SIMULASI RANCANGAN ACAK KELOMPOK TAK LENGKAP SEIMBANG DAN EFISIENSINYA

Ukuran: px
Mulai penontonan dengan halaman:

Download "SIMULASI RANCANGAN ACAK KELOMPOK TAK LENGKAP SEIMBANG DAN EFISIENSINYA"

Transkripsi

1 Agusrawati //Paradigma, Vol. 16 No.1, April 2012, hlm SIMULASI RANCANGAN ACAK KELOMPOK TAK LENGKAP SEIMBANG DAN EFISIENSINYA Agusrawati 1) 1) Jurusan Matematika FMIPA Unhalu, Kendari, Sulawesi Tenggara ABSTRAK Rancangan Acak Tak Lengkap Seimbang (RAKTLS) adalah suatu rancangan yang digunakan bila Rancangan Acak Lengkap (RAKL) tidak bisa digunakan dalam menentukan signifikansi suatu efek perlakuan yang diteliti. Dikatakan tidak lengkap pada RAKTLS karena tidak semua perlakuan yang diteliti ada pada setiap kelompok. Tujuan tulisan ini adalah menjelaskan mekanisme dan efisiensi RAKTLS terhadap RAKL. Hasil percobaan RAKL dengan tujuh perlakuan dan tujuh kelompok, disimulasikan dengan mengurangi jumlah perlakuan setiap kelompok sehingga sesuai dengan RAKTLS. Ada tiga tipe RAKTLS yang dihasilkan. yaitu (1) RAKTLS dengan 6 perlakuan tiap kelompok; (2) RAKTLS dengan 4 perlakuan tiap kelompok dan (3) RAKTLS dengan 3 perlakuan tiap kelompok. Berdasarkan statistik uji F, hasil pengujian efek perlakuan RAKTLS sama dengan RAKL dengan nilai-p relatif sama. Tingkat efisiensi RAKTLS sama dengan RAKL. Kata Kunci: Rancangan Acak Lengkap, Rancangan Acak Tak Lengkap, uji F, Nilai-p, Efisiensi ABSTRACT Balanced Incomplete Block Design (BIBD) is a special case of Randomized Complete Block Design (RCBD). It is applied when ordinary RCBD can not be used to determine whether the treatment effects are significant or not. The term incomplete in BIBD comes when some treatments not exist in all blocks. The aim of this research is to explain the mechanism and efficiency of BIBD on RCBD. In this research, the RCBD experiment was designed to have seven treatments and seven blocks, and by simulation, the number of treatments in each block was reduced, then the RCBD become BIBD. There are three types of BIBD simulated in this research, namely (1) BIBD with 6 treatrments in each block, (2) BIBD with 4 treatments in each block, and (3) BIBD with 3 treatments in each block. Based on statistic-f, the treatment effect of BIBD is similar to RCBD with similar p-value. This also performs the efficiently of BIBD similar to RCBD. Key Words: Randomized Complete Block Desigen, Balance Incomplete Block Design, statistic-f, p-value, efficiency Diterima: 10 Pebruari 2012 Disetujui untuk dipublikasikan: 20 Maret PENDAHULUAN Rancangan Acak Lengkap (RAKL) adalah rancangan yang dilakukan dengan mengelompokkan satuan percobaan ke dalam grup-grup yang homogen yang

2 Simulasi Rancangan Acak Tak Lengkap Seimbang dan Efisiensinya 32 dinamakan kelompok dan kemudian menentukan semua perlakuan secara acak di dalam masing-masing kelompok. Tujuan pengelompokkan satuan-satuan percobaan tersebut adalah untuk menghasilkan keragaman peubah respon yang sedang diteliti semata-mata disebabkan oleh perbedaan perlakuan yang diberikan [6]. Banyaknya satuan percobaan pada masing-masing kelompok minimal sebanyak perlakuan yang akan diteliti, mengingat perlakuan yang dicobakan harus muncul sekali pada setiap kelompok [3]. Dalam rancangan percobaan, ditemukan beberapa kasus bahwa tidak selalu mungkin semua perlakuan terdapat dalam tiap kelompok. Akibatnya kelompok menjadi tidak lengkap. Permasalahan ini muncul disebabkan perlakuan yang dilibatkan terlalu banyak dan bahan yang tersedia terbatas atau karena keterbatasan waktu dan dana. Rancangan Acak Tak Lengkap (RAKTL) adalah rancangan yang digunakan bagi kasus seperti ini [1]. Apabila dalam RAKTL tiap pasang perlakuan terjadi sama banyak dalam eksperimen, maka diperoleh Rancangan Acak Tak Lengkap Seimbang (RAKTLS)[5]. Untuk mengetahui lebih lanjut tentang RAKTLS yaitu bagaimana mekanisme dan efisiensinya maka tulisan ini dibuat. 1. Rancangan Acak Tak Lengkap Seimbang (RAKTLS) RAKTLS diperkenalkan oleh Fisher dan Yates pada tahun 1955, Cochran dan Cox pada tahun Dalam rancangan ini kombinasi-kombinasi perlakuan digunakan dalam masing-masing kelompok dipilih dalam suatu cara yang seimbang sehingga pasanganpasangan perlakuan muncul dalam jumlah yang sama untuk setiap kelompok sebagaimana pasangan-pasangan perlakuan yang lain [4]. Model linear untuk RAKTLS sama dengan Rancangan Acak Lengkap (RAKL), yaitu Y µ τ β ε (1) keterangan: 1, 2,, dan 1, 2,, Y = pengamatan pada perlakuan ke- dan kelompok ke- = nilai rataan umum = pengaruh perlakuan ke-

3 Agusrawati //Paradigma, Vol. 16 No.1, April 2012, hlm = pengaruh kelompok ke- pengaruh galat percobaan pada kelompok ke-j yang memperoleh perlakuan ke-. Masing-masing kelompok memuat k perlakuan (untuk k<p), dan masing-masing perlakuan diulang r kali dalam percobaan, dimana perlakuan tersebut hanya muncul satu kali per kelompok. Sedangkan, berapa kali dua perlakuan muncul bersama-sama dalam kelompok yang sama adalah λ [4]. Dengan demikian, untuk rancangan seimbang ada dua hubungan yang harus dipenuhi, yaitu: a. Jumlah total pengamatan adalah b. Jumlah pasangan dalam sebuah kelompok adalah 1 1 Analisis ragam untuk RAKTLS dapat dilihat pada Tabel 1. Sumber Keragaman Perlakuan(Adjusted) Galat Tabel 1. Analisis Ragam untuk RAKTLS Derajat Bebas Jumlah Kuadrat (db) Kuadrat (JK) Tengah (KT) Total 1 Keterangan: JKT.. JKK JKK... dan.. Fhitung dengan 1, jika perlakuan muncul dalam kelompok ke-; 0, jika perlakuan tidak muncul dalam kelompok ke- (2)

4 Simulasi Rancangan Acak Tak Lengkap Seimbang dan Efisiensinya 34 1; 1; 2. Efisiensi Rancangan Acak Tak Lengkap Seimbang (RAKTLS) terhadap Rancangan Acak Lengkap (RAKL) Percobaan yang mempunyai ketelitian tinggi adalah percobaan yang mempunyai ragam galat yang kecil, atau biasa disebut bersifat efisien. Jika dua rancangan percobaan dibandingkan maka untuk mengetahui rancangan mana yang mempunyai efisiensi (E) yang lebih tinggi dapat dilihat dari nilai ragam galat yang lebih kecil. Untuk mengetahui efisiensi RAKTLS dibandingkan dengan RAKL dapat dilihat dari besaran efisiensi dari kedua model rancangan percobaan tersebut Jika nilai efisiensi lebih kecil dari pada 1, maka RAKTLS lebih efisien digunakan daripada RAKL. Dan jika nilai efisiensi sama dengan satu, maka efisiensi RAKTLS terhadap RAKL sama. Sebaliknya jika nilai efisiensi lebih besar dari pada 1, maka RAKTLS menjadi tidak efisien dibandingkan dengan RAKL [2]. (3) 3. HASIL DAN PEMBAHASAN Sumber data yang digunakan adalah data sekunder [6]. Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap dengan 7 perlakuan dan 7 kelompok seperti terlihat pada Table 2. Hipotesis yang diuji adalah H0: 0 (perlakuan tidak berpengaruh terhadap respon yang diamati) H1 : paling sedikit ada satu dimana 0. Statistik uji yang digunakan untuk hipotesis di atas adalah statistik uji F. Tabel 3 memperlihatkan hasil statistik F beserta nilai-p. Keputusan yang diperoleh adalah tolak H0

5 Agusrawati //Paradigma, Vol. 16 No.1, April 2012, hlm atau minimal ada satu perlakuan berpengaruh terhadap respon yang diamati dengan taraf nyata 0.01 Tabel 2. Banyaknya Jagung Berkecambah yang Mendapat Perlakuan Beberapa Fungisida Perlakuan P1 P2 P3 P4 P5 P6 P Tabel 3. Analisis Ragam dengan Rancangan Acak Lengkap Sumber Keragaman Db JK KT F Nilai P Perlakuan ,82 210,47 35,49 0, ,24 18,04 3,04 Galat ,47 5,93 Total ,53 Anggap bahwa dalam percobaan tidak semua perlakuan diterapkan untuk setiap kelompok dikarenakan bahan atau waktu yang terbatas, sehingga kelompok menjadi tidak lengkap. Ini berarti Rancangan Acak Tak Lengkap Seimbang (RAKTLS) sebagai alternatifnya. Dalam hal ini timbul pertanyaan bagaimana tingkat efisiensi RAKTLS terhadap RAKL. Ada tiga tipe RAKTLS yang disimulasikan. Simulasi dilakukan berdasarkan banyaknya perlakuan tiap kelompok (k). Nilai k dipilih sedemikian hingga diperoleh nilai λ bulat sesui persamaan 2. Hasil simulasi diperlihatkan pada Tabel 4, 5, dan 6. Pada Tabel 4,5 dan 6 masing-masing menjelaskan tentang RAKTLS dengan jumlah perlakuan yang disertakan pada tiap kelompok (k) adalah 6, 4, dan 3 perlakuan. Nilai λ=5 pada Tabel 4 yang berarti bahwa pasangan-pasangan perlakuan muncul bersama-sama sebanyak lima kali dalam kelompok yang sama, begitu pula makna nilai λ=2 dan 1 pada Tabel 5 dan 6.

6 Simulasi Rancangan Acak Tak Lengkap Seimbang dan Efisiensinya 36 Tabel 4. RAKTLS dengan 7; 7; 6; 6 dan 5 Perlakuan P1 P2 P3 P4 P5 P6 P Tabel 5. RAKTLS dengan 7; 7; 4 4 dan 2 Perlakuan P1 P2 P3 P4 P5 P6 P Ket: : Banyaknya perlakuan ; : banyaknya kelompok ; : banyaknya perlakuan tiap kelompok ; : ulangan dan : berapa kali dua perlakuan muncul bersama - sama dalam kelompok yang sama Tabel 6. RAKTLS dengan 7; 7; 3 3 dan 1 Perlakuan P1 P2 P3 P4 P5 P6 P Ket: :Banyaknya perlakuan; : banyaknya kelompok; : banyaknya perlakuan tiap kelompok; : ulangan dan : berapa kali dua perlakuan muncul bersama-sama dalam kelompok yang sama

7 Agusrawati //Paradigma, Vol. 16 No.1, April 2012, hlm Hasil pengujian hipotesis RAKTLS dengan k =6 dapat dilihat pada Tabel 7. Berdasarkan statistik uji F dan nilai-p, RAKTLS menghasilkan keputusan yang sama dengan RAKL yaitu tolak H0, dengan Ragam RAKTLS yaitu 5,99 relatif sama dengan ragam RAKL yang bernilai 5,93. Dengan demikian besaran efisiensi (E) RAKTLS terhadap RAKL relatif sama karena nilai 1 Tabel 7. Analisis Ragam RAKTLS dengan 7; 7; 6; 6 dan 5 Sumber Keragaman Db JK KT F Nilai_P Perlakuan(Adjusted) ,19 176,53 29,48 0, ,81 26,135 4,363 Galat ,64 5,99 Total ,64 Pada Tabel 8 menjelaskan hasil pengujian hipotesis RAKTLS dengan 4. Berdasarkan statistik uji F dan nilai-p, RAKTLS menghasilkan keputusan yang sama dengan RAKL yaitu tolak H0, dengan Ragam RAKTLS yaitu 6,274 lebih besar dari ragam RAKL yang bernilai 5,93. Namun besaran efisiensi (E) RAKTLS terhadap RAKL relatif sama karena nilai E 1 Tabel 8. Analisis Ragam RAKTLS dengan 7; 7; 4; 4 dan 2 Sumber Keragaman Db JK KT F Nilai_P Perlakuan(Adjusted) 6 699, ,524 18,57 0, ,429 17,905 2,853 Galat 15 94,107 6,274 Total ,679 Hasil pengujian hipotesis RAKTLS dengan k =3 dapat dilihat pada Tabel 9. Tabel 9. Analisis Ragam RAKTLS dengan 7; 7; 3; 3 dan 1 Sumber Keragaman Db JK KT F Nilai_P Perlakuan(Adjusted) 6 364,190 60,698 10,60 0, ,81 28,635 5,001 Galat 8 45,81 5,726 Total Berdasarkan statistik uji F dan nilai-p, RAKTLS menghasilkan keputusan yang sama dengan RAKL yaitu tolak H0, dengan α=0.01. Ragam RAKTLS yaitu 5,99 relatif

8 Simulasi Rancangan Acak Tak Lengkap Seimbang dan Efisiensinya 38 sama dengan ragam RAKL yang bernilai 5,7326. Dengan demikian besaran efisiensi (E) RAKTLS terhadap RAKL relatif sama karena nilai E 1 4. KESIMPULAN Berdasarkan hasil simulasi tiga tipe Rancangan Acak Tak Lengkap Seimbang (RAKTLS), masing-masing tipe dibedakan berdasarkan jumlah perlakuan yang digunakan tiap kelompok, diperoleh kesimpulan bahwa RAKTLS memiliki tingkat efisiensi yang relatif sama dengan Rancangan Acak Lengkap. DAFTAR PUSTAKA [1] Cochran, G.G., and G.M. Cox (1957). Eksperiment Design. 2th Edition, New York: John Wiley and Sons. [2] Gasperz. Vincent Tehnik Analisis dalam Penelitian Jilid 1. Tarsito:Bandung. [3] Mattjik, A.A. & Sumertajaya, I.M. (2000). Perancangan Percobaan dengan Asplikasi SAS dan MINITAB Jilid I. Bogor: IPB PRESS. [4] Montgomery, D.C. (2001). Design and Analisys of Experiments 5th Edition. New York: John Wiley and Sons. [5] Sudjana. (1991). Desain dan Analisis Eksperiman Edisi 3. Bandung: Tarsito. [6] Steel, R.G.D., J.H. Torie. (1993). Prinsip dan Prosedur Statistika, Suatu Pendekatan Biometrik. Edisi 2., Jakarta: Gramedia Pustaka Utama.

Acak Kelompok Lengkap (Randomized Block Design) Arum H. Primandari, M.Sc.

Acak Kelompok Lengkap (Randomized Block Design) Arum H. Primandari, M.Sc. Percobaan Satu Faktor: Rancangan Acak Kelompok Lengkap (Randomized Block Design) Arum H. Primandari, M.Sc. Latar belakang Rancangan Acak kelompok adalah suatu rancangan acak yang dilakukan dengan mengelompokkan

Lebih terperinci

KERAGAMAN DALAM BLOK PADA RANCANGAN ACAK KELOMPOK TIDAK LENGKAP SEIMBANG DENGAN INTERGRADIEN

KERAGAMAN DALAM BLOK PADA RANCANGAN ACAK KELOMPOK TIDAK LENGKAP SEIMBANG DENGAN INTERGRADIEN KERAGAMAN DALAM BLOK PADA RANCANGAN ACAK KELOMPOK TIDAK LENGKAP SEIMBANG DENGAN INTERGRADIEN NOVIANTI, V. 1, ANISA 2, DAN SIRAJANG, N. 3 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

ANALISIS RAGAM SKOR KOMPONEN UTAMA PADA PERCOBAAN RESPONS-GANDA. Bahriddin Abapihi 1)

ANALISIS RAGAM SKOR KOMPONEN UTAMA PADA PERCOBAAN RESPONS-GANDA. Bahriddin Abapihi 1) Bahriddin Abapihi//Paradigma, Vol.15 No.1 Pebruari 2011 hlm.11 18 11 ANALISIS RAGAM SKOR KOMPONEN UTAMA PADA PERCOBAAN RESPONS-GANDA Bahriddin Abapihi 1) 1) Jurusan Matematika FMIPA, Universitas Haluoleo,

Lebih terperinci

Perancangan Percobaan

Perancangan Percobaan Fakultas/Prodi Mata Kuliah/Kode : MIPA/Statistika Semester / SKS : Genap/ 3(2-2) Deskripsi Mata Kuliah Standar Kompetensi Mata Kuliah Prasyarat : Pe Percobaan/STK222 Pe Percobaan : Mata kuliah pe membahas

Lebih terperinci

ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER

ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER Siswanto 1, Raupong 2, Annisa 3 ABSTRAK Dalam statistik, melakukan suatu percobaan adalah salah satu cara untuk mendapatkan

Lebih terperinci

MODUL 1 PRINSIP DASAR PERANCANGAN PERCOBAAN

MODUL 1 PRINSIP DASAR PERANCANGAN PERCOBAAN MODUL 1 PRINSIP DASAR PERANCANGAN PERCOBAAN A. Pendahuluan Bahan Pembelajaran 1 berupa modul ini adalah suatu pengantar dalam perancangan percobaan yang akan dibahas hubungannya dengan sasaran, analisis

Lebih terperinci

PADA KERAGAMAN KELOMPOK FAKTORIAL RANCANGAN ACAK KELOMPOK LENGKAP DENGAN ULANGAN

PADA KERAGAMAN KELOMPOK FAKTORIAL RANCANGAN ACAK KELOMPOK LENGKAP DENGAN ULANGAN PERBANDINGAN ANALISIS INTERBLOK DAN INTERGRADIEN PADA KERAGAMAN KELOMPOK FAKTORIAL RANCANGAN ACAK KELOMPOK LENGKAP DENGAN ULANGAN Fadhlul Mubarak Nasution, Anisa, Raupong Program Studi Statistika, FMIPA,

Lebih terperinci

PENGGUNAAN UJI MULTIVARIAT FRIEDMAN PADA RANCANGAN ACAK KELOMPOK LENGKAP

PENGGUNAAN UJI MULTIVARIAT FRIEDMAN PADA RANCANGAN ACAK KELOMPOK LENGKAP PENGGUNAAN UJI MULTIVARIAT FRIEDMAN PADA RANCANGAN ACAK KELOMPOK LENGKAP Ariyani 1, Raupong, Annisa 3 ABSTRAK Rancangan Acak Kelompok Lengkap (RAKL) merupakan salah satu bentuk rancangan lingkungan dimana

Lebih terperinci

PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAK-PETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG

PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAK-PETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG PERBANDINGAN ANALISIS VARIANSI DENGAN ANALISIS KOVARIANSI DALAM RANCANGAN PETAKPETAK TERBAGI PADA RANCANGAN ACAK KELOMPOK DENGAN DATA HILANG Sri Wahyuningsih R 1, Anisa 2, Raupong ABSTRAK Analisis variansi

Lebih terperinci

Analisis Kovariansi pada Rancangan Faktorial Dua Faktor dengan n Kali Ulangan

Analisis Kovariansi pada Rancangan Faktorial Dua Faktor dengan n Kali Ulangan Analisis Kovariansi pada Rancangan Faktorial Dua Faktor dengan n Kali Ulangan Rika Syofiana #1, Minora L. Nst *2, Riry Sri Ningsih *3 # Student of Mathematics Department State University of Padang, Indonesia

Lebih terperinci

BAB I PENDAHULUAN RANCANGAN CROSSOVER TIGA PERIODE DENGAN DUA PERLAKUAN DUA PERLAKUAN. Disusun Oleh: Diasnita Putri Larasati Ayunda

BAB I PENDAHULUAN RANCANGAN CROSSOVER TIGA PERIODE DENGAN DUA PERLAKUAN DUA PERLAKUAN. Disusun Oleh: Diasnita Putri Larasati Ayunda RANCANGAN CROSSOVER TIGA PERIODE DENGAN DUA PERLAKUAN SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan guna Memperoleh

Lebih terperinci

RANCANGAN KELOMPOK TAK LENGKAP SEIMBANG (Incomplete Block Design)

RANCANGAN KELOMPOK TAK LENGKAP SEIMBANG (Incomplete Block Design) RANCANGAN KELOMPOK TAK LENGKAP SEIMBANG (Incomplete Block Design) Pendahuluan Rancangan percobaan seperti RBSL, RAKL, dan juga RAL sering mengalami kendala pada perlakuan dengan jumlah yang besar, karena

Lebih terperinci

PENILAIAN CARA MENGAJAR MENGGUNAKAN RANCANGAN ACAK LENGKAP (Studi kasus: Cara Mengajar Dosen Jurusan Statistika UNDIP)

PENILAIAN CARA MENGAJAR MENGGUNAKAN RANCANGAN ACAK LENGKAP (Studi kasus: Cara Mengajar Dosen Jurusan Statistika UNDIP) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 2, Tahun 2014, Halaman 183-192 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENILAIAN CARA MENGAJAR MENGGUNAKAN RANCANGAN ACAK LENGKAP (Studi

Lebih terperinci

ANALISIS VARIANS TIGA FAKTOR PADA RANCANGAN SPLIT-SPLIT PLOT

ANALISIS VARIANS TIGA FAKTOR PADA RANCANGAN SPLIT-SPLIT PLOT Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (015), hal 379 386. ANALISIS VARIANS TIGA FAKTOR PADA RANCANGAN SPLIT-SPLIT PLOT Silvia Widayanti, Muhlasah Novitasari Mara, Neva Satyahadewi

Lebih terperinci

ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG SKRIPSI

ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG SKRIPSI ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG SKRIPSI Disusun oleh: NARISWARI DIWANGKARI 24010211120003 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG

Lebih terperinci

ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG

ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG ISSN: 2339-254 JURNAL GAUSSIAN, Volume 5, Nomor, Tahun 206, Halaman 53-62 Online di: http://ejournal-s.undip.ac.id/index.php/gaussian ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG Nariswari

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA

RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA Tanggal Penyusunan 29/01/2016 Tanggal revisi - Kode dan Nama MK KA064326 Perancangan Percobaan SKS dan Semester SKS 3 Semester

Lebih terperinci

PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG TERHADAP KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK PADA PERTUMBUHAN TANAMAN JAGUNG

PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG TERHADAP KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK PADA PERTUMBUHAN TANAMAN JAGUNG PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG TERHADAP KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK PADA PERTUMBUHAN TANAMAN JAGUNG SKRIPSI Disusun Oleh : ASISMARTA 24010210141004 JURUSAN STATISTIKA

Lebih terperinci

Pembauran (Confounding) Pada Percobaan Faktorial Tiga Taraf

Pembauran (Confounding) Pada Percobaan Faktorial Tiga Taraf Jurnal Gradien Vol 8 No 1 Januari 2012: 763.-774 Pembauran (Confounding) Pada Percobaan Faktorial Tiga Taraf Nur Afandi, Sigit Nugroho dan Pepi Novianti Jurusan Matematika, Fakultas Matematika dan Ilmu

Lebih terperinci

MODEL AMMI PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K

MODEL AMMI PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K , April 2009 p : 11-15 ISSN : 0853-8115 Vol 14 No.1 MODEL AMMI PERCOBAAN LOKASI GANDA PEMUPUKAN N, P, K Mohammad Masjkur 1 dan Niken Dyah Septiastuti Departemen Statistika FMIPA-IPB E-mail : 1 masjkur@gmail.com

Lebih terperinci

PENERAPAN METODE PERMUKAAN RESPONS DALAM MASALAH OPTIMALISASI

PENERAPAN METODE PERMUKAAN RESPONS DALAM MASALAH OPTIMALISASI E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 32-36 ISSN: 2303-1751 PENERAPAN METODE PERMUKAAN RESPONS DALAM MASALAH OPTIMALISASI ADE KUSUMA DEWI 1, I WAYAN SUMARJAYA 2, I GUSTI AYU MADE SRINADI 3 1,2,3

Lebih terperinci

JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman Online di:

JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman Online di: JURNAL GAUSSIAN, Volume 2, Nomor 4, Tahun 2013, Halaman 279-288 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS VARIAN DUA FAKTOR DALAM RANCANGAN PENGAMATAN BERULANG ( REPEATED MEASURES

Lebih terperinci

EFEKTIVITAS ANALISIS PERAGAM UNTUK MENGENDALIKAN GALAT PERCOBAAN PADA RANCANGAN ACAK KELOMPOK DENGAN MATERI PERCOBAAN TERNAK BABI

EFEKTIVITAS ANALISIS PERAGAM UNTUK MENGENDALIKAN GALAT PERCOBAAN PADA RANCANGAN ACAK KELOMPOK DENGAN MATERI PERCOBAAN TERNAK BABI EFEKTIVITAS ANALISIS PERAGAM UNTUK MENGENDALIKAN GALAT PERCOBAAN PADA RANCANGAN ACAK KELOMPOK DENGAN MATERI PERCOBAAN TERNAK BABI (Effectivity of Covariance Analysis to Controlled the Experimental Error

Lebih terperinci

Keywords: Factorial Experiment, CRBD, AMMI, Analysis of Variance, PCA, Biplot

Keywords: Factorial Experiment, CRBD, AMMI, Analysis of Variance, PCA, Biplot ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 529-536 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS VARIAN PERCOBAAN FAKTORIAL DUA FAKTOR RAKL DENGAN METODE

Lebih terperinci

PENGGUNAAN UJI SKILLINGS-MACK PADA RANCANGAN ACAK KELOMPOK TIDAK LENGKAP TIDAK SEIMBANG. Mustakim 1, Anisa 2, Raupong 3 ABSTRAK

PENGGUNAAN UJI SKILLINGS-MACK PADA RANCANGAN ACAK KELOMPOK TIDAK LENGKAP TIDAK SEIMBANG. Mustakim 1, Anisa 2, Raupong 3 ABSTRAK PENGGUNAAN UJI SKILLINGS-MACK PADA RANCANGAN ACAK KELOMPOK TIDAK LENGKAP TIDAK SEIMBANG Mustakim 1, Anisa 2, Raupong 3 ABSTRAK Universitas Hasanuddin Rancangan acak kelompok tidak lengkap tidak seimbang

Lebih terperinci

PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG PADA KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK TERHADAP PERTUMBUHAN TANAMAN JAGUNG

PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG PADA KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK TERHADAP PERTUMBUHAN TANAMAN JAGUNG ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 1, Tahun 2016, Halaman 51-60 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG PADA KOMBINASI

Lebih terperinci

ANALISIS PERCOBAAN FAKTORIAL UNTUK MELIHAT PENGARUH PENGGUNAAN ALAT PERAGA BLOK ALJABAR TERHADAP PRESTASI BELAJAR ALJABAR SISWA

ANALISIS PERCOBAAN FAKTORIAL UNTUK MELIHAT PENGARUH PENGGUNAAN ALAT PERAGA BLOK ALJABAR TERHADAP PRESTASI BELAJAR ALJABAR SISWA E-Jurnal Matematika Vol., No., Mei 3, - ISSN: 33-7 ANALISIS PERCOBAAN FAKTORIAL UNTUK MELIHAT PENGARUH PENGGUNAAN ALAT PERAGA BLOK ALJABAR TERHADAP PRESTASI BELAJAR ALJABAR SISWA NI PUTU AYU MIRAH MARIATI,

Lebih terperinci

ESTIMASI KOMPONEN VARIAN PADA RANCANGAN ACAK KELOMPOK DENGAN MODIFIKASI HARTLEY-ROU

ESTIMASI KOMPONEN VARIAN PADA RANCANGAN ACAK KELOMPOK DENGAN MODIFIKASI HARTLEY-ROU ESTIMASI KOMPONEN VARIAN PADA RANCANGAN ACAK KELOMPOK DENGAN MODIFIKASI HARTLEY-ROU Lismayani Usman 1, Raupong 2, Andi Kresna Jaya 3 Program studi Statistika, Jurusan Matematika, FMIPA, Universitas Hasanuddin

Lebih terperinci

Tingkat Efisiensi Metode Regresi Robust dalam Menaksir Koefisien Garis Regresi Jika Ragam Galat Tidak Homogen

Tingkat Efisiensi Metode Regresi Robust dalam Menaksir Koefisien Garis Regresi Jika Ragam Galat Tidak Homogen Tingkat Efisiensi Metode Robust dalam Menaksir Garis Jika Ragam Galat Tidak Homogen Harmi Sugiarti dan Andi Megawarni e-mail: harmi@mailutacid dan mega@mailutacid Abstract This paper aims to compare the

Lebih terperinci

Matematika dan Statistika

Matematika dan Statistika ISSN 4-6669 Volume, Juni 0 MAJALAH ILMIAH Matematika dan Statistika DITERBITKAN OLEH: JURUSAN MATEMATIKA FMIPA UNIVERSITAS JEMBER Model Permukaan Respon pada(4 3) MODEL PERMUKAAN RESPON PADA PERCOBAAN

Lebih terperinci

RANCANGAN ACAK LENGKAP (RAL)

RANCANGAN ACAK LENGKAP (RAL) RANCANGAN ACAK LENGKAP (RAL) Oleh: Ir. Sri Nurhatika M.P Jurusan Biologi Fakultas MAtematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2010 RANCANGAN ACAK LENGKAP (RAL) Penggunaan

Lebih terperinci

Perancangan Percobaan STK222 / 3(2-2)

Perancangan Percobaan STK222 / 3(2-2) Perancangan Percobaan STK222 / 3(2-2) SKS RANCOB - 3 (2-2) Apa maksudnya 1 sks? Satu sks dengan metode kuliah meliputi 3 jam kegiatan per minggu dalam satu semester dengan perincian sebagai berikut : Kegiatan

Lebih terperinci

OPTIMASI DENGAN METODE DAKIAN TERCURAM

OPTIMASI DENGAN METODE DAKIAN TERCURAM OPTIMASI DENGAN METODE DAKIAN TERCURAM Marwan Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Syiah Kuala, Jln. Syekh Abdur Rauf No. 3 Darussalam, Banda Aceh 23111 email:

Lebih terperinci

EKSPERIMENTAL DESAIN. Created by : Ika Damayanti, S.Si, M.Si

EKSPERIMENTAL DESAIN. Created by : Ika Damayanti, S.Si, M.Si EKSPERIMENTAL DESAIN Created by : Ika Damayanti, S.Si, M.Si Materi : 1. Pengantar 2. Prinsip-prinsip Perancangan Percobaan 3. Rancangan Acak lengkap 4. Rancangan Acak Kelompok 5. Rancangan Bujur Sangkar

Lebih terperinci

Pertemuan 10 STATISTIKA INDUSTRI 2. Multiple Linear Regression. Multiple Linear Regression. Multiple Linear Regression 19/04/2016

Pertemuan 10 STATISTIKA INDUSTRI 2. Multiple Linear Regression. Multiple Linear Regression. Multiple Linear Regression 19/04/2016 19/04/016 Pertemuan 10 STATISTIKA INDUSTRI TIN 4004 Outline: and Correlation Non Linear Regression Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability for Engineers, 5 th Ed. John

Lebih terperinci

Perancangan Percobaan

Perancangan Percobaan Perancangan Percobaan Rancangan lingkungan: Rancangan Acak Lengkap (RAL), (RAK) dan Rancangan Bujur Sangkar Latin (RBSL), Lattice. Ade Setiawan 009 RAL Ade Setiawan 009 Latar Belakang RAK 3 Perlakuan Sama

Lebih terperinci

PENERAPAN METODE TAGUCHI UNTUK OPTIMALISASI HASIL PRODUKSI ROTI DI USAHA ROTI MEYZA BAKERY, PADANG SUMATERA BARAT

PENERAPAN METODE TAGUCHI UNTUK OPTIMALISASI HASIL PRODUKSI ROTI DI USAHA ROTI MEYZA BAKERY, PADANG SUMATERA BARAT Jurnal Matematika UNAND Vol. 5 No. 3 Hal. 122 130 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENERAPAN METODE TAGUCHI UNTUK OPTIMALISASI HASIL PRODUKSI ROTI DI USAHA ROTI MEYZA BAKERY, PADANG SUMATERA

Lebih terperinci

HASIL DAN PEMBAHASAN. Metode Bootstrap

HASIL DAN PEMBAHASAN. Metode Bootstrap Metode Bootstrap Setelah didapatkan hasil dari pengukuran sensitivitas harga, lalu diamati perilaku dari APR dan diduga selang kepercayaan dengan menggunakan metode bootstrap nonparametrik, dengan pengulangan

Lebih terperinci

PENGGUNAAN MODEL LINIER SEBAGAI ALTERNATIF ANOVA RANCANGAN PERCOBAAN FAKTORIAL TERSARANG PADA DATA NON NORMAL

PENGGUNAAN MODEL LINIER SEBAGAI ALTERNATIF ANOVA RANCANGAN PERCOBAAN FAKTORIAL TERSARANG PADA DATA NON NORMAL PENGGUNAAN MODEL LINIER SEBAGAI ALTERNATIF ANOVA RANCANGAN PERCOBAAN FAKTORIAL TERSARANG PADA DATA NON NORMAL Prasetyo Universitas Negeri Malang E-mail : pras_kazekage@yahoo.com Pembimbing: (I) Ir. Hendro

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 71-81, Agustus 2001, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 71-81, Agustus 2001, ISSN : PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA Tatik Widiharih Jurusan Matematika FMIPA UNDIP Abstrak Multikolinearitas yang tinggi diantara peubah-peubah bebas,

Lebih terperinci

PERBEDAAN UMUR BIBIT TERHADAP PERTUMBUHAN DAN PRODUKSI PADI SAWAH (Oryza sativa L)

PERBEDAAN UMUR BIBIT TERHADAP PERTUMBUHAN DAN PRODUKSI PADI SAWAH (Oryza sativa L) 35 PERBEDAAN UMUR BIBIT TERHADAP PERTUMBUHAN DAN PRODUKSI PADI SAWAH (Oryza sativa L) EFFECTS OF AGE DIFFERENCES OF SEEDS ON GROWTH AND PRODUCTION OF PADDY RICE (Oryza sativa L) Vikson J. Porong *) *)

Lebih terperinci

Analisis Variansi Rancangan Petak Teralur Menggunakan 4 Perulangan

Analisis Variansi Rancangan Petak Teralur Menggunakan 4 Perulangan Analisis Variansi Rancangan Petak Teralur Menggunakan 4 Perulangan Analyze of Variance Strip Plot Design using 4 Iterations (Case Study : Average Number of Strands Results Leaf Seed Oil Palm (Elaeis Guineesis

Lebih terperinci

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 3, , Desember 2001, ISSN :

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 3, , Desember 2001, ISSN : JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No., 19-150, Desember 001, ISSN : 1410-8518 ANALISIS RAGAM MULTIVARIAT UNTUK RANCANGAN ACAK LENGKAP DENGAN PENGAMATAN BERULANG Tatik Widiharih Jurusan Matematika

Lebih terperinci

PENGARUH MODIFIKASI KABAM (TRAP) TERHADAP HASIL TANGKAPAN IKAN SELUANG (Rasbora sp)

PENGARUH MODIFIKASI KABAM (TRAP) TERHADAP HASIL TANGKAPAN IKAN SELUANG (Rasbora sp) Siti Aminah :Pengaruh Modifikasi Kabam PENGARUH MODIFIKASI KABAM (TRAP) TERHADAP HASIL TANGKAPAN IKAN SELUANG (Rasbora sp) THE INFLUENCE OF MODIFICATION KABAM (TRAP) AGAINST CATCHES SELUANG (Rasbora sp)

Lebih terperinci

ANALISIS VARIAN PERCOBAAN FAKTORIAL DUA FAKTOR RAKL DENGAN METODE FIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION SKRIPSI

ANALISIS VARIAN PERCOBAAN FAKTORIAL DUA FAKTOR RAKL DENGAN METODE FIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION SKRIPSI ANALISIS VARIAN PERCOBAAN FAKTORIAL DUA FAKTOR RAKL DENGAN METODE FIXED ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTION SKRIPSI Oleh: AKHMAD ZAKI NIM. 24010210120049 JURUSAN STATISTIKA FAKULTAS SAINS

Lebih terperinci

ANALISIS KONJOIN UNTUK MENILAI PEMBUKAAN PROGRAM STUDI STATISTIKA DI UNIVERSITAS SYIAH KUALA. Abstrak

ANALISIS KONJOIN UNTUK MENILAI PEMBUKAAN PROGRAM STUDI STATISTIKA DI UNIVERSITAS SYIAH KUALA. Abstrak ANALISIS KONJOIN UNTUK MENILAI PEMBUKAAN PROGRAM STUDI STATISTIKA DI UNIVERSITAS SYIAH KUALA Asep Rusyana, Nanny Salwa, Muzamil, Jurusan Matematika FMIPA Unsyiah arusyana@yahoo.com Abstrak Analisis konjoin

Lebih terperinci

RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007

RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Design) Dr.Ir. I Made Sumertajaya, M.Si Departemen Statistika-FMIPA IPB 2007 RANCANGAN ACAK KELOMPOK TAK LENGKAP (Incomplete Block Desgn) Dr.Ir. I Made Sumertajaya, M.S Departemen Statstka-FMIPA IPB 007 Revew Rancangan Acak Kelompok Kta ngn membandngkan t perlakuan Pengelompokan

Lebih terperinci

E-Jurnal Matematika Vol. 4 (3), Agustus 2015, pp ISSN:

E-Jurnal Matematika Vol. 4 (3), Agustus 2015, pp ISSN: IMPLEMENTASI METODE BOOTSTRAP DALAM INFERENSI TITIK- TITIK BIPLOT AMMI MODEL AMMI CAMPURAN (MIXED AMMI) (Studi Kasus: Menduga Stabilitas Genotipe Padi) Ni Putu Ayu Dinita Trisnayanti 1, I Komang Gde Sukarsa

Lebih terperinci

PENERAPAN RANCANGAN TAK LENGKAP LATIS SEDERHANA PADA SELEKSI FAMILI JAGUNG

PENERAPAN RANCANGAN TAK LENGKAP LATIS SEDERHANA PADA SELEKSI FAMILI JAGUNG PENERAPAN RANCANGAN TAK LENGKAP LATIS SEDERHANA PADA SELEKSI FAMILI JAGUNG The applied of incomplete simple lattice design for selected of maize family M. Yasin HG, Syuryawati, Ismail, dan Made J. Mejaya

Lebih terperinci

Pengaruh Interaksi dan Nilai Interaksi pada Percobaan Faktorial (Review) ABSTRACT

Pengaruh Interaksi dan Nilai Interaksi pada Percobaan Faktorial (Review) ABSTRACT AGROTROP, 5 (1): 9 0 (015) ISSN: 008-155X Fakultas Pertanian Universitas Udayana Denpasar Bali - Indonesia Pengaruh Interaksi dan Nilai Interaksi pada Percobaan Faktorial (Review) I MADE NARKA TENAYA Laboratorium

Lebih terperinci

Rancangan Acak Lengkap (RAL) Completely Randomized Design Atau Fully Randomized Design

Rancangan Acak Lengkap (RAL) Completely Randomized Design Atau Fully Randomized Design Rancangan Acak Lengkap (RAL) Completely Randomized Design Atau Fully Randomized Design CIRI - CIRI R.A.L. : 1. Media atau bahan percobaan seragam (dapat dianggap se- ragam ) 2. Hanya ada satu sumber kera-

Lebih terperinci

KOREKSI METODE CONNECTED AMMI DALAM PENDUGAAN DATA TIDAK LENGKAP ABSTRAK

KOREKSI METODE CONNECTED AMMI DALAM PENDUGAAN DATA TIDAK LENGKAP ABSTRAK KOREKSI METODE CONNECTED AMMI DALAM PENDUGAAN DATA TIDAK LENGKAP I Made Sumertajaya 2 Ahmad Ansori Mattjik 3 I Gede Nyoman Mindra Jaya,2 Dosen Departemen Statistika Institut Pertanian Bogor,3 Mahasiswa

Lebih terperinci

PENERAPAN UJI t (DUA PIHAK) DALAM PENELITIAN PETERNAKAN (An Aplication of the t - Test (Two Tails) in Animal Science Experiment)

PENERAPAN UJI t (DUA PIHAK) DALAM PENELITIAN PETERNAKAN (An Aplication of the t - Test (Two Tails) in Animal Science Experiment) PENERAPAN UJI t (DUA PIHAK) DALAM PENELITIAN PETERNAKAN (An Aplication of the t - Test (Two Tails) in Animal Science Experiment) R. Hartanto Fakultas Peternakan Universitas Diponegoro, Semarang ABSTRAK

Lebih terperinci

II. PERCOBAAN NON FAKTORIAL

II. PERCOBAAN NON FAKTORIAL II. PERCOBAAN NON FAKTORIAL A. Rancangan Acak Lengkap (RAL) 1. Rancangan Acak Lengkap (Completely Randomized Design) termasuk rancangan faktor tunggal (hanya terdiri dari satu faktor) merupakan rancangan

Lebih terperinci

TINJAUAN PUSTAKA. Rancangan petak teralur (strip plot design) merupakan susunan petak-petak (plotplot)

TINJAUAN PUSTAKA. Rancangan petak teralur (strip plot design) merupakan susunan petak-petak (plotplot) II. TINJAUAN PUSTAKA 2.1 Rancangan Petak Teralur Rancangan petak teralur (strip plot design) merupakan susunan petak-petak (plotplot) sebagai satuan percobaan yang terdiri dari plot baris untuk perlakuan

Lebih terperinci

Analisis Ragam & Rancangan Acak Lengkap Statistik (MAM 4137)

Analisis Ragam & Rancangan Acak Lengkap Statistik (MAM 4137) 10th Meeting Analisis Ragam & Rancangan Acak Lengkap Statistik (MAM 4137) by Ledhyane I.H Tujuan Instruksional Khusus Mahasiswa akan dapat menggunakan rangkaian prosedur percobaan dengan menggunakan analisis

Lebih terperinci

PERANCANGAN PERCOBAAN

PERANCANGAN PERCOBAAN PERANCANGAN PERCOBAAN OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 PERCOBAAN SATU FAKTOR RANCANGAN ACAK LENGKAP ( R A L ) Percobaan Satu Faktor : Pengaruh Takaran Pupuk

Lebih terperinci

Pangesti et al., Pengaruh Penggunaan Media Lingkungan...

Pangesti et al., Pengaruh Penggunaan Media Lingkungan... 1 Pengaruh Penggunaan Media Lingkungan sebagai Sumber Belajar terhadap Hasil Belajar Siswa Kelas III Mata Pelajaran IPAdi SDN Ajung 01 Ajung-Jember Tahun Pelajaran 2013/2014 (The Effect of The Use of Media

Lebih terperinci

PERMASALAHAN AUTOKORELASI PADA ANALISIS REGRESI LINIER SEDERHANA

PERMASALAHAN AUTOKORELASI PADA ANALISIS REGRESI LINIER SEDERHANA Jurnal Matematika UNAND Vol. 2 No. 2 Hal. 26 34 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERMASALAHAN AUTOKORELASI PADA ANALISIS REGRESI LINIER SEDERHANA NADIA UTIKA PUTRI, MAIYASTRI, HAZMIRA

Lebih terperinci

TKS 4209 PENDAHULUAN 4/1/2015

TKS 4209 PENDAHULUAN 4/1/2015 TKS 4209 Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya PENDAHULUAN Percobaan pada umumnya dilakukan untuk menemukan sesuatu, oleh karena itu secara teoritis, percobaan diartikan sebagai

Lebih terperinci

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO 1 GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP 10.04.03 209 Revisi ke Tanggal Dikaji Ulang Oleh Dikendalikan Oleh Disetujui Oleh Ketua Jurusan Biologi GPM jurusan Biologi

Lebih terperinci

RANCANGAN PERCOBAAN (catatan untuk kuliah MP oleh Bambang Murdiyanto)

RANCANGAN PERCOBAAN (catatan untuk kuliah MP oleh Bambang Murdiyanto) RANCANGAN PERCOBAAN (catatan untuk kuliah MP oleh Bambang Murdiyanto) RANCANGAN : Bentuk, model, pola PERCOBAAN: - Rangkaian kegiatan untuk mencari jawaban terhadap permasalahan dengan menguji hipotesis.

Lebih terperinci

PENGUJIAN HIPOTESIS BEDA TIGA RATA-RATA ATAU LEBIH. Statistik Industri II Teknik Industri Universitas Brawijaya

PENGUJIAN HIPOTESIS BEDA TIGA RATA-RATA ATAU LEBIH. Statistik Industri II Teknik Industri Universitas Brawijaya PENGUJIAN HIPOTESIS BEDA TIGA RATA-RATA ATAU LEBIH Statistik Industri II Teknik Industri Universitas Brawijaya Pengujian Hipotesis 3 rata-rata atau lebih Dengan teknik ANOVA (Analisis Varians) Pengujian

Lebih terperinci

METODE YATES : METODE ALTERNATIF MENGHITUNG KONTRAS SUTARMAN. Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Sumatera Utara

METODE YATES : METODE ALTERNATIF MENGHITUNG KONTRAS SUTARMAN. Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Sumatera Utara METODE YATES : METODE ALTERNATIF MENGHITUNG KONTRAS SUTARMAN Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Sumatera Utara Abstrak Artikel berikut ini menyajikan salah satu metode, dikenal dengan

Lebih terperinci

STATISTIKA II (BAGIAN

STATISTIKA II (BAGIAN STATISTIKA II (BAGIAN - ) Oleh : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 008 Wijaya : Statistika II (Bagian-) 0 VI. PENGUJIAN HIPOTESIS Hipotesis

Lebih terperinci

ANALISIS RAGAM MULTIVARIAT UNTUK RANCANGAN ACAK LENGKAP DENGAN PENGAMATAN BERULANG. Tatik Widiharih Jurusan Matematika FMIPA UNDIP.

ANALISIS RAGAM MULTIVARIAT UNTUK RANCANGAN ACAK LENGKAP DENGAN PENGAMATAN BERULANG. Tatik Widiharih Jurusan Matematika FMIPA UNDIP. ANALISIS RAGAM MULTIVARIAT UNTUK RANCANGAN ACAK LENGKAP DENGAN PENGAMATAN BERULANG Tatik Widiharih Jurusan Matematika FMIPA UNDIP Abstrak Rancangan satu faktor dengan satuan percobaan yang dipergunakan

Lebih terperinci

PEMERIKSAAN ASUMSI ANALISIS RAGAM DEWI NURHASANAH

PEMERIKSAAN ASUMSI ANALISIS RAGAM DEWI NURHASANAH PEMERIKSAAN ASUMSI ANALISIS RAGAM DEWI NURHASANAH DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2012 ABSTRAK DEWI NURHASANAH. Pemeriksaan asumsi analisis

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 7 ANOVA (1)

STK511 Analisis Statistika. Pertemuan 7 ANOVA (1) STK511 Analisis Statistika Pertemuan 7 ANOVA (1) Metode Pengumpulan Data Metode Percobaan Memiliki keleluasaan untuk melakukan pengawasaan terhadap sumber-sumber keragaman data Dapat menciptakan jenis

Lebih terperinci

Bab II. Rancangan Acak Lengkap (RAL) Completed randomized design (CRD)

Bab II. Rancangan Acak Lengkap (RAL) Completed randomized design (CRD) Bab II. Rancangan Acak Lengkap (RAL) Completed randomized design (CRD) Rancangan yang paling sederhana Paling murah Pelaksanaan percobaan paling mudah Keabsahan kesimpulan paling rendah Untuk bahan atau

Lebih terperinci

PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA

PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 53 61 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN UKURAN CONTOH DAN REPLIKASI BOOTSTRAP UNTUK MENDUGA MODEL REGRESI LINIER SEDERHANA OLIVIA ATINRI,

Lebih terperinci

SILABUS DAN SAP MATA KULIAH PERANCANGAN PERCOBAAN (AGT6328) BOBOT: 3 (2/1) SKS SIFAT: WAJIB SEMESTER GANJIL (SMT V)

SILABUS DAN SAP MATA KULIAH PERANCANGAN PERCOBAAN (AGT6328) BOBOT: 3 (2/1) SKS SIFAT: WAJIB SEMESTER GANJIL (SMT V) 1 SILABUS DAN SAP MATA KULIAH PERANCANGAN PERCOBAAN (AGT6328) BOBOT: 3 (2/1) SKS SIFAT: WAJIB SEMESTER GANJIL (SMT V) PROGRAM STUDI AGROTEKNOLOGI FAKULTAS PERTANIAN UNIVERSITAS HALU OLEO TAHUN AJARAN 2014/2015

Lebih terperinci

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2 k-p DENGAN METODE LENTH. Mahasiswa Jurusan Statistika FSM UNDIP. Staf Pengajar Jurusan Statistika FSM UNDIP

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2 k-p DENGAN METODE LENTH. Mahasiswa Jurusan Statistika FSM UNDIP. Staf Pengajar Jurusan Statistika FSM UNDIP ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 497-505 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2 k-p DENGAN METODE LENTH

Lebih terperinci

BAB 6 KESIMPULAN. X 1 = faktor kecepatan X 2 = faktor tekanan X 3 = faktor suhu. 0,4583 X 1 X 2, dimana:

BAB 6 KESIMPULAN. X 1 = faktor kecepatan X 2 = faktor tekanan X 3 = faktor suhu. 0,4583 X 1 X 2, dimana: BAB 6 KESIMPULAN 6.. Kesimpulan Dari penelitian yang telah dilakukan, maka kesimpulan yang diperoleh sebagai berikut:. Berdasarkan proses brainstorming, wawancara dan hasil penyebaran kuesioner awal diperoleh

Lebih terperinci

UJI HOMOGENITAS. Pada dasarnya uji homogenitas dimaksudkan untuk memperlihatkan bahwa dua atau lebih

UJI HOMOGENITAS. Pada dasarnya uji homogenitas dimaksudkan untuk memperlihatkan bahwa dua atau lebih UJI HOMOGENITAS Pada dasarnya uji homogenitas dimaksudkan untuk memperlihatkan bahwa dua atau lebih kelompok data sampel berasal dari populasi yang memiliki variansi yang sama. Uji homogenitas terbagi

Lebih terperinci

B. Rancangan Acak Kelompok (RAK)

B. Rancangan Acak Kelompok (RAK) B. Rancangan Acak Kelompok (RAK) 1. Rancangan Acak Kelompok (Randomized Completely Block Design) termasuk rancangan faktor tunggal (hanya terdiri dari satu faktor) masih merupakan rancangan yang cukup

Lebih terperinci

PERBANDINGAN REGRESI KOMPONEN UTAMA DAN ROBPCA DALAM MENGATASI MULTIKOLINEARITAS DAN PENCILAN PADA REGRESI LINEAR BERGANDA

PERBANDINGAN REGRESI KOMPONEN UTAMA DAN ROBPCA DALAM MENGATASI MULTIKOLINEARITAS DAN PENCILAN PADA REGRESI LINEAR BERGANDA E-Jurnal Matematika Vol. 2, No.4, Nopember 2013, 1-5 ISSN: 2303-1751 PERBANDINGAN REGRESI KOMPONEN UTAMA DAN ROBPCA DALAM MENGATASI MULTIKOLINEARITAS DAN PENCILAN PADA REGRESI LINEAR BERGANDA NI WAYAN

Lebih terperinci

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN E-Jurnal Matematika Vol. 3, No.2 Mei 2014, 45-52 ISSN: 2303-1751 PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN NI PUTU NIA IRFAGUTAMI 1, I GUSTI

Lebih terperinci

II. TINJAUAN PUSTAKA. Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan

II. TINJAUAN PUSTAKA. Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan II. TINJAUAN PUSTAKA 2.1 Analisis Ragam Klasifikasi Satu Arah Untuk menguji kesamaan dari beberapa nilai tengah secara sekaligus diperlukan sebuah teknik yang disebut analisis ragam. Analisis ragam adalah

Lebih terperinci

BAB 1 PENDAHULUAN. 1. Latar belakang

BAB 1 PENDAHULUAN. 1. Latar belakang BAB 1 PENDAHULUAN 1. Latar belakang Pengujian hipotesis statistik adalah bidang yang paling pnting dalam inferensia statistik, benar atau salahnya suatu hipotesis tidak akan pernah diketahui dengan pasti

Lebih terperinci

JMHT Vol. XV, (1): 17-23, April 2009 Artikel Ilmiah ISSN: X

JMHT Vol. XV, (1): 17-23, April 2009 Artikel Ilmiah ISSN: X Penggunaan Analisis Regresi Terboboti dalam Penyusunan Model Pertumbuhan Peninggi Acacia mangium Willd. The Use of Weighted Regression Analysis for Constructing Top-height Growth Model of Acacia mangium

Lebih terperinci

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH SKRIPSI Oleh : GIAN KUSUMA DIAH TANTRI NIM : 24010210130075 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG

Lebih terperinci

ANALISIS VARIAN DUA FAKTOR DALAM RANCANGAN PENGAMATAN BERULANG ( REPEATED MEASURES )

ANALISIS VARIAN DUA FAKTOR DALAM RANCANGAN PENGAMATAN BERULANG ( REPEATED MEASURES ) ANALISIS VARIAN DUA FAKTOR DALAM RANCANGAN PENGAMATAN BERULANG ( REPEATED MEASURES ) SKRIPSI Disusun Oleh: ALIF HARTATI J2E009036 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

Perancangan Percobaan

Perancangan Percobaan Perancangan Percobaan Ade Setiawan 009 Review RAL: Satuan percobaan homogen Keragaman Respons disebabkan pengaruh perlakuan RAK: Satuan percobaan heterogen Keragaman Respons disebabkan pengaruh Perlakuan

Lebih terperinci

agnestria et al., Pengaruh Penggunaan Strategi Aktivitas Membaca Berpikir Terbimbing...

agnestria et al., Pengaruh Penggunaan Strategi Aktivitas Membaca Berpikir Terbimbing... PENGARUH PENGGUNAAN STRATEGI AKTIVITAS MEMBACA BERPIKIR TERBIMBING DENGAN MEMBACA TEKNIK TERHADAP HASIL BELAJAR MEMBACA INTENSIF SISWA KELAS IV SDN KREMBUNG I SIDOARJO (the effect of Direct Reading Thinking

Lebih terperinci

UPAYA UNTUK MENINGKATKAN PERTAMBAHAN BOBOT BADAN DAN EFISIENSI PENGGUNAAN PAKAN PADA KAMBING PERANAKAN ETAWAH MENGGUNAKAN SUPLEMEN KATALITIK

UPAYA UNTUK MENINGKATKAN PERTAMBAHAN BOBOT BADAN DAN EFISIENSI PENGGUNAAN PAKAN PADA KAMBING PERANAKAN ETAWAH MENGGUNAKAN SUPLEMEN KATALITIK UPAYA UNTUK MENINGKATKAN PERTAMBAHAN BOBOT BADAN DAN EFISIENSI PENGGUNAAN PAKAN PADA KAMBING PERANAKAN ETAWAH MENGGUNAKAN SUPLEMEN KATALITIK Dian Agustina (dianfapetunhalu@yahoo.co.id) Jurusan Peternakan,

Lebih terperinci

ANALISIS KOVARIANS DALAM RANCANGAN LATTICE SEIMBANG

ANALISIS KOVARIANS DALAM RANCANGAN LATTICE SEIMBANG ANALISIS KOVARIANS DALAM RANCANGAN LATTICE SEIMBANG SKRIPSI Diajukan Kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk memenuhi sebagian persyaratan guna memenuhi

Lebih terperinci

BAB III METODOLOGI PENELITIAN. dengan upaya kontrol yang ketat terhadap faktor-faktor luar, serta melibatkan

BAB III METODOLOGI PENELITIAN. dengan upaya kontrol yang ketat terhadap faktor-faktor luar, serta melibatkan 31 BAB III METODOLOGI PENELITIAN A. Jenis Penelitian Jenis penelitian ini adalah penelitian eksperimen, yaitu penelitian yang didalamnya melibatkan manipulasi terhadap kondisi subjek yang diteliti, disertai

Lebih terperinci

Klasifikasi Kecamatan Berdasarkan Nilai Akhir SMA/MA di Kabupaten Aceh Selatan Menggunakan Analisis Diskriminan

Klasifikasi Kecamatan Berdasarkan Nilai Akhir SMA/MA di Kabupaten Aceh Selatan Menggunakan Analisis Diskriminan Statistika, Vol. 15 No. 2, 87-97 November 215 Klasifikasi Kecamatan Berdasarkan Nilai Akhir SMA/MA di Kabupaten Aceh Selatan Menggunakan Analisis Diskriminan Fitriana A.R. 1, Nurhasanah 2, Ririn Raudhatul

Lebih terperinci

STK511 Analisis Statistika. Pertemuan 9 ANOVA (3)

STK511 Analisis Statistika. Pertemuan 9 ANOVA (3) STK511 Analisis Statistika Pertemuan 9 ANOVA (3) 9. ANOVA (3) Diagnosis Asumsi dalam Uji Hipotesis 1. bersifat bebas terhadap sesamanya. Nilai harapan dari nol, E 0 3. Ragam homogen, Var 4. Pola sebaran

Lebih terperinci

Materi Kuliah. PERANCANGAN PERCOBAAN (PENDAHULAN) Kuliah 1. Materi Kuliah. Materi Kuliah. Pertemuan ke 1 (Pendahuluan Perancangan Percobaan

Materi Kuliah. PERANCANGAN PERCOBAAN (PENDAHULAN) Kuliah 1. Materi Kuliah. Materi Kuliah. Pertemuan ke 1 (Pendahuluan Perancangan Percobaan PERANCANGAN PERCOBAAN (PENDAHULAN) Kuliah 1 Oleh: Dr. Ir. Dirvamena Boer, M.Sc.Agr. 1 Materi Kuliah Pertemuan ke 1 (Pendahuluan Perancangan Percobaan 1. Pengertian percobaan dan perancangan percobaan,

Lebih terperinci

Bahan Kuliah Statistik 2 ANALISIS VARIANS. Toto Sugiharto

Bahan Kuliah Statistik 2 ANALISIS VARIANS. Toto Sugiharto Bahan Kuliah Statistik ANALISIS VARIANS Toto Sugiharto Fakultas Ekonomi 009 Analisis Varians (Analysis of Variance) Analisis Varians Satu-Arah (One-Way Analysis of Variance ANOVA) Prosedur analisis varians

Lebih terperinci

PENINGKATAN EFISIENSI & EFEKTIFITAS PENGOLAHAN DATA PERCOBAAN PETAK BERJALUR

PENINGKATAN EFISIENSI & EFEKTIFITAS PENGOLAHAN DATA PERCOBAAN PETAK BERJALUR PENINGKATAN EFISIENSI & EFEKTIFITAS PENGOLAHAN DATA PERCOBAAN PETAK BERJALUR Ngarap Im Mani 1) dan Lim Widya Sanjaya ), 1) & ) Jurs. Matematia Binus University PENGANTAR Perancangan percobaan adalah suatu

Lebih terperinci

PERLUASAN REGRESI COX DENGAN PENAMBAHAN PEUBAH TERIKAT-WAKTU

PERLUASAN REGRESI COX DENGAN PENAMBAHAN PEUBAH TERIKAT-WAKTU E-Jurnal Matematika Vol. 3 3), Agustus 2014, pp. 86-91 ISSN: 2303-1751 PERLUASAN REGRESI COX DENGAN PENAMBAHAN PEUBAH TERIKAT-WAKTU Luh Putu Ari Dewiyanti 1, Ni Luh Putu Suciptawati 2, I Wayan Sumarjaya

Lebih terperinci

PERCOBAAN BERFAKTOR DENGAN ARAS NOL ATAU PERLAKUAN KONTROL TERPISAH 1

PERCOBAAN BERFAKTOR DENGAN ARAS NOL ATAU PERLAKUAN KONTROL TERPISAH 1 PERCOBAAN BERFAKTOR DENGAN ARAS NOL ATAU PERLAKUAN KONTROL TERPISAH 1 oleh: I Gde Ekaputra Gunartha 2 Pendahuluan Sering terjadi pada percobaan berfaktor, peneliti melibatkan aras Nol. Seperti pada kasus

Lebih terperinci

OPTIMALISASI PROSES PRODUKSI YANG MELIBATKAN BEBERAPA FAKTOR DENGAN LEVEL YANG BERBEDA MENGGUNAKAN METODE TAGUCHI

OPTIMALISASI PROSES PRODUKSI YANG MELIBATKAN BEBERAPA FAKTOR DENGAN LEVEL YANG BERBEDA MENGGUNAKAN METODE TAGUCHI ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 3, Tahun 2014, Halaman 303-312 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian OPTIMALISASI PROSES PRODUKSI YANG MELIBATKAN BEBERAPA FAKTOR

Lebih terperinci

STUDI KRITIS ATAS UJI KECUKUPAN DATA

STUDI KRITIS ATAS UJI KECUKUPAN DATA STUDI KRITIS ATAS UJI KECUKUPA DATA Budi Aribowo 1 ABSTRACT Data proficiency test that often used in research, especially in ergonomic and working system design to determine whether the number of the sample

Lebih terperinci

STATISTIKA I. Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Kode Matakuliah: PAI111, 2sks Tujuan Instruksional Umum:

STATISTIKA I. Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta. Kode Matakuliah: PAI111, 2sks Tujuan Instruksional Umum: STATISTIKA I Ari Wibowo, MPd Prodi PAI Jurusan Tarbiyah STAIN Surakarta Kode Matakuliah: PAI111, 2sks Tujuan Instruksional Umum: Setelah mengikuti mata kuliah ini selama satu semester, mahasiswa akan dapat

Lebih terperinci

PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung)

PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 697-704 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL

Lebih terperinci

ANALISIS STATISTIK EFISIENSI ENERGI PENGGUNAAN TUNGKU SEKAM SEBAGAI BAHAN BAKAR ALTERNATIF RUMAH TANGGA

ANALISIS STATISTIK EFISIENSI ENERGI PENGGUNAAN TUNGKU SEKAM SEBAGAI BAHAN BAKAR ALTERNATIF RUMAH TANGGA ANALISIS STATISTIK EFISIENSI ENERGI PENGGUNAAN TUNGKU SEKAM SEBAGAI BAHAN BAKAR ALTERNATIF RUMAH TANGGA Yulia Christina 1, Anissa Tsalsabila 1, Deti Anggraeni Ekawati 1, Fanny Amalia 1, Ratih Dwi Septiani

Lebih terperinci

Kajian Beberapa Uji Kenormalan dan Kaitannya dengan Asumsi Kenormalan pada Beberapa Uji Statistika

Kajian Beberapa Uji Kenormalan dan Kaitannya dengan Asumsi Kenormalan pada Beberapa Uji Statistika Kajian Beberapa Uji Kenormalan dan Kaitannya dengan Asumsi Kenormalan pada Beberapa Uji Statistika Agus Santoso e-mail : aguss@mail.ut.ac.id (Jurusan Statistika FMIPA Universitas Terbuka) Abstract T-test

Lebih terperinci