BAB II TINJAUAN PUSTAKA. memisahkan serabut dan biji sawit yang berasal dari ampas press yang telah

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA. memisahkan serabut dan biji sawit yang berasal dari ampas press yang telah"

Transkripsi

1 BAB II TINJAUAN PUSTAKA Dipericarper fan merupakan salah satu mesin yang berada dalam Pabrik Kelapa Sawit yang berfungsi sebagai penyedia udara yang akan digunakan untuk memisahkan serabut dan biji sawit yang berasal dari ampas press yang telah dicacah sebelumnya di cake breaker conveyor (CBC), Serabut yang telah dipisahkan merupakan bahan bakar utama untuk pembangkitan listrik dan pembangkitan uap di PKS, selain cangkang yang berasal dari pengolahan biji. Dimana Poros merupakan salah satu bagian terpenting dalam setiap mesin yang termasuk Depericarper fan yang berfungsi untuk meneruskan daya dan putaran. Poros biasanya berpenampang bulat, dimana terpasang elemen-elemen seperti roda gigi, pulley, roda gila (flywheel), engkol, sproket, v-belt dan elemen pemindah daya lainnya. Sehingga getaran yang terjadi pada poros juga perlu diperhatikan, sehingga tidak merusak elemen mesin lain yang lebih sensitif. Poros biasanya mengalami getaran resonansi dengan elemen mesin lain, di karena kan memiliki frekuensi pribadi yang sama. Untuk itu perlu dilakukan pemisahan getaran resonansi terhadap getaran poros dimana dalam hal ini dapat dilakukan dengan persamaan deret fourier.

2 .1 Klasifikasi Fan Fan dapat diklasifikasikan dalam dua klasifikasi yaitu: Axial Fan, beroperasi seperti propeler, yang menghasilkan aliran udara disepanjang porosnya yang dapat dilihat pada Gambar.1. Gambar.1. Tiga jenis blade axial fan Axial fan berdasarkan bentuk blade-nya dapat dibagi menjadi 3 jenis, yaitu a) Tube-axial fan lebih efisien dari pada propeller fan dengan ciri housing fan yang berbentuk silinder dipasang tepat pada radius ujung blade, dan diaplikasikan untuk sistem pemanas, ventilasi, air conditioning dan industri, dengan tekanan rendah dan jumlah volume udara yang dialirkan besar. b) Vane axial fan merupakan fan axial dengan efisiensi tinggi dengan ciri housing fan yang berbentuk silinder dipasang tepat pada radius blade, dan

3 diaplikasikan untuk sistem sistem pemanas, ventilasi, dan air conditioning yang memerlukan aliran lurus dan efisiensi tinggi. c) Propeller fan merupakan desain dasar fan aksial yang diaplikasikan untuk tekanan rendah dan volume udara yang dialirkan sangat besar volume. Fan jenis ini biasa diaplikasikan untuk sistem ventilasi yang menembus tembok. ) Centrifugal fan menghasilkan aliran udara dengan mempercepat arus udara secara radial dan mengubah energi kinetik menjadi tekanan. Centrifugal fan dapat menghasilkan tekanan tinggi dengan efisiensi tinggi, dan dapat dibuat dalam berbagai tingkat kondisi operasional. Berbagai jenis centrifugal fan dapat dilihat pada gambar.. (a) (b) (c) (d) (e) Gambar.. Lima jenis blade centrifugal fan Sesuai Gambar., centrifugal fan memiliki beberapa jenis blade, yaitu:

4 a) Forward curve fan, memiliki kecepatan putar yang sangat rendah untuk mengalirkan sejumlah udara serta bentuk lengkungan blade menghadap arah putaran, sehingga kurang efisien dibandingkan tipe air foil dan backward inclined. Fan jenis ini biasanya diaplikasikan untuk sistem pemanas bertekanan rendah, ventilasi, dan air conditioning b) Radial blade fan, secara umum yang paling efisien diantara centrifugal fan yang memiliki bentuk blade mengarah titik poros. Fan jenis ini digunakan untuk pemindahan bahan dan industri yang membutuhkan fan dengan tekanan di atas menengah. c) Radial tip fan, lebih efisien dibandingkan fan tipe radial blade yang di desain tahan terhadap keausan dan aliran udara yang erosif. d) Backward-inclined fan memiliki blade yang lurus dengan ketebalan tunggal. Fan ini diaplikasikan pada sistem pemanas, ventilasi, air conditioning dan industri dimana blade akan mengalami lingkungan yang korosif dan lingkungan yang erosif. Air foil fan adalah tipe centrifugal fan yang dikembangkan untuk memperoleh efisiensi tinggi. Fan ini diaplikasikan pada sistem pemanas, ventilasi, air conditioning dan udara bersih industri dimana penghematan energi sangatlah penting.

5 .. Sistem Transmisi Centifugal Fan (V-belt) Sesuai dengan tipe centrifugal fan yaitu SWSI dengan posisi motor Z, maka untuk mentransmisikan putaran dan daya digunakan sabuk. Transmisi sabuk dapat dibagi atas 3 (tiga) kelompok, yaitu: 1. Sabuk rata (flat belt) dipasang pada puli silinder dan meneruskan momen antara dua poros yang jaraknya dapat mencapai 10 meter dengan perbandingan putaran antara 1:1 sampai dengan 6:1.. Sabuk dengan penampang trapesium (v-belt) dipasang pada puli dengan alur dan meneruskan momen antara dua poros yang jaraknya dapat mencapai 5 meter dengan perbandingan putaran antara 1:1 sampai dengan 7:1. 3. Sabuk dengan gigi (timing belt) yang digerakkan dengan sproket pada jarak pusat sampai meter, dan meneruskan putaran secara tepat dengan perbandingan antara 1:1 sampai 6:1. Dari 3 kelompok ini yang paling umum dijumpai di industri adalah v-belt, karena penanganannya mudah serta harga murah. Kecepatan sabuk pada umumnya direncanakan antara 10 0 m/s, serta dapat mentransmisikan daya hingga 500 kw. V-belt terbuat dari karet dan mempunyai penampang trapesium. Tenunan tetoron atau semacamnya dipergunakan sebagai inti sabuk untuk membawa tarikan yang besar, hal ini dapat dilihat pada Gambar.3.

6 Bantal karet Bagian penarik Terpal Gambar.3. Penampang v-belt klasik..1. Tipe Dan Ukuran Nominal V-belt Tiap dimensi v-belt telah distandarisasi oleh pabrikan dan pada umumnya dapat dibagi dapat diklasifikasikan menjadi (dua), yaitu: heavy-duty (industri) dan light-duty (fractional-horsepower). V-belt untuk industri berdasarkan penampangnya (Gambar.3) terdiri dari tipe dasar, yaitu: penampang konvensional/klasik (A, B, C, D, dan E) dan penampang sempit/narrow (3V, 5V, dan 8V). (a) (b) Gambar.4. Penampang v-belt industri: (a) Penampang konvensional, dan (b) Penampang sempit

7 ... Panjang V-belt Untuk menyatakan panjang dari v-belt ada tiga nomenklatur yang umum digunakan sesuai cara pengukurannya, yaitu: panjang bagian luar (OC: outside circumference), panjang efektif (Le: effective length), dan panjang pitch (Lp: pitch length). Panjang bagian luar (OC) biasanya diukur secara sederhana dengan pita ukur yang diletakkan dibagian luar v-belt. Cara ini merupakan metode yang baik untuk memperoleh panjang nominal, namun sulit untuk mendapatkan nilai yang akurat dan konsisten oleh karena v-belt diukur pada saat tidak diberi tegangan (tension), sehingga tidak dapat menyatakan panjang sabuk saat dioperasikan. Panjang efektif (Le) diukur langsung saat terpasang yang ditentukan berdasarkan penjumlahan dari dua kali jarak poros ditambah dengan panjang keliling bagian luar dari sebuah puli, ukuran ini yang biasa digunakan dilapangan. Panjang pitch (Lp) merupakan panjang dari aksis netral dari sabuk, yaitu panjang dari kabel (tension cord line). Oleh karena kabel berada di dalam sabuk, sehingga sulit untuk diukur namun dapat dihitung dengan rumus, ( D + d ) ( D d ) L p = C + π + (.1) 4C dimana: C = jarak antar poros D = diameter puli besar d = diameter puli kecil

8 ..3. Tegangan Statik dan Gaya Defleksi V-belt. V-belt dapat mentransmisikan daya dengan baik pada rentang tegangan yang cukup lebar. Teknisi yang berpengalaman dapat mengembangkan perasaannya untuk melakukan penyetelan terhadap tegangan v-belt pada rentang ini. Namun untuk mengoptimalkan umur dan performa sabuk serta menghindari tegangan pada poros dan bantalan yang tidak diinginkan, perlu dihitung dan diukur tegangan yang diberikan berdasarkan beban yang akan bekerja. Standar untuk menghitung ini mengacu kepada standar yang dikeluarkan oleh Mechanical Power Transmission Association (MPTA). Standar ini dapat digunakan untuk penggerak dengan v-belt jenis classic, yang menghubungkan dua puli seperti rencana penelitian. Cara ini dikenal juga dengan metode defleksi gaya (force deflection). Metode ini menerjemahkan tegangan statik menjadi gaya defleksi yang diberikan pada sabuk dan menghasilkan defleksi dengan norma defleksi q, sebesar 1/64 tiap 1 inci panjang span (L s ) atau 1,6 mm tiap 100 mm span, hal ini dapat dilihat pada Gambar.5. Gambar.5. Pengukuran defleksi v-belt

9 Defleksi sabuk diukur ditengah span dalam arah tegak lurus span (L s ). Jarak defleksi q, dalam satuan inci yang disyaratkan dihitung dengan rumus: L q = s (.) 64 dimana panjang span (Ls) dapat dihitung dengan rumus: D d L s = C (.3) dimana : Ls = panjang rentangan (inci) C = Jarak antar poros (inci) D,d = Diameter puli (inci) Besarnya tegangan pada v-belt idealnya adalah tegangan terendah dimana sabuk tidak akan slip pada kondisi beban tertinggi, lihat Gambar.6. Hal ini akan menghasilkan umur sabuk yang paling baik dan beban pada poros yang rendah. Gambar.6. Vektor tegangan statik sabuk

10 Metode praktis untuk menghitung dan mengukur tegangan statik (static tension) sabuk berdasarkan beban/daya rencana dihitung dengan rumus: T st 3.5 K θ Pd 10 + V 1 = W (.4) Kθ NbV 60 gc dimana T st =Tegangan statik sabuk (lb), K θ = Faktor koreksi busur kontak P d = Daya rencana (hp) W = Berat sabuk tiap kaki satuan panjang (lb), V = Kecepatan sabuk (fpm) g c = kontanta gravitasi : 3. ft/sec N b = Jumlah sabuk yang digunakan

11 Tabel.1. Berat sabuk (W) dan faktor modulus sabuk(k y ) Penampang Sabuk Berat Sabuk W (lb/ft) Faktor Modulus sabuk 3L L L A AX B BX C CX D, DX V, 3VX V

12 5VX V, 8VX 0.37 (Sumber: Mechanical Power Transmission Ascociation) Faktor koreksi busur K θ, dapat dihitung dengan rumus: R 1 Kθ = 1.5 (.5.) R dimana R adalah rasio tegangan yang dihitung dengan rumus: ( )( θ ) R = e (.6) dan θ = sudut busur kontak dari diameter puli terkecil dalam satuan derajat: 1 D d θ = cos (.7) C Daya rencana dihitung dengan rumus: P d = 1. 15P (.8)

13 yang mana P adalah daya motor terpasang dalam horse power (hp). Sedangkan kecepatan sabuk dapat dapat dihitung dengan rumus: V πdn = (.9) 1 Rentang gaya minimum dan maksimum yang direkomendasikan untuk menentukan tegangan statis v-belt untuk mesin yang dipasang v-belt berjumlah satu dapat dihitung dengan rumus: Gaya minimum yang direkomendasikan P min = T st L + L 16 s y K y (.10.) Gaya maksimum yang direkomendasikan P max L s 1.5Tst + K y L y = (.11) 16 Sesuai rekomendasi MPTA, untuk keperluan analisa tegangan statis v-belt berjumlah satu, akibat gaya defleksi P a, dengan defleksi berjarak q, dapat dihitung dengan rumus: T st L s = 16 Pa K y (.1.) L p Dimana : P a = Gaya defleksi yang aktual diukur (lb)

14 K y = Faktor Modulus sabuk (lihat Tabel.13) L s = Panjang span (inci) L p = Panjang pitch sabuk (inci).4.4. Beban Statis pada Poros Akibat Tegangan V-belt Beban statis pada poros F s, didefinisikan sebagai resultan dari tarikan akibat tegangan statis sabuk T s disepanjang garis sumbu penggerak (drive center line) pada saat diam, lihat Gambar.7. Besar beban statis poros F st, adalah sama untuk puli penggerak dan yang digerakkan, yang dihitung dengan rumus: θ F st = NbTst sin (.13) Gambar.7. Vektor tegangan sabuk dan beban statis poros..5. Tegangan Operasi dan Beban Dinamis V-belt Tegangan v-belt pada saat mesin beroperasi menimbulkan dua tegangan yaitu tight side tension T T, dan slack-side tension T S, yang dihasilkan oleh adanya torsi Q dan tegangan statis T st, hal ini dapat dilihat pada Gambar.8.

15 Gambar.8. Vektor tegangan operasi dan beban dinamis poros v-belt Torsi merupakan fungsi dari daya nyata yang ditransmisikan P r dan kecepatan v-belt. Untuk menentukan daya nyata dapat digunakan pengukuran sehingga perhitungan lebih akurat, namun apabila tidak tersedia, dapat menggunakan daya motor. Sehingga tegangan efektif T e (lb) untuk tiap sabuk dapat dihitung dengan rumus: T e ( Pr) Q = TT TS = = (.14) d VN b Tight side tension T T (lb) dapat dihitung dengan rumus: T st V 1 Te T T = 0.9W g (.15) c maka slack side tension T S dapat dihitung dengan rumus: T S = T T (.16) T e

16 Sama seperti beban statis poros, maka beban dinamis poros F dy juga merupakan resultan dari tegangan yang terdapat pada sabuk. Besar beban dinamis poros akibat tarikan sabuk merupakan penjumlahan vektor dari T T dan T S. Sehingga besar beban dinamis poros dapat dihitung dengan rumus: F dy b T S ( T T cosθ ) = N T + T (.17) T S.3. Bantalan Anti Gesek Bagian yang berputar dari suatu mesin ditahan oleh suatu jenis bearing (bantalan). Bantalan ini dapat diklasifikasikan atas dua group: journal atau sleeve bearing dan antifriction bearing (bantalan anti gesek). Journal atau sleeve bearing menawarkan paling sedikit dan paling ekonomis peralatan penahan bagian bergerak, lihat Gambar.9. Tidak ada bagian yang bergerak dan normalnya sepotong metal menutupi (enclosing) sebuah poros. Istilah journal artinya bagian penahan (supporting) pada poros. Gambar.9. Bantalan journal atau sleeve

17 Bantalan jenis bola (ball) atau peluru, rol (roller) dan jarum (needle), pada Gambar.10, diklasifikasikan sebagai bantalan anti gesek (antifriction bearing) dimana gesekan telah berkurang pada nilai minimum. Bantalan jenis ini dapat dibagi atas dua group : radial bearing dan thrust bearing. Gambar.10. Berbagai tipe elemen gelinding pada bantalan Kecuali untuk desain khusus, bantalan peluru/bola dan rol terdiri atas dua buah cincin (ring), satu set elemen gelinding (rolling element) dan rumah bantalan (cage) yang dapat dilihat pada Gambar.11. Gambar.11. Struktur Bantalan Anti Gesek

18 .4. Dasar-Dasar Vibrasi Bilamana diberikan tiga buah gaya dalam arah x, y, dan z seperti diilustrasikan pada gambar.6, balok tersebut akan cenderung berputar translasi terhadap tiga buah sumbu, yaitu balok yang memiliki enam derajat kebebasan. Sistem itu bisa saja berupa gerak tertentu yang terkekang, dalam hal ini terdapat paling tidak enam derajat kebebasan. Sebagai contoh, bila balok dapat berpindah hanya secara vertikal, terdapat satu derajat kebebasan. Balok persegi dalam gambar.6 dipilih agar lebih menarik. Pada kenyataannya, bentuknya bisa terdapat dalam berbagai bentuk, tetapi bentuk persegi akan menjadikan formula model matematikanya menjadi lebih mudah dibandingkan bentuk yang lain. Gambar.1 Balok Fondasi Persegi dengan Suatu Harga Maksimum dari Enam Derajat Kebebasan ( three displacement and three rotations)

19 .4.1 Gerak Harmonik Gerak osilasi dapat berulang secara teratur. Jika gerak itu berulang dalam selang waktu yang sama, maka geraknya disebut gerak periodik. Waktu pengulangan disebut dengan periode osilasi dan kebalikannya, f = 1/ disebut frekuensi. Jika gerak dinyatakan dalam fungsi waktu x(t), maka setiap gerak periodik harus memenuhi hubungan (t) = x(1 + ). Secara umum, gerak harmonik dinyatakan dengan persamaan: x = A sin π t (.18) dimana A adalah amplitudo osilasi yang diukur dari posisi setimbang massa, dan adalah periode dimana gerak diulang pada t =. Gerak harmonik sering dinyatakan sebagai proyeksi suatu titik yang bergerak melingkar dengan kecepatan tetap pada suatu garis lurus, seperti terlihat pada gambar.7. Dengan kecepatan sudut garis OP sebesar ω, perpindahan simpangan x dapat dituliskan sebagai: x = A sin ωt (.19) Besaran ω biasanya diukur dalam radian per detik dan disebut frekuensi lingkaran. Oleh karena gerak berulang dalam π radian, maka didapat hubungan: π ω = = πf (.0) t

20 dengan dan f adalah periode dan frekuensi gerak harmonik bertuturt-turut dan biasanya diukur dalam detik dan siklus perdetik.kecepatan dan percepatan gerak harmonik dapat diperoleh secara mudah dengan diferensiasi simpangan gerak harmonik. Dengan menggunakan notasi titik untuk turunannya, maka didapat: (.11) (.1) x A P A sin ωt O θ = ωt ωt π Gambar.13 Gerak Harmonik sebagai Proyeksi Suatu Titik yang Bergerak Pada Lingkaran.4.. Gerak Periodik Getaran mesin pada umumnya memiliki beberapa frekuensi yang muncul bersama-sama. Gerak periodik dapat dihasilkan oleh getaran bebas sistem dengan banyak derajat kebebasan, dimana getaran pada tiap frekuensi natural memberi

21 sumbangannya. Getaran semacam ini menghasilkan bentuk gelombang kompleks yang diulang secara periodik seperti ditunjukkan pada Gambar.14. Gerak harmonik pada Gambar.14, dapat dinyatakan dalam deretan sinus dan cosinus yang dihubungkan secara harmonik. Jika x(t) adalah fungsi periodik dengan periode, maka fungsi ini dapat dinyatakan oleh deret Fourier sebagai: x t) = 1 a + a cosω t + a cosω t... + ( a cosω t n n + b1 sinω1t + b sinωt... + bn sinωnt (.13) dengan ω 1 = π ω = n ω 1 x(t) t Gambar.14. Gerak periodik gelombang sinyal segiempat dan gelombang pembentuknya dalam domain waktu

22 Pada gelombang segiempat berlaku x (t) = ± X pada t =0, dan t =, dan seterusnya. Deret ini menunjukkan nilai rata-rata dari fungsi yang diskontinu. Untuk menentukan nilai koefisien an dan b n, kedua ruas persamaan (.13) dengan cosωt dan sin ω t, kemudian setiap suku diintegrasi untuk lama perioda. Dengan mengingat hubungan berikut, t tdt 0 jika, m n cosωm cosωn = jika, m = n 0 t tdt 0 jika, m n sinωm sinωn = jika, m = n 0 (.14) 0 sinω t tdt m cosωn 0 jika, m n = 0 jika, m = n Dari persamaan (.14), maka untuk m = n, diperoleh hasil 1 an = x( t)cosωntdt (.15) 0 1 bn = x( t)cosωntdt (.16) 0 Persamaan deret Fourier berdasarkan nilai gelombang empat persegi: x ( t) = X untuk 0 < t < / dan

23 x( t) = X untuk / < t < Maka koefisien an dan bn dapat dihitung, sebagai berikut: a n 1 = X cos cos = 0 ωndt X ωndt 0 karena, cosωn dt = cosωndt = 0 0 dan b n 1 = X sinωndt X sinωndt 0 1 = ( ) n 0 [ X (cosω ) + X (cosω ] n n ) X = ( ) n [(1 cos n ) + (1 cos n )] akan menghasilkan nilai b n =0 untuk n bilangan genap, dan b n = 4X untuk n bilangan ganjil. Sehingga deret Fourier yang merepresentasikan gelombang empat persegi menjadi: 8X sin 3t sin 5t sin 7t x( t) = sin t (.17)

24 .4.3 Getaran Bebas (Free Vibration) Getaran bebas terjadi jika sistem berosilasi karena bekerjanya gaya yang ada dalam sistem itu sendiri (inherent) dan apabila tidak ada gaya luar yang bekerja. Sistem yang bergetar bebas akan bergetar pada satu atau lebih frekuensi naturalnya yang merupakan sifat dinamika yang dibentuk oleh distribusi massa dan kekakuannya. Perhatikan gerak dari sebuah elemen yang ditempatkan pada sebuah pegas seperti diillustrasikan dalam gambar.15 yang menunjukkan sebuah jarak kecil x dari posisi kesetimbangannya. Persamaan diferensial menjabarkan perpindahan elemen setelah dilepaskan yang diperoleh dengan penjumlahan gaya dalam arah vertikal. Aljabar penjumlahan ΣF dengan gaya ke atas (+) adalah: k kδ Posisi tanpa peregangan m Δ m w x k(δ+x) k (Δ + x) m.ẋ m w. x. x Posisi keseimbangan statik.... x x Gambar.15 Sistem Massa Pegas dan diagram benda bebas

25 Hukum Newton kedua adalah dasar pertama untuk meneliti gerak system seperti ditunjukkan pada gambar.15 dimana gaya statik Ä dan gaya pegas k Ä adalah sama dengan grvitasi w yang bekerja pada massa m: Gerak statik: k Ä = w = m.g (.18) k Ä - w = 0 Gerak dinamik: m x + k( + x) - w = 0 (.19) dimana menghasilkan persamaan diferensial untuk gerak, karena k Ä = W dan menggunakan x = a yang merupakan turunan kedua dari x terhadap waktu. (literatur 1, hal : 16) m x + kx = 0 (.0) Persamaan ini merupakan persamaan diferensial linier dimana solusinya dapat ditemukan sebagai berikut. misal: x = Asinωt (.1) (.) substitusi persamaan (.0) dan (.1) ke persamaan (.) sehingga: (.3),

26 sehingga dari persamaan untuk frekuensi natural adalah, k ω = n atau ω n = m k m dituliskan kembali persamaan (.0) sebagai berikut: x + ω x = 0 (.4) n

PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI

PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI SKRIPSI MEKANIKA KEKUATAN BAHAN Skripsi Yang Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Jenis - Jenis Fan Fan dapat diklasifikasikan dalam dua jenis yaitu: 1. Axial Fan memakai gaya poros untuk menggerakkan udara atau gas, berputar dengan poros utama dengan kipas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Misalignment Misalignment adalah ketidaklurusan antara kedua pulley. Misalignment terjadi karena adanya pergeseran atau penyimpangan salah satu bagian mesin dari garis pusatnya.

Lebih terperinci

BAB II TEORI DASAR. BAB II. Teori Dasar

BAB II TEORI DASAR. BAB II. Teori Dasar BAB II TEORI DASAR Perencanaan elemen mesin yang digunakan dalam peralatan pembuat minyak jarak pagar dihitung berdasarkan teori-teori yang diperoleh dibangku perkuliahan dan buku-buku literatur yang ada.

Lebih terperinci

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana

GERAK HARMONIK. Pembahasan Persamaan Gerak. untuk Osilator Harmonik Sederhana GERAK HARMONIK Pembahasan Persamaan Gerak untuk Osilator Harmonik Sederhana Ilustrasi Pegas posisi setimbang, F = 0 Pegas teregang, F = - k.x Pegas tertekan, F = k.x Persamaan tsb mengandung turunan terhadap

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Mesin dan peralatan di Pabrik Kelapa Sawit (PKS) memiliki variasi yang cukup banyak sesuai fungsinya, dengan tujuan yaitu mengolah Tandan Buah Segar (TBS) menjadi minyak

Lebih terperinci

BAB 1 PENDAHULUAN. 3. Mutu produksi, misalnya: Asam Lemak Bebas (ALB) minyak sawit. maksimum 3,5 %, kadar air inti sawit maksimum 7% dan lainnya.

BAB 1 PENDAHULUAN. 3. Mutu produksi, misalnya: Asam Lemak Bebas (ALB) minyak sawit. maksimum 3,5 %, kadar air inti sawit maksimum 7% dan lainnya. BAB 1 PENDAHULUAN 1.1. Latar Belakang Mesin dan peralatan di Pabrik Kelapa Sawit (PKS) memiliki variasi yang cukup banyak sesuai fungsinya, dengan tujuan utama yaitu mengolah Tandan Buah Segar (TBS) menjadi

Lebih terperinci

ANALISA VARIASI TEGANGAN SABUK DENGAN KARAKTERISTIK VIBRASI DEPERICARPER FAN SKRIPSI

ANALISA VARIASI TEGANGAN SABUK DENGAN KARAKTERISTIK VIBRASI DEPERICARPER FAN SKRIPSI ANALISA VARIASI TEGANGAN SABUK DENGAN KARAKTERISTIK VIBRASI DEPERICARPER FAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH AGUS SUPARJO 130421018 PROGRAM PENDIDIKAN

Lebih terperinci

BAB 1 PENDAHULUAN. Mesin dan peralatan di Pabrik Kelapa Sawit (PKS) memiliki variasi yang

BAB 1 PENDAHULUAN. Mesin dan peralatan di Pabrik Kelapa Sawit (PKS) memiliki variasi yang BAB 1 PENDAHULUAN 1.1. Latar Belakang Mesin dan peralatan di Pabrik Kelapa Sawit (PKS) memiliki variasi yang cukup banyak sesuai fungsinya, dengan tujuan utama yaitu mengolah Tandan Buah Segar (TBS) menjadi

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer

BAB II DASAR TEORI 2.1 Konsep Perencanaan 2.2 Motor 2.3 Reducer BAB II DASAR TEORI 2.1 Konsep Perencanaan Konsep perencanaan komponen yang diperhitungkan sebagai berikut: a. Motor b. Reducer c. Daya d. Puli e. Sabuk V 2.2 Motor Motor adalah komponen dalam sebuah kontruksi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Cara Kerja Alat Cara kerja Mesin pemisah minyak dengan sistem gaya putar yang di control oleh waktu, mula-mula makanan yang sudah digoreng di masukan ke dalam lubang bagian

Lebih terperinci

BAB II DASAR TEORI 2.1 Sistem Transmisi 2.2 Motor Listrik

BAB II DASAR TEORI 2.1 Sistem Transmisi 2.2 Motor Listrik BAB II DASAR TEORI 2.1 Sistem Transmisi Sistem transmisi dalam otomotif, adalah sistem yang berfungsi untuk konversi torsi dan kecepatan (putaran) dari mesin menjadi torsi dan kecepatan yang berbeda-beda

Lebih terperinci

A. Dasar-dasar Pemilihan Bahan

A. Dasar-dasar Pemilihan Bahan BAB II TINJAUAN PUSTAKA A. Dasar-dasar Pemilihan Bahan Di dalam merencanakan suatu alat perlu sekali memperhitungkan dan memilih bahan-bahan yang akan digunakan, apakah bahan tersebut sudah sesuai dengan

Lebih terperinci

BAB II DASAR TEORI. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai

BAB II DASAR TEORI. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai BAB II DASAR TEORI 2.1. Prinsip Kerja Mesin Perajang Singkong. Mesin perajang singkong dengan penggerak motor listrik 0,5 Hp mempunyai beberapa komponen, diantaranya adalah piringan, pisau pengiris, poros,

Lebih terperinci

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi Catatan Kuliah FI111 Fisika Dasar IA Pekan #8: Osilasi Agus Suroso update: 4 November 17 Osilasi atau getaran adalah gerak bolak-balik suatu benda melalui titik kesetimbangan. Gerak bolak-balik tersebut

Lebih terperinci

BAB II DASAR TEORI Sistem Transmisi

BAB II DASAR TEORI Sistem Transmisi BAB II DASAR TEORI Dasar teori yang digunakan untuk pembuatan mesin pemotong kerupuk rambak kulit adalah sistem transmisi. Berikut ini adalah pengertian-pengertian dari suatu sistem transmisi dan penjelasannya.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Analisa getaran merupakan salah satu alat yang sangat bermanfaat sebagai

BAB 2 TINJAUAN PUSTAKA. Analisa getaran merupakan salah satu alat yang sangat bermanfaat sebagai BAB TINJAUAN PUSTAKA.1. Analisa Getaran Analisa getaran merupakan salah satu alat yang sangat bermanfaat sebagai prediksi awal terhadap adanya masalah pada mekanikal, elektrikal dan proses pada peralatan,

Lebih terperinci

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI

2.1 Pengertian Umum Mesin Pemipil Jagung. 2.2 Prinsip Kerja Mesin Pemipil Jagung BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Pengertian Umum Mesin Pemipil Jagung Mesin pemipil jagung merupakan mesin yang berfungsi sebagai perontok dan pemisah antara biji jagung dengan tongkol dalam jumlah yang banyak dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

Belt Datar. Dhimas Satria. Phone :

Belt Datar. Dhimas Satria. Phone : Pendahuluan Materi : Belt Datar, V-Belt & Pulley, Rantai Elemen Mesin 2 Belt Datar Elemen Mesin 2 Belt (sabuk) atau rope (tali) digunakan untuk mentransmisikan daya dari poros yang satu ke poros yang lain

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Serabut Kelapa Sebagai Negara kepulauan dan berada di daerah tropis dan kondisi agroklimat yang mendukung, Indonesia merupakan Negara penghasil kelapa terbesar di dunia. Menurut

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

ANALISA PENGARUH PARALLEL-MISALIGNMENT DAN TINGKAT GETARAN YANG TERJADI PADA PULLEY DEPERICARPER FAN SKRIPSI

ANALISA PENGARUH PARALLEL-MISALIGNMENT DAN TINGKAT GETARAN YANG TERJADI PADA PULLEY DEPERICARPER FAN SKRIPSI ANALISA PENGARUH PARALLEL-MISALIGNMENT DAN TINGKAT GETARAN YANG TERJADI PADA PULLEY DEPERICARPER FAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik OLEH LASTRI SITUMORANG

Lebih terperinci

TRANSMISI RANTAI ROL

TRANSMISI RANTAI ROL TRANSMISI RANTAI ROL Penggunaan: transmisi sabuk > jarak poros > transmisi roda gigi Rantai mengait pada gigi sproket dan meneruskan daya tanpa slip perbandingan putaran tetap Keuntungan: Mampu meneruskan

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERHITUNGAN DAN PEMBAHASAN BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Perencanaan Tabung Luar Dan Tabung Dalam a. Perencanaan Tabung Dalam Direncanakan tabung bagian dalam memiliki tebal stainles steel 0,6, perencenaan tabung pengupas

Lebih terperinci

TRANSMISI RANTAI ROL 12/15/2011

TRANSMISI RANTAI ROL 12/15/2011 TRANSMISI RANTAI ROL Penggunaan: transmisi sabuk > jarak poros > transmisi roda gigi Rantai mengait pada gigi sproket dan meneruskan daya tanpa slip perbandingan putaran tetap Mampu meneruskan daya besar

Lebih terperinci

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik

BAB II DASAR TEORI 2.1. Sistem Transmisi Motor Listrik BAB II DASAR TEORI 2.1. Sistem Transmisi Transmisi bertujuan untuk meneruskan daya dari sumber daya ke sumber daya lain, sehingga mesin pemakai daya tersebut bekerja menurut kebutuhan yang diinginkan.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Power Loss Power loss adalah hilangnya daya yang diakibatkan kesalahan pengemudi dalam melakukan pemindahan gigi transmisi yang tidak sesuai dengan putaran mesin seharusnya, sehingga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Analisa Getaran Perawatan mesin tradisional, skedul overhaul perbaikan biasanya sulit dibuat karena kebutuhan perbaikan tidak dapat ditentukan secara pasti, tanpa membongkar mesin

Lebih terperinci

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA

BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA BAB III PEMBAHASAN, PERHITUNGAN DAN ANALISA 3.1 Perancangan awal Perencanaan yang paling penting dalam suatu tahap pembuatan hovercraft adalah perancangan awal. Disini dipilih tipe penggerak tunggal untuk

Lebih terperinci

BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai 2.2. Gerenda Penghancur Dan Alur

BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai 2.2. Gerenda Penghancur Dan Alur BAB II DASAR TEORI 2.1. Prinsip kerja Mesin Penghancur Kedelai Mesin penghancur kedelai dengan penggerak motor listrik 0,5 Hp, mengapa lebih memilih memekai motor listrik 0,5 Hp karena industri yang di

Lebih terperinci

BAB III. Metode Rancang Bangun

BAB III. Metode Rancang Bangun BAB III Metode Rancang Bangun 3.1 Diagram Alir Metode Rancang Bangun MULAI PENGUMPULAN DATA : DESAIN PEMILIHAN BAHAN PERHITUNGAN RANCANG BANGUN PROSES PERMESINAN (FABRIKASI) PERAKITAN PENGUJIAN ALAT HASIL

Lebih terperinci

BAB IV PERENCANAAN DAN PERHITUNGAN TRANSMISI PADA MESIN PERAJANG TEMBAKAU DENGAN PENGGERAK KONVEYOR

BAB IV PERENCANAAN DAN PERHITUNGAN TRANSMISI PADA MESIN PERAJANG TEMBAKAU DENGAN PENGGERAK KONVEYOR BAB IV PERENCANAAN DAN PERHITUNGAN TRANSMISI PADA MESIN PERAJANG TEMBAKAU DENGAN PENGGERAK KONVEYOR 4.1 Perencanaan Pulley dan V-Belt 1 4.1.1 Penetapan Diameter Pulley 1 1. Penetapan diameter pulley V-belt

Lebih terperinci

MESIN PERUNCING TUSUK SATE

MESIN PERUNCING TUSUK SATE MESIN PERUNCING TUSUK SATE NASKAH PUBLIKASI Disusun : SIGIT SAPUTRA NIM : D.00.06.0048 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SURAKARTA 013 MESIN PERUNCING TUSUK SATE Sigit Saputra,

Lebih terperinci

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat

BAB II LANDASAN TEORI. khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat BAB II LANDASAN TEORI.. Pengertian Umum Kebutuhan peralatan atau mesin yang menggunakan teknologi tepat guna khususnya permesinan pengolahan makanan ringan seperti mesin pengiris ubi sangat diperlukan,

Lebih terperinci

Perhitungan Kapasitas Screw Conveyor perjam Menghitung Daya Screw Conveyor Menghitung Torsi Screw

Perhitungan Kapasitas Screw Conveyor perjam Menghitung Daya Screw Conveyor Menghitung Torsi Screw DAFTAR ISI HALAMAN JUDUL... i LEMBAR PENGESAHAN... ii ABSTRAK... iii ABSTRACT... iv KATA PENGANTAR... v DAFTAR ISI... vii DAFTAR GAMBAR... xi DAFTAR TABEL...xii BAB I PENDAHULUAN... 1 1.1 Latar Belakang...

Lebih terperinci

BAB 3 DINAMIKA GERAK LURUS

BAB 3 DINAMIKA GERAK LURUS BAB 3 DINAMIKA GERAK LURUS A. TUJUAN PEMBELAJARAN 1. Menerapkan Hukum I Newton untuk menganalisis gaya-gaya pada benda 2. Menerapkan Hukum II Newton untuk menganalisis gerak objek 3. Menentukan pasangan

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG 1/19 Kuliah Fisika Dasar Teknik Sipil 2007 GETARAN DAN GELOMBANG Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id GETARAN Getaran adalah salah satu bentuk

Lebih terperinci

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L)

DERET FOURIER. n = bilangan asli (1,2,3,4,5,.) L = pertemuan titik. Bilangan-bilangan untuk,,,, disebut koefisien fourier dari f(x) dalam (-L,L) DERET FOURIER Bila f adalah fungsi periodic yang berperioda p, maka f adalah fungsi periodic. Berperiode n, dimana n adalah bilangan asli positif (+). Untuk setiap bilangan asli positif fungsi yang didefinisikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA Getaran banyak dipakai sebagai alat untuk melakukan analisis terhadap mesin-mesin, baik gerak rotasi maupun translasi. Pengetahuan akan getaran dan data-data yang dihasilkan sangat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. korosi dan hantaran listrik yang baik dan sifat-sifat yang baik lainnya sebagai sifat

BAB II TINJAUAN PUSTAKA. korosi dan hantaran listrik yang baik dan sifat-sifat yang baik lainnya sebagai sifat BAB II TINJAUAN PUSTAKA 2.1 Material aluminium Aluminium banyak digunakan dalam industri cor seperti pembuatan komponen otomotif dan komponen yang lainnya, karena aluminium mempunyai banyak sifat yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dasar-dasar Pemilihan Bahan Setiap perencanaan rancang bangun memerlukan pertimbanganpertimbangan bahan agar bahan yang digunakan sesuai dengan yang direncanakan. Hal-hal penting

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis,

BAB II TINJAUAN PUSTAKA. perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah, sintetis, analisis, BAB II TINJAUAN PUSTAKA.1 Perancangan Mesin Pemisah Biji Buah Sirsak Proses pembuatan mesin pemisah biji buah sirsak melalui beberapa tahapan perancangan yaitu tahap identifikasi kebutuhan, perumusan masalah,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Tinjauan Umum 2.1.1. Model Skala Centrifugal Fan Secara teknis, fan dan blower merupakan dua alat/mesin yang berbeda yang memiliki fungsi yang sama yaitu memindahkan sejumlah

Lebih terperinci

Karakteristik Gerak Harmonik Sederhana

Karakteristik Gerak Harmonik Sederhana Pertemuan GEARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (5B0809), Pendidikan Fisika PPS UNM Makassar 06 Beberapa parameter yang menentukan karaktersitik getaran: Amplitudo

Lebih terperinci

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini

BAB II TINJAUAN PUSTAKA. digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini BAB II TINJAUAN PUSTAKA A. Definisi Alat Pencacah plastik Alat pencacah plastik polipropelen ( PP ) merupakan suatu alat yang digunakan untuk mencacah akan menghasikan serpihan. Alat pencacah ini memiliki

Lebih terperinci

Soal SBMPTN Fisika - Kode Soal 121

Soal SBMPTN Fisika - Kode Soal 121 SBMPTN 017 Fisika Soal SBMPTN 017 - Fisika - Kode Soal 11 Halaman 1 01. 5 Ketinggian (m) 0 15 10 5 0 0 1 3 5 6 Waktu (s) Sebuah batu dilempar ke atas dengan kecepatan awal tertentu. Posisi batu setiap

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Flowchart Perencanaan Pembuatan Mesin Pemotong Umbi Proses Perancangan mesin pemotong umbi seperti yang terlihat pada gambar 3.1 berikut ini: Mulai mm Studi Literatur

Lebih terperinci

MAKALAH ELEMEN MESIN RANTAI. Untuk Memenuhi Tugas Mata Kuliah Elemen Mesin

MAKALAH ELEMEN MESIN RANTAI. Untuk Memenuhi Tugas Mata Kuliah Elemen Mesin MAKALAH ELEMEN MESIN RANTAI Untuk Memenuhi Tugas Mata Kuliah Elemen Mesin Oleh: Rahardian Faizal Zuhdi 0220120068 Mekatronika Politeknik Manufaktur Astra Jl. Gaya Motor Raya No 8, Sunter II, Jakarta Utara

Lebih terperinci

GERAK ROTASI. Hoga saragih. hogasaragih.wordpress.com

GERAK ROTASI. Hoga saragih. hogasaragih.wordpress.com GERAK ROTASI Hoga saragih Benda tegar yang dimaksud adalah benda dengan bentuk tertentu yang tidak berubah, sehinga partikelpartikel pembentuknya berada pada posisi tetap relatif satu sama lain. Tentu

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

BAB III PERENCANAAN DAN PERHITUNGAN

BAB III PERENCANAAN DAN PERHITUNGAN BAB III PERENCANAAN DAN PERHITUNGAN 3.1. Diagram Alur Perencanaan Proses perencanaan pembuatan mesin pengupas serabut kelapa dapat dilihat pada diagram alur di bawah ini. Gambar 3.1. Diagram alur perencanaan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Gambaran Umum Mesin pemarut adalah suatu alat yang digunakan untuk membantu atau serta mempermudah pekerjaan manusia dalam hal pemarutan. Sumber tenaga utama mesin pemarut adalah

Lebih terperinci

MENGENAL KOMPONEN PENERUS DAYA

MENGENAL KOMPONEN PENERUS DAYA MENGENAL KOMPONEN PENERUS DAYA BAB 3 MENGENAL KOMPONEN PENERUS DAYA Kompetensi Dasar : Memahami Dasar dasar Mesin Indikator : Menerangkan komponen/elemen mesin sesuai konsep keilmuan yang terkait Materi

Lebih terperinci

BAB II LANDASAN TIORI

BAB II LANDASAN TIORI BAB II LANDASAN TIORI 2.1. Prinsip Kerja Mesin Pemecah Kedelai Mula-mula biji kedelai yang kering dimasukkan kedalam corong pengumpan dan dilewatkan pada celah diantara kedua cakram yang salah satunya

Lebih terperinci

KARAKTERISTIK GERAK HARMONIK SEDERHANA

KARAKTERISTIK GERAK HARMONIK SEDERHANA KARAKTERISTIK GERAK HARMONIK SEDERHANA Pertemuan 2 GETARAN HARMONIK Kelas XI IPA Karakteristik Gerak Harmonik Sederhana Rasdiana Riang, (15B08019), Pendidikan Fisika PPS UNM Makassar 2016 Beberapa parameter

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perencanaan Proses perencanaan mesin pembuat es krim dari awal sampai akhir ditunjukan seperti Gambar 3.1. Mulai Studi Literatur Gambar Sketsa Perhitungan

Lebih terperinci

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m)

Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m) LAMPIRAN 74 75 Lampiran 1. Analisis Kebutuhan Daya Diketahui: Massa silinder pencacah (m) : 15,4 kg Diameter silinder pencacah (D) : 37,5cm = 0,375 m Percepatan gravitasi (g) : 9,81 m/s 2 Kecepatan putar

Lebih terperinci

BAB III PERENCAAN DAN GAMBAR

BAB III PERENCAAN DAN GAMBAR BAB III PERENCAAN DAN GAMBAR 3.1 Diagram Alur Perencanaan Proses perancangan alat pencacah rumput gajah seperti terlihat pada diagram alir berikut ini: Mulai Pengamatan dan Pengumpulan Perencanaan Menggambar

Lebih terperinci

J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA. TKS-4101: Fisika. Hukum Newton. Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB

J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA. TKS-4101: Fisika. Hukum Newton. Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB J U R U S A N T E K N I K S I P I L UNIVERSITAS BRAWIJAYA TKS-4101: Fisika Hukum Newton Dosen: Tim Dosen Fisika Jurusan Teknik Sipil FT-UB 1 Mekanika Kinematika Mempelajari gerak materi tanpa melibatkan

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Berikut proses perancangan alat pencacah rumput gajah seperti terlihat pada diagram alir: Mulai Pengamatan dan Pengumpulan Perencanaan

Lebih terperinci

K 1. h = 0,75 H. y x. O d K 2

K 1. h = 0,75 H. y x. O d K 2 1. (25 poin) Dari atas sebuah tembok dengan ketinggian H ditembakkan sebuah bola kecil bermassa m (Jari-jari R dapat dianggap jauh lebih kecil daripada H) dengan kecepatan awal horizontal v 0. Dua buah

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

IV. PENDEKATAN DESAIN

IV. PENDEKATAN DESAIN IV. PENDEKATAN DESAIN A. Kriteria Desain Alat pengupas kulit ari kacang tanah ini dirancang untuk memudahkan pengupasan kulit ari kacang tanah. Seperti yang telah diketahui sebelumnya bahwa proses pengupasan

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

PERANCANGAN DAN ANALISIS KOMPONEN PROTOTIPE ALAT PEMISAH SAMPAH LOGAM DAN NON LOGAM OTOMATIS

PERANCANGAN DAN ANALISIS KOMPONEN PROTOTIPE ALAT PEMISAH SAMPAH LOGAM DAN NON LOGAM OTOMATIS PERANCANGAN DAN ANALISIS KOMPONEN PROTOTIPE ALAT PEMISAH SAMPAH LOGAM DAN NON LOGAM OTOMATIS Nama :Bayu Arista NPM : 21412385 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : 1. Dr. Rr.

Lebih terperinci

Mulai. Studi Literatur. Gambar Sketsa. Perhitungan. Gambar 2D dan 3D. Pembelian Komponen Dan Peralatan. Proses Pembuatan.

Mulai. Studi Literatur. Gambar Sketsa. Perhitungan. Gambar 2D dan 3D. Pembelian Komponen Dan Peralatan. Proses Pembuatan. BAB III PERANCANGAN DAN GAMBAR 3.1 Diagram Alur Proses Perancangan Proses perancangan mesin pemipil jagung seperti terlihat pada Gambar 3.1 seperti berikut: Mulai Studi Literatur Gambar Sketsa Perhitungan

Lebih terperinci

BAB IV PERHITUNGAN DAN PERANCANGAN ALAT. Data motor yang digunakan pada mesin pelipat kertas adalah:

BAB IV PERHITUNGAN DAN PERANCANGAN ALAT. Data motor yang digunakan pada mesin pelipat kertas adalah: BAB IV PERHITUNGAN DAN PERANCANGAN ALAT 4.1 Perhitungan Rencana Pemilihan Motor 4.1.1 Data motor Data motor yang digunakan pada mesin pelipat kertas adalah: Merek Model Volt Putaran Daya : Multi Pro :

Lebih terperinci

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan . (5 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan dengan H). Kecepatan awal horizontal bola adalah v 0 dan

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

BAB III TEORI PERHITUNGAN. Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut :

BAB III TEORI PERHITUNGAN. Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut : BAB III TEORI PERHITUNGAN 3.1 Data data umum Data data ini diambil dari eskalator Line ( lampiran ) Adapun data data eskalator tersebut adalah sebagai berikut : 1. Tinggi 4 meter 2. Kapasitas 4500 orang/jam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Poros Poros merupakan bagian yang terpenting dari suatu mesin. Hampir semua mesin meneruskan tenaga dan putarannya melalui poros. Setiap elemen mesin yang berputar, seperti roda

Lebih terperinci

Flat Belt Drives ELEMEN MESIN II

Flat Belt Drives ELEMEN MESIN II Flat Belt Drives ELEMEN MESIN II Jika Ingin Mengenal Dunia MEMBACA Jika Ingin Dikenal Dunia MENULIS Flat Belt Drives Mentransmisikan daya dari satu poros ke yang lain Katrol yang berputar Kecepatan sama

Lebih terperinci

SABUK ELEMEN MESIN FLEKSIBEL 10/20/2011. Keuntungan Trasmisi sabuk

SABUK ELEMEN MESIN FLEKSIBEL 10/20/2011. Keuntungan Trasmisi sabuk 0/0/0 ELEMEN MESIN FLEKSIBEL RINI YULIANINGSIH Elemen mesin ini termasuk Belts, Rantai dan ali Perangkat ini hemat dan sering digunakan untuk mengganti gear, poros dan perangkat transmisi daya kaku. Elemen

Lebih terperinci

iii Banda Aceh, Nopember 2008 Sabri, ST., MT

iii Banda Aceh, Nopember 2008 Sabri, ST., MT ii PRAKATA Buku ini menyajikan pembahasan dasar mengenai getaran mekanik dan ditulis untuk mereka yang baru belajar getaran. Getaran yang dibahas di sini adalah getaran linier, yaitu getaran yang persamaan

Lebih terperinci

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA

HAND OUT FISIKA DASAR I/GELOMBANG/GERAK HARMONIK SEDERHANA GELOMBAG : Gerak Harmonik Sederhana M. Ishaq Pendahuluan Gerak harmonik adalah sebuah kajian yang penting terutama jika anda bergelut dalam bidang teknik, elektronika, geofisika dan lain-lain. Banyak gejala

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto Getaran Mekanik Getaran Bebas Tak Teredam Muchammad Chusnan Aprianto Getaran Bebas Getaran bebas adalah gerak osilasi di sekitar titik kesetimbangan dimana gerak ini tidak dipengaruhi oleh gaya luar (gaya

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Skematik Chassis Engine Test Bed Chassis Engine Test Bed digunakan untuk menguji performa sepeda motor. Seperti ditunjukkan pada Gambar 3.1, skema pengujian didasarkan

Lebih terperinci

SILABUS. I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360

SILABUS. I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360 SILABUS I. IDENTITAS MATA KULIAH Nama mata kuliah : Gataran Mekanis Nomor kode : PP 360 Jumlah SKS : 2 SKS Semester : 7(ganjil) Kelompok mata kuliah : MKK Program Studi?Program : Produksi dan Perancangan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor

BAB II DASAR TEORI. 2.1 Konsep Perencanaan Sistem Transmisi Motor BAB II DASAR TEORI 2.1 Konsep Perencanaan Sistem Transmisi Pada perancangan suatu kontruksi hendaknya mempunyai suatu konsep perencanaan. Untuk itu konsep perencanaan ini akan membahas dasar-dasar teori

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Mesin Pan Granulator Mesin Pan Granulator adalah alat yang digunakan untuk membantu petani membuat pupuk berbentuk butiran butiran. Pupuk organik curah yang akan

Lebih terperinci

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin.

BAB IV PROSES, HASIL, DAN PEMBAHASAN. panjang 750x lebar 750x tinggi 800 mm. mempermudah proses perbaikan mesin. BAB IV PROSES, HASIL, DAN PEMBAHASAN A. Desain Mesin Desain konstruksi Mesin pengaduk reaktor biogas untuk mencampurkan material biogas dengan air sehingga dapat bercampur secara maksimal. Dalam proses

Lebih terperinci

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons SILABUS : 1.Getaran a. Getaran pada sistem pegas b. Getaran teredam c. Energi dalam gerak harmonik sederhana 2.Gelombang a. Gelombang sinusoidal b. Kecepatan phase dan kecepatan grup c. Superposisi gelombang

Lebih terperinci

BAB IV ANALISA PERBANDINGAN DAN PERHITUNGAN DAYA

BAB IV ANALISA PERBANDINGAN DAN PERHITUNGAN DAYA 31 BAB IV ANALISA PERBANDINGAN DAN PERHITUNGAN DAYA 4.1 MENGHITUNG PUTARAN POROS PISAU Dengan mengetahui putaran pada motor maka dapat ditentukan putaran pada pisau yang dapat diketahui dengan persamaan

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

KINEMATIKA GERAK 1 PERSAMAAN GERAK

KINEMATIKA GERAK 1 PERSAMAAN GERAK KINEMATIKA GERAK 1 PERSAMAAN GERAK Posisi titik materi dapat dinyatakan dengan sebuah VEKTOR, baik pada suatu bidang datar maupun dalam bidang ruang. Vektor yang dipergunakan untuk menentukan posisi disebut

Lebih terperinci

DASAR PENGUKURAN MEKANIKA

DASAR PENGUKURAN MEKANIKA DASAR PENGUKURAN MEKANIKA 1. Jelaskan pengertian beberapa istilah alat ukur berikut dan berikan contoh! a. Kemampuan bacaan b. Cacah terkecil 2. Jelaskan tentang proses kalibrasi alat ukur! 3. Tunjukkan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Analisis Perhitungan Sebelum mendesain mesin pemotong kerupuk hal utama yang harus diketahui adalah mencari tegangan geser kerupuk yang akan dipotong. Percobaan yang dilakukan

Lebih terperinci

BAB IV ANALISA DAN PERHITUNGAN

BAB IV ANALISA DAN PERHITUNGAN BAB IV ANALISA DAN PERHITUNGAN Pada rancangan uncoiler mesin fin ini ada beberapa komponen yang perlu dilakukan perhitungan, yaitu organ penggerak yang digunakan rancangan ini terdiri dari, motor penggerak,

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Skema Dinamometer (Martyr & Plint, 2007)

BAB II DASAR TEORI. Gambar 2.1 Skema Dinamometer (Martyr & Plint, 2007) 3 BAB II DASAR TEORI 2.1 Pengertian Dinamometer Dinamometer adalah suatu mesin yang digunakan untuk mengukur torsi (torque) dan daya (power) yang diproduksi oleh suatu mesin motor atau penggerak berputar

Lebih terperinci

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013 Soal-Jawab Fisika Teori OSN 0 andung, 4 September 0. (7 poin) Dua manik-manik masing-masing bermassa m dan dianggap benda titik terletak di atas lingkaran kawat licin bermassa M dan berjari-jari. Kawat

Lebih terperinci

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA 1. Soal Olimpiade Sains bidang studi Fisika terdiri dari dua (2) bagian yaitu : soal isian singkat (24 soal) dan soal pilihan

Lebih terperinci

BAB IV ANALISA & PERHITUNGAN ALAT

BAB IV ANALISA & PERHITUNGAN ALAT BAB IV ANALISA & PERHITUNGAN ALAT Pada pembahasan dalam bab ini akan dibahas tentang faktor-faktor yang memiliki pengaruh terhadap pembuatan dan perakitan alat, gaya-gaya yang terjadi dan gaya yang dibutuhkan.

Lebih terperinci