = 0,64 m µ = 5 T r = 0,62 m R tf = 210 N/der m uf = 60 kg R tr = 73 N/der m ur = 90 kg U o = 10 km/h m = 150 kg 3.4 Perhitungan Untuk Gaya Vertikal Menghitung berat Wt : Wt = m.g = 150 x 9,8 m/s 2 = 1470 N FAKULTAS TEKNIK 29

6 Menghitung gaya vertikal yang bekerja pada masing-masing roda : F v1 = b x Wt/2L - R tf /T f + K tf = 0,78 x 1470 : (2 x 1,2) (210 : 0,64) = ,6 N F v2 = b x Wt/2L + R tf /T f + K tf = 0,78 x 1470: (2 x 1,2) + (210 : 0,64) = ,8 N F v3 = a x Wt/2L + R tr /T r + K tr = 0,42 x 1470 : (2 x 1,2) + (210 : 0,62) = ,5 N F v4 = a x Wt/2L - R tr /T r + K tr = 0,42 x 1470 : (2 x 1,2) (210 : 0,62) = ,9 N 3.5 Perhitungan Untuk Gaya Lateral Menghitung percepatan sentrifugal dengan variabel kecepatan U o = 10 km/h dan sudut patokan µ = 5 : a cx = U 2 o sin µ + hr = (10) 2 x sin 5 + 0,22 = 8,94 m/s 2 a cy = U 2 o cos µ - hr = (10) 2 x cos 5 0,22 = 99,4 m/s 2 FAKULTAS TEKNIK 30

7 Menghitung gaya sentrifugal : F cgy = m x a cy = 150 x 99,4 = N F cgx = m x a cx = 150 x 8,94 = N Menghitung percepatan roda : a tx1, 2 = U 2 o sin µ a = (10) 2 x sin 5 0,42 = 8,3 m/s 2 a tx3, 4 = U 2 o sin µ + b = (10) 2 x sin 5 + 0,78 = 9,5 m/s 2 a ty1, 2 = U 2 o cos µ - Tf/2 = (10) 2 x cos 5 (0,64 : 2) = 99,3 m/s 2 2 a ty3, 4 = U o cos µ + Tr/2 = (10) 2 x cos 5 + (0,62 : 2) = 99,93 m/s 2 FAKULTAS TEKNIK 31

8 Menghitung gaya lateral : Fl 1 = b/2l x F cgy cos µ - F cgx /4 sin µ + 0,5 m uf (a ty1 cos µ + a tx1 sin µ) = 0,78: (2 x 1,2) x cos 5 (7.120 : 4) sin 5 + 0,5 x 60 (99,3 cos 5 + 8,3 sin 5) = 7.661,5 N Fl 2 = b/2l x F cgy cos µ + F cgx /4 sin µ + 0,5 m uf (a ty2 cos µ + a tx2 sin µ) = 0,78 : (2 x 1,2) x cos 5 + (1.341 : 4) sin 5 + 0,5 x 60 (99,3 cos 5 + 8,3 sin 5) = 7.845,9 N Fl 3 = a/2l x F cgy cos µ + F cgx /4 sin µ + 0,5 m ur (a ty3 cos µ + a tx3 sin µ) = 0,42 : (2 x 1,2) x cos 5 + (1.341 : 4) sin 5 + 0,5 x 90 (99,93 cos 5 + 9,5 sin 5) = 7.145,2 N Fl 4 = a/2l x F cgy cos µ - F cgx /4 sin µ + 0,5 m ur (a ty4 cos µ + a tx4 sin µ) = 0,42 : (2 x 1,2) x cos 5 (1.341 : 4) sin 5 + 0,5 x 90 (99,93 cos 5 + 9,5 sin 5) = 7.087,1 N Menghitung percepatan sentrifugal dengan variabel kecepatan U o = 20 km/h dan sudut patokan µ = 5 : a cx = U 2 o sin µ + hr = (20) 2 x sin 5 + 0,22 = 35,1 m/s 2 FAKULTAS TEKNIK 32

9 a cy = U o 2 cos µ - hr = (20) 2 x cos 5 0,22 = 398,3 m/s 2 Menghitung gaya sentrifugal : F cgy = m x a cy = 150 x 398,3 = N F cgx = m x a cx = 150 x 35,1 = N Menghitung percepatan roda : a tx1, 2 = U 2 o sin µ a = (20) 2 x sin 5 0,42 = 34,4 m/s 2 a tx3, 4 = U 2 o sin µ + b = (20) 2 x sin 5 + 0,78 = 35,6 m/s 2 a ty1, 2 = U 2 o cos µ - Tf/2 = (20) 2 x cos 5 (0,64 : 2) = 398,2 m/s 2 FAKULTAS TEKNIK 33

10 2 a ty3, 4 = U o cos µ + Tr/2 = (20) 2 x cos 5 + (0,62 : 2) = 398,8 m/s 2 Menghitung gaya lateral : Fl 1 = b/2l x F cgy cos µ - F cgx /4 sin µ + 0,5 m uf (a ty1 cos µ + a tx1 sin µ) = 0,78 : (2 x 1,2) x cos 5 (5.265 : 4) sin 5 + 0,5 x 60 (398,2 cos ,4 sin 5) = ,1 N Fl 2 = b/2l x F cgy cos µ + F cgx /4 sin µ + 0,5 m uf (a ty2 cos µ + a tx2 sin µ) = 0,78 : (2 x 1,2) x cos 5 + (5.265 : 4) sin 5 + 0,5 x 60 (398,2 cos ,4 sin 5) = ,4 N Fl 3 = a/2l x F cgy cos µ + F cgx /4 sin µ + 0,5 m ur (a ty3 cos µ + a tx3 sin µ) = 0,42: (2 x 1,2) x cos 5 + (5.265 : 4) sin 5 + 0,5 x 90 (398,8 cos ,6 sin 5) = ,6 N Fl 4 = a/2l x F cgy cos µ - F cgx /4 sin µ + 0,5 m ur (a ty4 cos µ + a tx4 sin µ) = 0,42: (2 x 1,2) x cos 5 (5.265 : 4) sin 5 + 0,5 x 90 (398,8 cos ,6 sin 5) = ,2 N FAKULTAS TEKNIK 34

11 Menghitung percepatan sentrifugal dengan variabel kecepatan U o = 30 km/h dan sudut patokan µ = 5 : a cx = U 2 o sin µ + hr = (30) 2 x sin 5 + 0,22 = 78,6 m/s 2 a cy = U 2 o cos µ - hr = (30) 2 x cos 5 0,22 = 896,4 m/s Menghitung gaya sentrifugal : F cgy = m x a cy = 150 x 896,4 = N F cgx = m x a cx = 150 x 78,6 = N Menghitung percepatan roda : a tx1, 2 = U 2 o sin µ a = (30) 2 x sin 5 0,42 = 78,1 m/s 2 a tx3, 4 = U 2 o sin µ + b FAKULTAS TEKNIK 35

12 = (30) 2 x sin 5 + 0,78 = 79,2 m/s 2 a ty1, 2 = U 2 o cos µ - Tf/2 = (30) 2 x cos 5 (0,64 : 2) = 896,2 m/s 2 2 a ty3, 4 = U o cos µ + Tr/2 = (30) 2 x cos 5 + (0,62 : 2) = 896,8 m/s 2 Menghitung gaya lateral : Fl 1 = b/2l x F cgy cos µ - F cgx /4 sin µ + 0,5 m uf (a ty1 cos µ + a tx1 sin µ) = 0,78: (2 x 1,2) x cos 5 ( : 4) sin 5 + 0,5 x 60 (896,2 cos ,1sin 5) = ,2 N Fl 2 = b/2l x F cgy cos µ + F cgx /4 sin µ + 0,5 m uf (a ty2 cos µ + a tx2 sin µ) = 0,78 : (2 x 1,2) x cos 5 + ( : 4) sin 5 + 0,5 x 60 (896,2 cos ,1sin 5) = N Fl 3 = a/2l x F cgy cos µ + F cgx /4 sin µ + 0,5 m ur (a ty3 cos µ + a tx3 sin µ) = 0,42 : (2 x 1,2) x cos 5 + ( : 4) sin 5 + 0,5 x 90 (896,8 cos ,2 sin 5) = N Fl 4 = a/2l x F cgy cos µ - F cgx /4 sin µ + 0,5 m ur (a ty4 cos µ + a tx4 sin µ) FAKULTAS TEKNIK 36

13 = 0,42 : (2 x 1,2) x cos 5 ( : 4) sin 5 + 0,5 x 90 (896,8 cos ,2 sin 5) = ,2 N 3.6 Perhitungan Untuk Titik Berat Gokart Understeer Dan Oversteer Karakteristik pengendalian dari pengendalian kendaraan tergantung pada hubungan antara sudut slip yang terjadi pada roda depan dan roda belakang. Dari standar geometri, hubungan antara sudut steer pada roda depan (δ f ), radius putar (R), whell base (L), sudut slip roda depan ( f) dan sudut slip roda belakang ( r). Dimana K us adalah konstanta understeer yang harganya dinyatakan dalam radian. Apabila harga K us adalah positif, yang terjadi sudut slip roda depan lebih besar dari sudut slip roda belakang, sudut steer yang dibutuhkan untuk melintasi lintasan yang telah ditentukan bertambah dengan akurat dari kecepatan kendaraan. Kondisi ini disebut dengan kondisi understeer. Untuk kendaraan understeer, ketika dipercepat dengan radius belok yang konstan, pengemudi harus menambah sudut steer. Dengan roda kemudi tetap, radius belok akan bertambah besar. Ketika gaya samping bekerja pada titik pusat massa kendaraan understeer yang berjalan lurus, roda depan akan menghasilkan sudut slip yang lebih besar dari pada roda belakang. Akibatnya, terjadi gerakan yaw dan kendaraan akan berbelok searah dengan gaya samping. Jika harga K us adalah negatif, artinya sudut slip pada roda depan ( f) lebih kecil dari sudut slip roda belakang ( r), sudut steer yang dibutuhkan untuk melintasi lintasan yang diberikan berkurang dengan kondisi ini disebut oversteer. FAKULTAS TEKNIK 37

14 Untuk kendaraan overtseer, ketika dipercepat pada radius putar konstan, pengemudi harus mengurangi sudut steer. Dengan demikian, ketika dipercepat dengan sudut steer yang tetap, radius putar akan berkurang. Jika gaya samping bekarja pada titik pusat massa kendaraan oversteer yang awalnya pada lintasan lurus, roda depan akan menghasilkan sudut slip yang lebih kecil dari yang dihasilkan roda belakang, dan kendaraan akan berbelok menuju arah datangnya gaya samping. Maka dapat diberikan suatu pengertian yaitu understeer adalah perilaku kendaraan yang sulit untuk dibelokan, sedangkan oversteer adalah perilaku kendaraan yang sulit dikendalikan. Sebelum menganalisa dinamika kendaraan lebih lanjut, maka perlu ditentukan terlebih dahulu dimana titik berat dari kendaraan. Untuk menentukan titik berat kendaraan dapat menggunakan sebuah sistem eksperimen yaitu ditimbang dengan asumsi bahwa beban terdistribusi merata. Secara bergantian roda depan dan roda belakang ditimbang seperti gambar berikut : FAKULTAS TEKNIK 38

15 Gambar.3.4 Titik Berat Gokart a b Wr Wf Gambar.3.5 Diagram Benda Bebas Dari penimbangan diatas didapatkan : a) W f = berat kendaraan roda depan b) W r = berat kendaraan roda belakang Dimana L = a + b adalah jarak antara kedua sumbu roda depan dan belakang dan W t = W f + W r merupakan berat total. Dengan menggunakan rumus Σ M = 0, didapat : W r. L = a. W dan a = W r. L / W W r. L = b. W dan b = W r. L / W Untuk menentukan tinggi titik berat kendaraan maka dapat dilakukan dengan cara percobaan. FAKULTAS TEKNIK 39

16 Gambar.3.6 Tinggi Titik Berat Dalam keadaan statis, dengan rumus Σ M A = 0 Σ M A = 0 W. tan θ. H f = W r. L W. a h f =... Tinggi titik berat dari permukaan jalan adalah : H = h f + r Dimana r = jari jari roda Dalam pengukuran Gokart yang telah terjadi dengan pengemudinya, dimana datanya adalah : Massa total ( m ) Massa gandar depan ( mf ) Massa gandar belakang ( mr ) Massa gokart bagian kiri (mki ) : 150 (kg) : 65 (kg) : 85 (kg) : 50 (kg) Massa gokart bagian kanan ( mka ) : 100 (kg) FAKULTAS TEKNIK 40

17 Gambar.3.7 Titik Berat Dari Samping Maka perhitungan jarak titik berat dari poros roda depan, adalah : Lf = m r. L : m = : 150 = 0,696 m Jarak titik berat dari poros roda belakang, adalah : Lr = m f. L : m = : 150 = 0,504 m Jarak titik berat dari sisi kanan, adalah : Lka = m ki. L : m = : 150 = 240 mm Lki = m ka. L : m = : 150 FAKULTAS TEKNIK 41

18 = 480 mm Tinggi titik berat : H = r + f ; dimana hf = (.. ). Sin θ = r/l = 0,11/1,200 = 0,091 θ = 6,01, maka : hf = (.. ). = (.,.,), = 0,24 m H = r + hf = 0,11 + 0,24 = 0,35 m 3.5 Pengujian Perilaku Arah Kendaraan Terhadap Belokan Dalam pengujian ini ada dua bahasan pokok yang dicari yaitu koefisien understeer ( K us ) dan kecepatan karakteristik ( V kh ) untuk kendaraan understeer. Sedangkan unutk kendaraan oversteer, kecepatan kritis ( V kr ) secara nyata tidak dapat diperhitungkan sehingga pada pengujian arah kendaraan dijalan V kr tidak dapat dicari. Untuk mencari kendaraan oversteer serta kecepatan karakteristik suatu kendaraan, maka dilakukan pengujian dengan metode uji lapangan yaitu pengujian dengan radius belok tetap. Konsep dari pengujian ini adalah dengan rumus berikut : δ f = lflr R. 57,3 + K us V2 g.r FAKULTAS TEKNIK 42

19 Keterangan : V = Kecepatan m/s L f = Jarak gandar depan dengan titik berat L r = Jarak gandar belakang dengan titik berat Dimana : δ f = sudut putar kemudi R = radius belok kendaraan Dengan R konstan maka persamaan tersebut akan berupa garis lurus yang menghubungkan δ f dan V2 g.r. dimana pelaksanaan pengujian adalah sebagai berikut: Menentukan radius belok konstanta sebesar 6 m. Membelokkan kendaraan dengan kecepatan tertentu ( V i ). Pertahankan sampai membentuk lingkaran dengan R = 6 m. Catat sudut belok kemudinya (δ f ). Dilakukan berulang-ulang pada R tetap dengan kecepatan bertambah dan sudut kemudinya berubah sampai roda mengalami slip. Dan didapat data sebagai berikut : Tabel 3.1 Data Hasil Pengujian Belok Pada R Tetap V Pengujian I (δ f ) Pengujian II (δ f ) V2 g. R K us -1 K us km/jam = 5,56 m/s 9,5 9,5 0,5-0,90-0,90 25 km/jam = 6,94 m/s 9 8,5 0,89-0,83-0,78 FAKULTAS TEKNIK 43

20 30 km/jam = 8,33 m/s 9 8 1,28-0,80-0,71 35 km/jam = 9,72 m/s 8 7,5 1,67-0,69-0,64 40 km/jam = 11,11 m/s 7,5 7,5 2,06-0,62-0,62 Dengan didapatkan koefisien understeer dari gokart, maka diketahui bahwa perilaku arah dari gokart adalah oversteer. Karena gokart oversteer maka kecepatan karakteristik tidak dapat dihitung. Jika pengujian ini diteruskan sampai gokart berputar slip, maka pada kondisi slip perhitungan koefisien understeer sudah tidak valid lagi, karena secara praktis kendaraan yang dalam kondisi slip pada dasarnya sudah tidak stabil lagi. FAKULTAS TEKNIK 44

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Kemudi Di dalam sebuah sistem kemudi ada dua faktor yang menjadi tujuan dari setiap pengembangan teknologi otomotif yaitu mempermudah pengendalian kendaraan dan meningkatkan

Lebih terperinci

BAB 2 LANDASAN TEORI. Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada

BAB 2 LANDASAN TEORI. Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada BAB 2 LANDASAN TEORI 2.1 Metode Kendali Umpan Maju Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada fenomena berkendara ketika berbelok, dimana dilakukan pemodelan matematika yang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Gokart Gokart merupakan salah satu produk yang sarat dengan teknologi dan perkembangan. Ditnjau dari segi komponen, Gokart mempunyai beragam komponen didalamnya, namun secara

Lebih terperinci

BAB 1 PENDAHULUAN. akan berbelok, maka ada dua skenario atau kejadian yang dikenal sebagai understeer

BAB 1 PENDAHULUAN. akan berbelok, maka ada dua skenario atau kejadian yang dikenal sebagai understeer BAB 1 PENDAHULUAN 1.1 Latar Belakang Masalah Dalam berkendara, ketika kendaraan telah mencapai sebuah tikungan dan akan berbelok, maka ada dua skenario atau kejadian yang dikenal sebagai understeer dan

Lebih terperinci

LAPORAN TUGAS AKHIR ANALISA PERILAKU ARAH SISTEM KEMUDI KENDARAAN GOKART DENGAN MESIN HONDA SUPRA X 110CC

LAPORAN TUGAS AKHIR ANALISA PERILAKU ARAH SISTEM KEMUDI KENDARAAN GOKART DENGAN MESIN HONDA SUPRA X 110CC LAPORAN TUGAS AKHIR ANALISA PERILAKU ARAH SISTEM KEMUDI KENDARAAN GOKART DENGAN MESIN HONDA SUPRA X 110CC Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu

Lebih terperinci

Oleh : Bimo Arindra Hapsara Dosen Pembimbing : Ir. J. Lubi. Proposal Tugas Akhir. Tugas Akhir

Oleh : Bimo Arindra Hapsara Dosen Pembimbing : Ir. J. Lubi. Proposal Tugas Akhir. Tugas Akhir Proposal Tugas Akhir Tugas Akhir Oleh : Bimo Arindra Hapsara 2106 100 047 Dosen Pembimbing : Ir. J. Lubi Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Kecelakaan

Lebih terperinci

Analisis Stabilitas dan Kekuatan Pengait Bak Angkut Kendaraan Multiguna Pedesaan

Analisis Stabilitas dan Kekuatan Pengait Bak Angkut Kendaraan Multiguna Pedesaan JURNAL TEKNIK ITS Vol. 6, No. 2, (27) ISSN: 2337539 (23-927 Print) E4 Analisis Stabilitas dan Kekuatan Pengait Bak Angkut Kendaraan Multiguna Pedesaan Alfian Rafi Harsyawina dan I Nyoman Sutantra Departemen

Lebih terperinci

Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda

Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda E97 Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda Yansen Prayitno dan Unggul Wasiwitono Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember

Lebih terperinci

Seminar Nasional Mesin dan Industri (SNMI4) 2008

Seminar Nasional Mesin dan Industri (SNMI4) 2008 Seminar Nasional Mesin dan Industri (SNMI) ANALISA KINEMATIKA GERAKAN BELOK AKIBAT PENGARUH DYNAMIC CENTRE OF GRAVITY (COG) DAN PANJANG WHEELBASE (L) MENENTUKAN SUDUT SIDE SLIP (Β) DAN HUBUNGANNYA TERHADAP

Lebih terperinci

TUGAS AKHIR JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER S U R A B A Y A 2006

TUGAS AKHIR JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER S U R A B A Y A 2006 TUGAS AKHIR JURUSAN TEKNIK MESIN FAKUTAS TEKNOOGI INDUSTRI INSTITUT TEKNOOGI SEPUUH NOPEMBER S U R A B A Y A 2006 ANAISA PERBANDINGAN KESTABIAN BEOK DAN ARAH KENDARAAN ANTARA DAIHATSU XENIA TYPE 1.3 DEUXE(Xi)

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1 JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1 Analisa Kestabilan Arah pada Kendaraan Formula Sapu Angin Speed Berdasarkan Variasi Posisi Titik Berat, Kecepatan dan Tes Dinamik Student Formula

Lebih terperinci

GERAK MELINGKAR. = S R radian

GERAK MELINGKAR. = S R radian GERAK MELINGKAR. Jika sebuah benda bergerak dengan kelajuan konstan pada suatu lingkaran (disekeliling lingkaran ), maka dikatakan bahwa benda tersebut melakukan gerak melingkar beraturan. Kecepatan pada

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

Rizqi An Naafi Dosen Pembimbing: Ir. J. Lubi

Rizqi An Naafi Dosen Pembimbing: Ir. J. Lubi Analisa Perilaku Arah Mobil GEA pada Jalan Belok Menurun dengan Variasi Kecepatan, Berat Muatan, Sudut Kemiringan Melintang, Sudut Turunan Jalan dan Radius Belok Jalan Rizqi An Naafi 2109 100 035 Dosen

Lebih terperinci

Analisis Stabilitas Arah Mobil Toyota Agya G dengan Variasi Jumlah Penumpang, Kecepatan Belok, Sudut Belok dan Kemiringan Melintang Jalan

Analisis Stabilitas Arah Mobil Toyota Agya G dengan Variasi Jumlah Penumpang, Kecepatan Belok, Sudut Belok dan Kemiringan Melintang Jalan JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2301-9271 A-35 Analisis Stabilitas Arah Mobil Toyota Agya G dengan Variasi Jumlah Penumpang, Kecepatan Belok, Sudut Belok dan Kemiringan Melintang Jalan Faisal

Lebih terperinci

Gerak Melingkar Pendahuluan

Gerak Melingkar Pendahuluan Gerak Melingkar Pendahuluan Gerak roda kendaraan, gerak CD, VCD dan DVD, gerak kendaraan di tikungan yang berbentuk irisan lingkaran, gerak jarum jam, gerak satelit mengitari bumi, dan sebagainya adalah

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. II untuk sumbu x. Perasamaannya dapat dilihat di bawah ini :

BAB IV HASIL DAN PEMBAHASAN. II untuk sumbu x. Perasamaannya dapat dilihat di bawah ini : BAB IV HASIL DAN PEMBAHASAN 4.1 Analisa Perancangan Rem Persamaan umum untuk sistem pengereman menurut Hukum Newton II untuk sumbu x. Perasamaannya dapat dilihat di bawah ini : F = m. a Frem- F x = m.

Lebih terperinci

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD 1 PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD Bagus Kusuma Ruswandiri, dan I Nyoman Sutantra Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

Analisis dan Pengujian Stabilitas Saat Kondisi Berbelok pada Kendaraan Bermotor Roda Tiga sebagai Alat Bantu Transportasi bagi Penyandang Disabilitas

Analisis dan Pengujian Stabilitas Saat Kondisi Berbelok pada Kendaraan Bermotor Roda Tiga sebagai Alat Bantu Transportasi bagi Penyandang Disabilitas Analisis dan Pengujian Stabilitas Saat Kondisi Berbelok pada Kendaraan Bermotor Roda Tiga sebagai Alat Bantu Transportasi bagi Penyandang Disabilitas Agus Setiawan 1, Wahyudi 2, Dhika Aditya P. 3 1 Program

Lebih terperinci

Analisa Kinematik secara spatial untuk Rack and pinion pada Kendaraan hybrid roda 3 Sapujagad 2

Analisa Kinematik secara spatial untuk Rack and pinion pada Kendaraan hybrid roda 3 Sapujagad 2 Analisa Kinematik secara spatial untuk Rack and pinion pada Kendaraan hybrid roda 3 Sapujagad 2 Oleh : Fachri Nugrahasyah Putra Nrp : 2108100107 Dosen Pembimbing : Dr. Unggul Wasiwitono, ST, M.Eng Keamanan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI Suatu sistem penggerak yang terdapat dalam sebuah mobil tidak lepas dari peranan motor penggerak dan transmisi sebagai penghantar putaran dari motor penggerak sehingga mobil

Lebih terperinci

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika 25 BAB 3 DINAMIKA Tujuan Pembelajaran 1. Menerapkan Hukum I Newton untuk menganalisis gaya pada benda diam 2. Menerapkan Hukum II Newton untuk menganalisis gaya dan percepatan benda 3. Menentukan pasangan

Lebih terperinci

BAB IV HASIL & PEMBAHASAN. 4.1 Hasil Perancangan Komponen Utama & Komponen Pendukung Pada

BAB IV HASIL & PEMBAHASAN. 4.1 Hasil Perancangan Komponen Utama & Komponen Pendukung Pada BAB IV HASIL & PEMBAHASAN 4.1 Hasil Perancangan Komponen Utama & Komponen Pendukung Pada Rangka Gokart Kendaraan Gokart terdiri atas beberapa komponen pembentuk baik komponen utama maupun komponen tambahan.

Lebih terperinci

SIMULASI PENGENDALIAN SUDUT KEMIRINGAN BELOK SEPEDA MOTOR MELALUI PENAMBAHAN KOMPONEN GYROSCOPIC

SIMULASI PENGENDALIAN SUDUT KEMIRINGAN BELOK SEPEDA MOTOR MELALUI PENAMBAHAN KOMPONEN GYROSCOPIC SIMULASI PENGENDALIAN SUDUT KEMIRINGAN BELOK SEPEDA MOTOR MELALUI PENAMBAHAN KOMPONEN GYROSCOPIC I Ketut Adi Atmika, I DG Ary Subagia Jurusan Teknik Mesin, Fakultas Teknik, Universitas Udayana E-mail :

Lebih terperinci

Soal Pembahasan Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal

Soal Pembahasan Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal Soal Dinamika Gerak Fisika Kelas XI SMA Rumus Rumus Minimal Hukum Newton I Σ F = 0 benda diam atau benda bergerak dengan kecepatan konstan / tetap atau percepatan gerak benda nol atau benda bergerak lurus

Lebih terperinci

Analisa Sudut Belok Roda Belakang Sebagai Fungsi Sudut Belok Roda Depan dan Kecepatan pada Kendaraan Mini 4WS

Analisa Sudut Belok Roda Belakang Sebagai Fungsi Sudut Belok Roda Depan dan Kecepatan pada Kendaraan Mini 4WS Analisa Sudut Belok Roda Belakang Sebagai Fungsi Sudut Belok Roda Depan dan Kecepatan pada Kendaraan Mini 4WS Yunarko Triwinarno Dosen Fakultas Teknologi Industri, Jurusan Teknik Mesin - Institut Teknologi

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

ANALISA DYNAMIC OF HANDLING KENDARAAN REVERSE TRIKE DITINJAU DARI PERGESERAN CENTRE OF GRAVITY (CG) SKRIPSI

ANALISA DYNAMIC OF HANDLING KENDARAAN REVERSE TRIKE DITINJAU DARI PERGESERAN CENTRE OF GRAVITY (CG) SKRIPSI ANALISA DYNAMIC OF HANDLING KENDARAAN REVERSE TRIKE DITINJAU DARI PERGESERAN CENTRE OF GRAVITY (CG) SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar SarjanaTeknik Oleh: BHANU PUTRA BUMI

Lebih terperinci

GERAK MELINGKAR BERATURAN

GERAK MELINGKAR BERATURAN Pengertian Gerak melingkar GERAK MELINGKAR BERATURAN Gerak melingkar beraturan adalah gerak yang lintasannya berbentuk lingkaran dengan laju konstan dan arah kecepatan tegak lurus terhadap arah percepatan.

Lebih terperinci

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel).

BAB IV DINAMIKA PARTIKEL. A. STANDAR KOMPETENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). BAB IV DINAMIKA PARIKEL A. SANDAR KOMPEENSI : 3. Mendeskripsikan gejala alam dalam cakupan mekanika klasik sistem diskret (partikel). B. KOMPEENSI DASAR : 1. Menjelaskan Hukum Newton sebagai konsep dasar

Lebih terperinci

Jurnal Jurusan Pendidikan Teknik Mesin (JJPTM) Vol: 8 No: 2 Tahun: 2017

Jurnal Jurusan Pendidikan Teknik Mesin (JJPTM) Vol: 8 No: 2 Tahun: 2017 Analisis Stabilitas Belok Rancangan Kendaraan Ganesha Sakti (Gaski) Berpenggerak Differential Motor Brushless DC Menggunakan Metode Kalkulasi Quasi Dinamik Berbasis Software Microsoft Visual Studio C#

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

JURNAL TEKNIK ITS Vol. 5, No.21, (2016) ISSN: E103

JURNAL TEKNIK ITS Vol. 5, No.21, (2016) ISSN: E103 JURNA TEKNIK ITS Vol. 5, No.1, (016) ISSN: 301-971 E103 Analisis Pengaruh Parameter Operasional dan Penggunaan Stabilizer terhadap Perilaku Arah Belok Mobil Toyota Fortuner 4.0 V6 SR (AT 4X4) Deva Andriansyah

Lebih terperinci

PARAMETER SUDUT BELOK RODA PADA KENDARAAN DENGAN SISTEM KEMUDI EMPAT RODA

PARAMETER SUDUT BELOK RODA PADA KENDARAAN DENGAN SISTEM KEMUDI EMPAT RODA 209 PARAMETER SUDUT BELOK RODA PADA KENDARAAN DENGAN SISTEM KEMUDI EMPAT RODA Wibowo 1 1 Staf Pengajar Jurusan Teknik Mesin Universitas Sebelas Maret Keywords : Two wheel steering Four wheel steering Steer

Lebih terperinci

Seminar Nasional Mesin dan Industri (SNMI4) 2008 PENENTUAN REGION SKID-NON SKID (2WS) TYPE MODEL KENDARAAN REAR WHEEL DRIVE (RWD)

Seminar Nasional Mesin dan Industri (SNMI4) 2008 PENENTUAN REGION SKID-NON SKID (2WS) TYPE MODEL KENDARAAN REAR WHEEL DRIVE (RWD) PENENTUAN REGION SKID-NON SKID (2WS) TYPE MODEL KENDARAAN REAR WHEEL DRIVE (RWD) Ian Hardianto Siahaan dan Willyanto Anggono Jurusan Teknik Mesin Fakultas Teknologi Industri Universitas Kristen Petra Laboratorium

Lebih terperinci

Analisa Kinematik Secara Spatial Untuk Rack and Pinion pada Kendaraan Hybrid Roda Tiga Sapujagad 2

Analisa Kinematik Secara Spatial Untuk Rack and Pinion pada Kendaraan Hybrid Roda Tiga Sapujagad 2 JURNAL TEKNIK POMITS Vol. 1, No. 2, (214) ISSN: 231-9271 1 Analisa Kinematik Secara Spatial Untuk Rack and Pinion pada Kendaraan Hybrid Roda Tiga Sapujagad 2 Fachri Nugrahasyah Putra dan Unggul Wasiwitono

Lebih terperinci

ANALISA GAYA PADA SISTEM KEMUDI TYPE RECIRCULATING BALL

ANALISA GAYA PADA SISTEM KEMUDI TYPE RECIRCULATING BALL ANALISA GAYA PADA SISTEM KEMUDI TYPE RECIRCULATING BALL PUBLIKASI ILMIAH Disusun sebagai salah satu syarat menyelesaikan program studi Strata 1 pada Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah

Lebih terperinci

Kata kunci: understeer, oversteer.

Kata kunci: understeer, oversteer. 1 ANALISA PERILAKU ARAH MOBIL GEA PADA LINTASAN BELOK MENURUN DENGAN VARIASI KECEPATAN, BERAT MUATAN, SUDUT KEMIRINGAN MELINTANG, SUDUT TURUNAN JALAN DAN RADIUS BELOK JALAN Rizqi An Naafi dan J. Lubi Jurusan

Lebih terperinci

Analisis Pengaruh Parameter Operasional Terhadap Perilaku Belok dan Stabilitas Pada Panser Anoa 6X6 APC

Analisis Pengaruh Parameter Operasional Terhadap Perilaku Belok dan Stabilitas Pada Panser Anoa 6X6 APC JURNAL TEKNIK ITS Vol. 6, No. (7), 337-3 (-98X Print) E8 Analisis Pengaruh Parameter Operasional Terhadap Perilaku Belok dan Stabilitas Pada Panser Anoa 6X6 APC Sanditra Muda Yusviva dan I Nyoman Sutantra

Lebih terperinci

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD

PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD PERENCANAAN LAYOUT DAN ANALISIS STABILITAS PADA KENDARAAN HYBRID RODA TIGA HYVI SAPUJAGAD Oleh: Bagus Kusuma Ruswandiri 2108100120 Dosen Pembimbing: Prof. Ir. I Nyoman Sutantra, M.Sc., Ph.D. Latar Belakang

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perencanaan Proses perencanaan mesin pembuat es krim dari awal sampai akhir ditunjukan seperti Gambar 3.1. Mulai Studi Literatur Gambar Sketsa Perhitungan

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

PEMBAHASAN SOAL UJIAN NASIONAL SMA MATA PELAJARAN FISIKA TAHUN 2016/2017

PEMBAHASAN SOAL UJIAN NASIONAL SMA MATA PELAJARAN FISIKA TAHUN 2016/2017 PEMBAHASAN SOAL UJIAN NASIONAL SMA MATA PELAJARAN FISIKA TAHUN 016/017 1. Dua buah pelat besi diukur dengan menggunakan jangka sorong, hasilnya digambarkan sebagai berikut: Selisih tebal kedua pelat besi

Lebih terperinci

ANALISIS KESTABILAN KENDARAAN MINI TRUCK SANG SURYA PADA SAAT MEMBELOK

ANALISIS KESTABILAN KENDARAAN MINI TRUCK SANG SURYA PADA SAAT MEMBELOK NASKAH PUBLIKASI KARYA ILMIAH ANALISIS KESTABILAN KENDARAAN MINI TRUCK SANG SURYA PADA SAAT MEMBELOK Disusun Untuk Memenuhi Sebagai Persyaratan Memperoleh Derajat Sarjana S1 pada Jurusan Teknik Mesin Fakultas

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

Analisis Pengaruh Parameter Operasional Terhadap Perilaku Belok dan Stabilitas Pada Panser Anoa 6X6 APC

Analisis Pengaruh Parameter Operasional Terhadap Perilaku Belok dan Stabilitas Pada Panser Anoa 6X6 APC JURNAL TEKNIK ITS Vol. 6, No., (7) ISSN: 337-3539 (3-97 Print) E-3 Analisis Pengaruh Parameter Operasional Terhadap Perilaku Belok dan Stabilitas Pada Panser Anoa 6X6 APC Sanditra Muda Yusviva dan I Nyoman

Lebih terperinci

Antiremed Kelas 10 FISIKA

Antiremed Kelas 10 FISIKA Antiremed Kelas 0 FISIKA Dinamika, Partikel, dan Hukum Newton Doc Name : K3AR0FIS040 Version : 04-09 halaman 0. Gaya (F) sebesar N bekerja pada sebuah benda massanya m menyebabkan percepatan m sebesar

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY. Perhitungan Kekuatan Rangka. Menghitung Element Mesin Baut.

BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY. Perhitungan Kekuatan Rangka. Menghitung Element Mesin Baut. BAB III PERENCANAAN DAN PERHITUNGAN DESAIN RANGKA DAN BODY.1 Diagram Alir Proses Perancangan Data proses perancangan kendaraan hemat bahan bakar seperti terlihat pada diagram alir berikut ini : Mulai Perhitungan

Lebih terperinci

Analisa Perilaku Gerak Belok Mobil Listrik ITS 1

Analisa Perilaku Gerak Belok Mobil Listrik ITS 1 JURNAL TEKNIK POMITS Vol. 1, No. 2, (212) ISSN: 231-9271 1 Analisa Perilaku Gerak Belok Mobil Listrik ITS 1 Pradana Setia B.L dan Unggul Wasiwitono Jurusan Teknik Mesin ITS, Fakultas Teknologi Industri,

Lebih terperinci

Analisa dynamics of handling kendaraan reverse trike ditinjau dari pergeseran centre of gravity (cg)

Analisa dynamics of handling kendaraan reverse trike ditinjau dari pergeseran centre of gravity (cg) Analisa dynamics of handling kendaraan reverse trike ditinjau dari pergeseran centre of gravity (cg) Bhanu Putra Bumi 1, Wibowo 2, R. Lulus Lambang G Hidayat 2 1 Program Sarjana Teknik Mesin, FakultasTeknik,

Lebih terperinci

BAB II - Keseimbangan di bawah Pengaruh Gaya-gaya yang Berpotongan

BAB II - Keseimbangan di bawah Pengaruh Gaya-gaya yang Berpotongan BAB II - Keseimbangan di bawah Pengaruh Gaya-gaya yang Berpotongan Soal 2-11 Perhatikan gambar 2-9 diketahui berat beban adalah 600N tentukanlah T 1 &? T 1 gambar 2-9 600N Diketahui : = 600N Jawab y y

Lebih terperinci

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak?????

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak????? DINAMIKA PARTIKEL GAYA Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain Macam-macam gaya : a. Gaya kontak gaya normal, gaya gesek, gaya tegang tali, gaya

Lebih terperinci

BAB 1 BAB II PEMBAHASAN

BAB 1 BAB II PEMBAHASAN BAB 1 I. PENDAHULUAN I.1 LATAR BELAKANG Pesawat sederhana adalah segala jenis perangkat yang hanya membutuhkan satu gaya untuk bekerja. Kerja terjadi sewaktu gaya diberikan dan menyebabkan gerakan sepanjang

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN 1 2 SASARAN PEMBELAJARAN Mahasiswa mampu menyelesaikan persoalan gerak partikel melalui konsep gaya. 3 DINAMIKA Dinamika adalah cabang dari mekanika yang mempelajari gerak benda ditinjau dari penyebabnya.

Lebih terperinci

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik. gaya yang muncul ketika BENDA BERSENTUHAN dengan PERMUKAAN KASAR. ARAH GAYA GESEK selalu BERLAWANAN dengan ARAH GERAK BENDA. gaya gravitasi/gaya berat gaya normal GAYA GESEK Jenis Gaya gaya gesek gaya

Lebih terperinci

MENERAPKAN HUKUM GERAK DAN GAYA

MENERAPKAN HUKUM GERAK DAN GAYA MENERAPKAN HUKUM GERAK DAN GAYA Menguasai Hukum Neton MUH. ARAFAH, S.Pd. e-mail: muh.arafahsidrap@gmail.com ebsite://arafahtgb.ordpress.com HUKUM-HUKUM GERAK GERAK + GAYA DINAMIKA GAYA ADALAH SESUATU YANG

Lebih terperinci

Fisika Dasar I (FI-321) Gaya dan Hukum Gaya Massa dan Inersia Hukum Gerak Dinamika Gerak Melingkar

Fisika Dasar I (FI-321) Gaya dan Hukum Gaya Massa dan Inersia Hukum Gerak Dinamika Gerak Melingkar Fisika Dasar I (FI-321) Topik hari ini (minggu 4) Dinamika Gaya dan Hukum Gaya Massa dan Inersia Hukum Gerak Dinamika Gerak Melingkar Dinamika Mempelajari pengaruh lingkungan terhadap keadaan gerak suatu

Lebih terperinci

ANALISIS STABILITAS ARAH MOBIL TOYOTA AGYA G DENGAN VARIASI JUMLAH PENUMPANG, KECEPATAN BELOK, SUDUT BELOK DAN KEMIRINGAN MELINTANG JALAN

ANALISIS STABILITAS ARAH MOBIL TOYOTA AGYA G DENGAN VARIASI JUMLAH PENUMPANG, KECEPATAN BELOK, SUDUT BELOK DAN KEMIRINGAN MELINTANG JALAN TUGAS AKHIR TM 141585 ANALISIS STABILITAS ARAH MOBIL TOYOTA AGYA G DENGAN VARIASI JUMLAH PENUMPANG, KECEPATAN BELOK, SUDUT BELOK DAN KEMIRINGAN MELINTANG JALAN Faisal Rahman 2111 100 113 Dosen Pembimbing

Lebih terperinci

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L)

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L) Dinamika Rotasi adalah kajian fisika yang mempelajari tentang gerak rotasi sekaligus mempelajari penyebabnya. Momen gaya adalah besaran yang menyebabkan benda berotasi DINAMIKA ROTASI momen inersia adalah

Lebih terperinci

1. Tujuan 1. Mempelajari hukum Newton. 2. Menentukan momen inersia katrol pesawat Atwood.

1. Tujuan 1. Mempelajari hukum Newton. 2. Menentukan momen inersia katrol pesawat Atwood. 1. Translasi dan rotasi 1. Tujuan 1. Mempelajari hukum Newton. 2. Menentukan momen inersia katrol pesawat Atwood. 2. Alat dan ahan Kereta dinamika : 1. Kereta dinamika 1 buah 2. eban tambahan @ 200 gram

Lebih terperinci

Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol

Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol HUKUM I NEWTON Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol ΣF = 0 maka benda tersebut : - Jika dalam keadaan diam akan tetap diam, atau - Jika dalam keadaan bergerak lurus

Lebih terperinci

dapat ditunjukkan pada gambar berikut ini. Tan δ 2 = a/r + s (2.2)

dapat ditunjukkan pada gambar berikut ini. Tan δ 2 = a/r + s (2.2) PROYEK KENDARAAN LISTRIK BERTENAGA BANTU SEL SURYA ( KLBS G-1 ) SUB JUDUL SISTEM KEMUDI ELEKTRIK TIPE ACKERMANN PADA KENDARAAN LISTRIK BERTENAGA BANTU SEL SURYA Gita Pramana*, EndraPitowarno** *Mahasiswa

Lebih terperinci

Analisa Perilaku Arah Kendaraan dengan Variasi Posisi Titik Berat, Sudut Belok dan Kecepatan Pada Mobil Formula Sapuangin Speed 3

Analisa Perilaku Arah Kendaraan dengan Variasi Posisi Titik Berat, Sudut Belok dan Kecepatan Pada Mobil Formula Sapuangin Speed 3 JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: 2337-3539 (2301-9271 Print) F-301 Analisa Perilaku Arah Kendaraan dengan Variasi Posisi Titik Berat, Sudut Belok dan Kecepatan Pada Mobil Formula Sapuangin

Lebih terperinci

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi)

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi) Gerak Rotasi Momen Inersia Terdapat perbedaan yang penting antara masa inersia dan momen inersia Massa inersia adalah ukuran kemalasan suatu benda untuk mengubah keadaan gerak translasi nya (karena pengaruh

Lebih terperinci

PHYSICS SUMMIT 2 nd 2014

PHYSICS SUMMIT 2 nd 2014 KETENTUAN UMUM 1. Periksa terlebih dahulu bahwa jumlah soal Saudara terdiri dari 8 (tujuh) buah soal 2. Waktu total untuk mengerjakan tes ini adalah 3 jam atau 180 menit 3. Peserta diperbolehkan menggunakan

Lebih terperinci

BAHAN AJAR ANDI RESKI_15B08049_KELAS C PPS UNM

BAHAN AJAR ANDI RESKI_15B08049_KELAS C PPS UNM Dalam kehidupan sehari-hari kita sering menemui benda-benda yang bergerak melingkar beraturan misalnya: gerak bianglala, gerak jarum jam, gerak roda sepeda/motor/mobil, gerak baling-baling kipas angin,

Lebih terperinci

UNIVERSITAS BINA NUSANTARA. Program Ganda Teknik Informatika Matematika Skripsi Sarjana Program Ganda Semester Genap 2007 / 2008

UNIVERSITAS BINA NUSANTARA. Program Ganda Teknik Informatika Matematika Skripsi Sarjana Program Ganda Semester Genap 2007 / 2008 UNIVERSITAS BINA NUSANTARA Program Ganda Teknik Informatika Matematika Skripsi Sarjana Program Ganda Semester Genap 2007 / 2008 Perancangan Program Aplikasi Optimalisasi Sudut Kendaraan Roda Empat Menggunakan

Lebih terperinci

Pilihlah jawaban yang paling benar!

Pilihlah jawaban yang paling benar! Pilihlah jawaban yang paling benar! 1. Besarnya momentum yang dimiliki oleh suatu benda dipengaruhi oleh... A. Bentuk benda B. Massa benda C. Luas penampang benda D. Tinggi benda E. Volume benda. Sebuah

Lebih terperinci

Gaya Lorentz. 1. Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai penyelesaian masalah dan produk teknologi

Gaya Lorentz. 1. Menerapkan konsep kelistrikan dan kemagnetan dalam berbagai penyelesaian masalah dan produk teknologi ruang / daerah di sekitar magnet dimana benda-benda magnetik yang diletakkan di daerah ini masih dipengaruhi oleh magnet tersebut medan magnetik di sekitar kawat lurus berarus listrik medan magnetik di

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik.

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. Kompetensi Dasar Menganalisis besaran fisika pada gerak dengan kecepatan dan percepatan konstan.

Lebih terperinci

GERAK MELINGKAR B A B

GERAK MELINGKAR B A B Gerak Melingkar 97 B B 5 GEK MELINGK Pernahkah kalian naik roda putar atau roler coaster? Saat kalian naik atau melihatnya tentu berfikir pada saat roler coaster di posisi atas geraknya terbalik, mengapa

Lebih terperinci

Dinamika Rotasi 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar.

Dinamika Rotasi 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar. 1. Dua bola bermassa m 1 = 2 kg dan m 2 = 3 kg dihubungkan dengan batang ringan tak bermassa seperti pada gambar. 3. Perhatikan gambar berikut. Jika sistem bola diputar pada sumbu di titik a, maka besar

Lebih terperinci

Abdul Halim Dosen Pembimbing Dr. Trihastuti Agustinah, ST., MT

Abdul Halim Dosen Pembimbing Dr. Trihastuti Agustinah, ST., MT Abdul Halim 22 05 053 Dosen Pembimbing Dr. Trihastuti Agustinah, ST., T JURUSAN TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 203 PENDAHULUAN PERANCANGAN HASIL

Lebih terperinci

Jawab : m.a = m.g sin 37 o s m.g cos 37 o. = g sin 37 o s g cos 37 o. 0 = g sin 37 o s g cos 37 o. g sin 37 o. = s g cos 37 o. s = DYNAMICS MOTION

Jawab : m.a = m.g sin 37 o s m.g cos 37 o. = g sin 37 o s g cos 37 o. 0 = g sin 37 o s g cos 37 o. g sin 37 o. = s g cos 37 o. s = DYNAMICS MOTION DYNAMICS MOTION 1) Sebuah balok bermassa m = 50 kg bergerak turun dengan kecepatan konstan 20 m/s pada bidang kemiringan 37 o terhadap horisontal. a) Gambarkan diagram gaya pada balok. b) Tentukan koefisien

Lebih terperinci

BAB I PENDAHULUAN. seiring dengan perkembangan serta kemajuan di bidang industri terutama dalam

BAB I PENDAHULUAN. seiring dengan perkembangan serta kemajuan di bidang industri terutama dalam BAB I PENDAHULUAN 1.1 Latar Belakang Gokart saat ini sangat berkembang dalam ilmu pengetahuan dan teknologi, seiring dengan perkembangan serta kemajuan di bidang industri terutama dalam bidang otomotif.

Lebih terperinci

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. Dinamika Page 1/11 Gaya Termasuk Vektor DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya. GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan

Lebih terperinci

ULANGAN UMUM SEMESTER 1

ULANGAN UMUM SEMESTER 1 ULANGAN UMUM SEMESTER A. Berilah tanda silang (x) pada huruf a, b, c, d atau e di depan jawaban yang benar!. Kesalahan instrumen yang disebabkan oleh gerak brown digolongkan sebagai... a. kesalahan relatif

Lebih terperinci

PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK

PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK Jurnal Elemen Volume 4 Nomor 1, Juni 2017 ISSN : 2442-4471 PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK Kurnia Dwi Artika 1, Rusuminto Syahyuniar 2, Nanda Priono 3 1),2) Staf Pengajar Jurusan Mesin

Lebih terperinci

GMBB. SMA.GEC.Novsupriyanto93.wordpress.com Page 1

GMBB. SMA.GEC.Novsupriyanto93.wordpress.com Page 1 1. Sebuah benda bermassa 1 kg berputar dengan kecepatan sudut 120 rpm. Jika jari-jari putaran benda adalah 2 meter percepatan sentripetal gerak benda tersebut adalah a. 32π 2 m/s 2 b. 42 π 2 m/s 2 c. 52π

Lebih terperinci

Jawaban Soal OSK FISIKA 2014

Jawaban Soal OSK FISIKA 2014 Jawaban Soal OSK FISIKA 4. Sebuah benda bergerak sepanjang sumbu x dimana posisinya sebagai fungsi dari waktu dapat dinyatakan dengan kurva seperti terlihat pada gambar samping (x dalam meter dan t dalam

Lebih terperinci

Hak Cipta Dilindungi Undang-undang SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT KABUPATEN / KOTA FISIKA.

Hak Cipta Dilindungi Undang-undang SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT KABUPATEN / KOTA FISIKA. SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 6 TINGKAT KABUPATEN / KOTA FISIKA Waktu : 3 jam KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN DIREKTORAT JENDERAL PENDIDIKAN MENENGAH DIREKTORAT PEMBINAAN

Lebih terperinci

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN Kumpulan Soal Latihan UN UNIT MEKANIKA Pengukuran, Besaran & Vektor 1. Besaran yang dimensinya ML -1 T -2 adalah... A. Gaya B. Tekanan C. Energi D. Momentum E. Percepatan 2. Besar tetapan Planck adalah

Lebih terperinci

ANALISA KINERJA SUDUT KEMUDI PADA KENDARAAN DUNE BUGGY POLITEKNIK NEGERI BATAM ABSTRAK ABSTRACT

ANALISA KINERJA SUDUT KEMUDI PADA KENDARAAN DUNE BUGGY POLITEKNIK NEGERI BATAM ABSTRAK ABSTRACT ANALISA KINERJA SUDUT KEMUDI PADA KENDARAAN DUNE BUGGY POLITEKNIK NEGERI BATAM Koko Suharyanto, Wowo Rossbandrio*, Fedia Restu Program Studi Teknik Mesin, Teknik Mesin Politeknik Negeri Batam *rossbandrio@yahoo.com

Lebih terperinci

Fisika Dasar I (FI-321) Gaya dan Hukum Gaya Massa dan Inersia Hukum Gerak Dinamika Gerak Melingkar

Fisika Dasar I (FI-321) Gaya dan Hukum Gaya Massa dan Inersia Hukum Gerak Dinamika Gerak Melingkar Fisika Dasar I (FI-31) Topik hari ini (minggu 4) Dinamika Gaya dan Hukum Gaya Massa dan Inersia Hukum Gerak Dinamika Gerak Melingkar Dinamika Mempelajari pengaruh lingkungan terhadap keadaan gerak suatu

Lebih terperinci

SIMULASI DAN ANALISA HANDLING PERFORMANCE PADA KENDARAAN SEDAN DENGAN MENGGUNAKAN SOFTWARE CARSIMED 4.51

SIMULASI DAN ANALISA HANDLING PERFORMANCE PADA KENDARAAN SEDAN DENGAN MENGGUNAKAN SOFTWARE CARSIMED 4.51 TUGAS SARJANA SIMULASI DAN ANALISA HANDLING PERFORMANCE PADA KENDARAAN SEDAN DENGAN MENGGUNAKAN SOFTWARE CARSIMED 4.51 Diajukan sebagai salah satu tugas dan syarat untuk memperoleh gelar Sarjana (S-1)

Lebih terperinci

Oleh : Michael.P.O.F Manalu NRP : Dosen Pembimbing : Dr Unggul Wasiwitono, ST, M.Eng

Oleh : Michael.P.O.F Manalu NRP : Dosen Pembimbing : Dr Unggul Wasiwitono, ST, M.Eng Oleh : Michael.P.O.F Manalu NRP : 2108 100 037 Dosen Pembimbing : Dr Unggul Wasiwitono, ST, M.Eng SAFETY COMFORT SAFETY PLANAR GERAK BELOK ACKERMAN ANALISA KINEMATIK PADA SISTEM KEMUDI FAKTA SPATIAL Analisa

Lebih terperinci

1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar.

1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar. 1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar. Berdasar gambar diatas, diketahui: 1) percepatan benda nol 2) benda bergerak lurus beraturan 3) benda dalam keadaan diam 4) benda akan bergerak

Lebih terperinci

PERANCANGAN INTERFACING DAN SOFTWARE PEMBACAAN DATA MEKANISME UJI KARAKTERISTIK SISTEM KEMUDI

PERANCANGAN INTERFACING DAN SOFTWARE PEMBACAAN DATA MEKANISME UJI KARAKTERISTIK SISTEM KEMUDI PERANCANGAN INTERFACING DAN SOFTWARE PEMBACAAN DATA MEKANISME UJI KARAKTERISTIK SISTEM KEMUDI O L E H : A R I S Y U D H A S E T I A W A N D O S E N P E M B I M B I N G : D R. E N G. U N G G U L W A S I

Lebih terperinci

Hukum Coulomb. Penyelesaian: Kedua muatan dan gambar gaya yang bekerja seperti berikut. (a) F = k = = 2, N. (b) q = Ne N = = 3,

Hukum Coulomb. Penyelesaian: Kedua muatan dan gambar gaya yang bekerja seperti berikut. (a) F = k = = 2, N. (b) q = Ne N = = 3, Hukum Coulomb Dua muatan titik masing-masing sebesar 0,05 μc dipisahkan pada jarak 10 cm. Tentukan (a) besarnya gaya yang dilakukan oleh satu muatan pada muatan lainnya dan (b) Jumlah satuan muatan dasar

Lebih terperinci

BAB III PERANCANGAN LAPORAN TUGAS AKHIR. 3.1 Rangkaian Rem. Desain alat yang digunakan pada rangkaian rem merupakan desain alat

BAB III PERANCANGAN LAPORAN TUGAS AKHIR. 3.1 Rangkaian Rem. Desain alat yang digunakan pada rangkaian rem merupakan desain alat BAB III PERANCANGAN 3.1 Rangkaian Rem Desain alat yang digunakan pada rangkaian rem merupakan desain alat yang cukup sederhana. Rangkaian rem ini dibuat untuk mengetahui analisis tekanan hidrolik pada

Lebih terperinci

Surya Hadi Putranto

Surya Hadi Putranto TUGAS AKHIR Rancang Bangun Speed Bump dan Analisa Respon Speed Bump Terhadap Kecepatan Kendaraan Dosen Pembimbing : Ir. Abdul Aziz Achmad Surya Hadi Putranto 2105100163 Latar Belakang Dalam kehidupan sehari-hari,

Lebih terperinci

BAB II DASAR TEORI. yang menggerakan roda telah dibebaskan oleh kopling. Agar kendaraan bias. dan dengan jarak yang seminim mungkin.

BAB II DASAR TEORI. yang menggerakan roda telah dibebaskan oleh kopling. Agar kendaraan bias. dan dengan jarak yang seminim mungkin. BAB II DASAR TEORI 2.1 REM 2.1.1 Fungsi Rem Pada saat kendaraan mulai meluncur di jalanan, maka kelajuan akan tetap ada pada kendaraan itu walaupun mesin sudah dimatikan atau permindahan tenaga yang menggerakan

Lebih terperinci

ΣF r. konstan. 4. Dinamika Partikel. z Hukum Newton. Hukum Newton I (Kelembaman/inersia)

ΣF r. konstan. 4. Dinamika Partikel. z Hukum Newton. Hukum Newton I (Kelembaman/inersia) 4. Dinamika Partikel 9/17/2012 5.1 Hukum Newton Hukum Newton I (Kelembaman/inersia) a = 0 v = konstan ΣF r = 0 ΣF x ΣF y = 0 = 0 Setiap benda tetap berada dalam keadaan diam atau bergerak dengan laju tetap

Lebih terperinci

Setelah mengikuti pelajaran ini peserta dapat mengetahui fungsi wheel alignment.

Setelah mengikuti pelajaran ini peserta dapat mengetahui fungsi wheel alignment. CHASIS WHEEL ALIGNMENT Tujuan Instruksional Umum : Setelah mengikuti pelajaran ini peserta dapat mengetahui fungsi wheel alignment. Tujuan Instruksional Khusus : 1. Peserta dapat menyebutkan definisi,

Lebih terperinci

Bab 6 Momentum Sudut dan Rotasi Benda Tegar

Bab 6 Momentum Sudut dan Rotasi Benda Tegar Bab 6 Momentum Sudut dan Rotasi Benda Tegar A. Torsi 1. Pengertian Torsi Torsi atau momen gaya, hasil perkalian antara gaya dengan lengan gaya. r F Keterangan: = torsi (Nm) r = lengan gaya (m) F = gaya

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

RANCANG BANGUN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK GARUDA UNESA

RANCANG BANGUN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK GARUDA UNESA RANCANG BANGUN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK GARUDA UNESA Agus Suyono D3 Teknik Mesin, Fakultas Teknik, Universitas Negeri Surabaya E-mail: katanaaugust@yahoo.com I Made Arsana D3 Teknik Mesin,

Lebih terperinci

DINAMIKA ROTASI DAN KESETIMBANGAN

DINAMIKA ROTASI DAN KESETIMBANGAN FIS A. BENDA TEGAR Benda tegar adalah benda yang tidak mengalami perubahan bentuk dan volume selama bergerak. Benda tegar dapat mengalami dua macam gerakan, yaitu translasi dan rotasi. Gerak translasi

Lebih terperinci