HEAT EFFECTS. By. Dr. Gede Wibawa

Ukuran: px
Mulai penontonan dengan halaman:

Download "HEAT EFFECTS. By. Dr. Gede Wibawa"

Transkripsi

1 HEA EFFES By. Dr. Gede Wibawa

2 HEA EFFES Heat ransfer Operations: Sangat umum dijumpai di Industri Heat Effecs Sensible Heat hase ransition hemical Reaction Mixing rocesses

3 SENSIBLE HEA EFFES Heat effects due to temperature change No phase transition No chemical reaction No change in composition causing heat transfer and the resulting the temperature change

4 General Expression for du U For dv= du U U, V V 1 2 d V d Untuk proses V konstan Jika U tdk tgt V, pendekatan ini benar untuk gas ideal dan incompressible dan mendekati benar untuk gas bertekanan rendah 1st Law for losed system with constant V Q U U U du d dv V V du V d dv V 1 2 V d

5 General Expression for dh H dh dh For d= dh H 1 2 H, H H d V d V d d d For any constant rocess Q H Untuk proses konstan Jika H tdk tgt p, pendekatan ini benar untuk gas idel dan incompressible dan mendekati benar untuk gas bertekanan rendah 1 2 d d

6 Empirical Function of Heat apacity Ideal gas heat capacity naik dengan naiknya suhu O 2 R A B D 2 2 H 2 O N 2 Ar R : dimensionless A, B, and D depend on the material (App. ) ada (App. ): untuk dari 298 K sampai max

7 Empirical Function of Heat apacity for ideal gas ig R V R ig R A B 1 D 2 2 A, B, and D depend on the material (App. ) ALULAION MEHOD ig Smith et al. (extbook) used two step calculation for U and H: -1 st Step calculation at ideal gas condition ( = ) -2 nd step correction of ideal gas value to real gas value

8 wo Step alculations for U & H ig R A B D 2 2 H(,) Hypothetical gas ideal ref dh ig d V V d EoS is needed

9 Ideal Gas Mixture i i i y MIXURE H H Ideal gas: no-interaction Evaluation of sensible-heat integral D B A R H

10 erhitungan H H Karena p tergantung maka dilakukan perhitungan iteratif: n H 1 n H

11 Latent Heat of ure Substances Heat effect due to phase change For phase change, and are constant onsider a system containing 2 phase and dg Vd Sd Since & are constant, dg = he Gibbs energy for each phase: dg dg V V d S d S d d dg V d S d erubahan dari fasa ke

12 Latent Heat of ure Substances d sat S d V Jika fasa cair dan uap, maka = sat (saturation pressure) Hubungan S dan H dh H S ds Vd H H S S Sehingga persamaan diatas menjadi: d sat d H V Latent heat of phase change Molar volume change of phase transition

13 Latent Heat of ure Substances laypeyron equation: H V d d sat sat = saturation pressure (vapor pressure) Vapor pressure dari suatu cairan umumnya sebagai fungsi Model yang umum digunakan adalah persamaan Antoine, Wagner Antoine eq.: ln sat A B onstanta A, B dan diketahui untuk berbagai zat (able 1.2 p. 362) d d sat B 2 exp A H LV LV V B Dapat dihitung jika konstanta Antoine diketahui

14 Heat effect from chemical reaction If reaction at constant & no shaft work : Reactants H products Q H Enthalpy change going from reactants to products gives heat of reaction he difinition of state and path variables should be konwn well!!

15 Standard heat of reaction Standard conditions: Gases : gas ideal at 1 bar Liquids and solids: real solid/liquid at 1 bar Reactants (standard state) H roducts Standard state Since enthalpy is state function, it is independent of path Reactants (standard state) H H 1(Re actan s) Elements (standard state) roducts Standard state H 2 ( products ) H H 1 H 2

16 Standard heat of formation, H f abulasi untuk panas reaksi standar terhadap semua kemungkinan reaksi tidak praktis, sehingga digunakan metode standard heat of formation H f Adalah panas yang diperlukan untuk membentuk 1 mol senyawa dari dari elemen, panas pembentukan dari senyawa dapat dijumlahkan untuk mendapatkan panas reaksi standar H O 2 (g)+ 3 H 2( g)h 3 OH(g)+H 2 O(g) H f elements H f H f atatan: anas pembentukan untuk 1 mol senyawa terbentuk O 2 (g)(s)+o 2 (g) +393,59 J/mol 3H 2 (g)element 2H 2 (g)+(s)+.5o 2 (g)h 3 OH(g) -2,66 H 2 (g)+.5o 2 (g)h 2 O(g) -241,818-48,969 J/mol H

17 Bagaimana jika reaksi terjadi pada suhu berbeda dari 298 K, tapi tekanan tetap 1 bar? Reaktan ada K H? roduk ada K H H 1 H is state function 2 Reaktan pada 298 K o H 298 roduk pada 298 K H H elements 1 H 2 H 298

18 erhitungan panas reaksi secara stochiometri v 1A1 v2a A... v A v 3... Dimana: A = reaktan atau produk v = koefisien stochiometri, positif untuk produk dan negatif untuk reaktan erhitungan panas reaksi pada suhu dan tekanan 1 bar adalah: H H p H vi R R pi v i H f p d Reactants (standard state) H f v () (Re actan s) H Elements (standard state) roducts Standard state H f ( products) v ()

19 entukan panas reaksi standar dari sintesa methanol berikut: Reaksi : O(g) + 2H2(g) H3OH(g) at 8 deg. i vi O -1 H2-2 H3OH +1

20 REAKSI DI INDUSRI Kondisi tidak standar idak sesuai stochiometri (ada excess salah satu reaktan) Adanya inert emperature awal berbeda dengan temperatur produk Dll. DASAR ERHIUNGAN MENGAU ERHIUNGAN SANDAR

21 ontoh Hitung temperatur maksimum yang dicapai pada pembakaran methane berikut: Methane (H4), K Flue gas.? Udara 2% excess, K H4+2O2O2+2H2O Maksimum temperature yang dicapai =theoritical flame temperature roducts? K H reactants,298.15k o H 298 products,298.15k

22 Jika ada ekses reaktan atau reaksi tidak sempurna ontoh 1: methane dibakar dengan 2% ekses udara H 4 (g)+2o 2 (g) O 2 (g) + 2H 2 O(g) i vi Hf vi x Hf, J H O2-2 O H2O o H

23 Jika ada inert dalam reaksi Reaksi pembakaran methane dengan 2% ekses udara (21%O 2 dan 79%N 2 ) Mole O2 (2% ekses O2 )= 1.2 * 2 = 2.4 Mole N2 = 2.4 *(79/21) = 9.3 H 4 (g)+2.4o 2 (g) +9.3 N 2 O 2 (g) + 2H 2 O(g)+.4O N 2 Reaktan roduk Stochiometri diatas dapat digunakan untuk menghitung H heoretical flame temperature = Reaksi pembakaran berlangsung secara adiabatis sempurna (Q=)

24 HK I flow process H Q Ws Jika Q dan Ws adalah nol, maka H H H 298 H H H i n i i H Dari persamaan tersebut diperoleh = 266 K

25 Reaksi paralel (competing reaction) (A)H4 + H2O O + 3H2 (B)H4 + H2O O2 + 4H2 H 298 H 298 = 25,813 J = 164,647 J Jika 87% H4 bereaksi melalui reaksi (A) maka: H ,818 2,46 J.13164,647 J

26 HHV (Higher Heating Value) & LHV (Lower Heating Value) Heating Value: panas pembakaran dari zat organik dengan oksigen dimana hasil pembakaran berupa O2 dan H2O HHV, produk H2O liquid LHV, produk H2O gas H2O liquid H2O gas H=44.12 J/mol

PHYSICAL CHEMISTRY I

PHYSICAL CHEMISTRY I PHYSICAL CHEMISTRY I NANIK DWI NURHAYATI,S.SI, M.SI nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id 081556431053 / (0271) 821585 Law of 1. The Zero Law of 2. The First Law of 3. The Second Law of

Lebih terperinci

PEMBUATAN PERANGKAT LUNAK UNTUK PREDIKSI SIFAT TERMODINAMIKA DAN TRANSPORT CAMPURAN TERNER HIDROKARBON

PEMBUATAN PERANGKAT LUNAK UNTUK PREDIKSI SIFAT TERMODINAMIKA DAN TRANSPORT CAMPURAN TERNER HIDROKARBON PEMBUATAN PERANGKAT LUNAK UNTUK PREDIKSI SIFAT TERMODINAMIKA DAN TRANSPORT CAMPURAN TERNER HIDROKARBON ABSTRAK Penelitian ini membahas usaha penggantian R-l2 dengan refrigeran campuran hidrokarbon dan

Lebih terperinci

LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION

LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION LAPORAN TUGAS AKHIR PROTOTYPE POWER GENERATION (Interpretasi Saturated Burning Zone ditinjau dari Flame Temperatur pada Steam Power Generation Closed Cycle System) Diajukan Untuk Memenuhi Syarat Menyelesaikan

Lebih terperinci

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair

Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Makalah Termodinamika Pemicu 4: Kesetimbangan Fasa Uap-Cair Kelompok 3 Nahida Rani (1106013555) Nuri Liswanti Pertiwi (1106015421) Rizqi Pandu Sudarmawan (0906557045) Sony Ikhwanuddin (1106052902) Sulaeman

Lebih terperinci

Departemen Ilmu dan Teknologi Pangan Universitas Brawijaya

Departemen Ilmu dan Teknologi Pangan Universitas Brawijaya Ahmad Zaki Mubarok Maret 2012 Departemen Ilmu dan Teknologi Pangan Universitas Brawijaya Sub topik: Prinsip Umum Deskripsi Sistem Heat (Panas) Sifat Saturated dan Superheated Steam Soal-soal Beberapa proses

Lebih terperinci

V Reversible Processes

V Reversible Processes Tujuan Instruksional Khusus: V Reersible Processes Mahasiswa mampu 1. menjelaskan tentang proses-proses isothermal, isobaric, isochoric, dan adiabatic. 2. menghitung perubahan energi internal, perubahan

Lebih terperinci

TERMODINAMIKA (II) Dr. Ifa Puspasari

TERMODINAMIKA (II) Dr. Ifa Puspasari TERMODINAMIKA (II) Dr. Ifa Puspasari PV Work Irreversible (Pressure External Constant) Kompresi ireversibel: Kerja = Gaya x Jarak perpindahan W = F x l dimana F = P ex x A W = P ex x A x l W = - P ex x

Lebih terperinci

ENTROPI. Untuk gas ideal, dt dan V=RT/P. Dengan subtitusi dan pembagian dengan T, akan diperoleh persamaan:

ENTROPI. Untuk gas ideal, dt dan V=RT/P. Dengan subtitusi dan pembagian dengan T, akan diperoleh persamaan: ENTROPI PERUBAHAN ENTROPI GAS IDEAL Untuk satu mol atau unit massa suatu fluida yang mengalami proses reversibel dalam sistem tertutup, persamaan untuk hukum pertama termodinamika menjadi: [35] Diferensiasi

Lebih terperinci

KESETIMBANGAN UAP-CAIR-CAIR SISTEM BINER n-butanol+air DAN ISOBUTANOL+AIR PADA kpa

KESETIMBANGAN UAP-CAIR-CAIR SISTEM BINER n-butanol+air DAN ISOBUTANOL+AIR PADA kpa KESETIMBANGAN UAP-CAIR-CAIR SISTEM BINER n-butanol+air DAN ISOBUTANOL+AIR PADA 101.3 kpa Nama : Rosi Rosmaysari (2308 100 106) Dian Eka Septiyana (2308 100 163) Jurusan : Teknik Kimia ITS Pembimbing :

Lebih terperinci

Cara Menggunakan Tabel Uap (Steam Table)

Cara Menggunakan Tabel Uap (Steam Table) Cara Menggunakan Tabel Uap (Steam Table) Contoh : 1. Air pada tekanan 1 bar dan temperatur 99,6 C berada pada keadaan jenuh (keadaan jenuh artinya uap dan cairan berada dalam keadaan kesetimbangan atau

Lebih terperinci

OVERVIEW Persamaan keadaan adalah persamaan yang menyatakan hubungan antara state variable

OVERVIEW Persamaan keadaan adalah persamaan yang menyatakan hubungan antara state variable OERIEW ersamaan keadaan adalah persamaan yang menyatakan huungan antara state variale yang menggamarkan keadaan dari suatu sistem pada kondisi fisik tertentu State variale adalah property dari sistem yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka Bambang (2016) dalam perancangan tentang modifikasi sebuah prototipe kalorimeter bahan bakar untuk meningkatkan akurasi pengukuran nilai

Lebih terperinci

Mass Balance on Reactive System

Mass Balance on Reactive System AGUNG ARI WIBOWO,S.T., M.Sc Single Unit Multiple Unit Stoichiometri Recycle with reaction ATK 1 Reaction System Recycle noreaction Mole Balance STOICHIOMETRI Stoichiometric Equation NOT BALANCE The following

Lebih terperinci

HUKUM 1 THERMODINAMIKA. Agung Ari Wibowo S.T., M.Sc Politeknik Negeri Malang

HUKUM 1 THERMODINAMIKA. Agung Ari Wibowo S.T., M.Sc Politeknik Negeri Malang HUKUM 1 THERMODINAMIKA Agung Ari Wibowo S.T., M.Sc Politeknik Negeri Malang Jumlah energi yang diperlukan untuk menaikan 1 derajat satuan suhu suatu bahan yang memiliki massa atau mol 1 satuan massa atau

Lebih terperinci

HUBUNGAN ENERGI DALAM REAKSI KIMIA

HUBUNGAN ENERGI DALAM REAKSI KIMIA HUBUNGAN ENERGI DALAM REAKSI KIMIA _KIMIA INDUSTRI_ DEWI HARDININGTYAS, ST, MT, MBA WIDHA KUSUMA NINGDYAH, ST, MT AGUSTINA EUNIKE, ST, MT, MBA ENERGI & KERJA Energi adalah kemampuan untuk melakukan kerja.

Lebih terperinci

KINETIKA REAKSI Kimia Fisik Pangan

KINETIKA REAKSI Kimia Fisik Pangan KINETIKA REAKSI Kimia Fisik Pangan Ahmad Zaki Mubarok Materi: ahmadzaki.lecture.ub.ac.id Bahan pangan merupakan sistem yang sangat reaktif. Reaksi kimia dapat terjadi secara terusmenerus antar komponen

Lebih terperinci

REAKTOR KIMIA NON KINETIK KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS CSTR R. PLUG R.BATCH

REAKTOR KIMIA NON KINETIK KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS CSTR R. PLUG R.BATCH TUTORIAL 3 REAKTOR REAKTOR KIMIA NON KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS KINETIK CSTR R. PLUG R.BATCH MODEL REAKTOR ASPEN Non Kinetik Kinetik Non kinetik : - Pemodelan Simulasi

Lebih terperinci

Fugasitas. Oleh : Samuel Edo Pratama

Fugasitas. Oleh : Samuel Edo Pratama Fugasitas Oleh : Samuel Edo Pratama - 1106070741 Pengertian Dalam termodinamika, fugasitas dari gas nyata adalah nilai dari tekanan efektif yang menggantukan nilai tekanan mekanis sebenarnya dalam perhitungan

Lebih terperinci

III ZAT MURNI (PURE SUBSTANCE)

III ZAT MURNI (PURE SUBSTANCE) III ZAT MURNI (PURE SUBSTANCE) Tujuan Instruksional Khusus: Mahasiswa mampu 1. menjelaskan karakteristik zat murni dan proses perubahan fasa 2. menggunakan dan menginterpretasikan data dari diagram-diagram

Lebih terperinci

FISIKA THERMAL II Ekspansi termal dari benda padat dan cair

FISIKA THERMAL II Ekspansi termal dari benda padat dan cair FISIKA THERMAL II 1 Ekspansi termal dari benda padat dan cair Fenomena terjadinya peningkatan volume dari suatu materi karena peningkatan temperatur disebut dengan ekspansi termal. 1 Ekspansi termal adalah

Lebih terperinci

BAB 1 Energi : Pengertian, Konsep, dan Satuan

BAB 1 Energi : Pengertian, Konsep, dan Satuan BAB Energi : Pengertian, Konsep, dan Satuan. Pengenalan Hal-hal yang berkaitan dengan neraca energi : Adiabatis, isothermal, isobarik, dan isokorik merupakan proses yang digunakan dalam menentukan suatu

Lebih terperinci

BAB IV TERMOKIMIA A. PENGERTIAN KALOR REAKSI

BAB IV TERMOKIMIA A. PENGERTIAN KALOR REAKSI BAB IV TERMOKIMIA A. Standar Kompetensi: Memahami tentang ilmu kimia dan dasar-dasarnya serta mampu menerapkannya dalam kehidupan se-hari-hari terutama yang berhubungan langsung dengan kehidupan. B. Kompetensi

Lebih terperinci

BAB III PERUMUSAN MODEL MATEMATIS SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON

BAB III PERUMUSAN MODEL MATEMATIS SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON BAB III PERUMUSAN MODEL MATEMATIS SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON 3.. Pendahuluan Pada bab ini akan dijelaskan mengenai pemodelan matematis Sel Bahan Bakar Membran Pertukaran Proton (Proton Exchange

Lebih terperinci

Introduction to Thermodynamics

Introduction to Thermodynamics Introduction to Thermodynamics Thermodynamics adalah ilmu tentang energi, termasuk didalamnya energi yang tersimpan atau hanya transit. Prinsip kekekalan energi : Energi tidak bisa diciptakan atau dimusnahkan

Lebih terperinci

V. Potensial Termodinamika

V. Potensial Termodinamika V. otensial ermodinamika 5.1. Fungsi Helmholtz dan Gibbs Selain energi dalam (U) dan entropi (S) cukup banyak besaran yang dapat didefinisikan berdasarkan kombinasi U, S serta variabel keadaan lainnya.

Lebih terperinci

H? H 2 O? 9/23/2015 KIMIA TEKNIK KIMIA TEKNIK KIMIA TEKNIK. Teori Atom. Pengertian : Unsur? Senyawa? Teori Atom. Teori Atom

H? H 2 O? 9/23/2015 KIMIA TEKNIK KIMIA TEKNIK KIMIA TEKNIK. Teori Atom. Pengertian : Unsur? Senyawa? Teori Atom. Teori Atom Pengertian : Unsur? Senyawa? H? H 2 O? Materi adalah segala benda yang mempunyai massa dan volume Ada 3 bentuk materi liquids Pengertian : Unsur = bentuk paling sederhana dari substansi murni Senyawa =

Lebih terperinci

KINETIKA & LAJU REAKSI

KINETIKA & LAJU REAKSI KINETIKA & LAJU REAKSI 1 KINETIKA & LAJU REAKSI Tim Teaching MK Stabilitas Obat Jurusan Farmasi FKIK UNSOED 2013 2 Pendahuluan Seorang farmasis harus mengetahui profil suatu obat. Sifat fisika-kimia, stabilitas.

Lebih terperinci

Termodinamika. Energi dan Hukum 1 Termodinamika

Termodinamika. Energi dan Hukum 1 Termodinamika Termodinamika Energi dan Hukum 1 Termodinamika Energi Energi dapat disimpan dalam sistem dengan berbagai macam bentuk. Energi dapat dikonversikan dari satu bentuk ke bentuk yang lain, contoh thermal, mekanik,

Lebih terperinci

Kalor dan Hukum Termodinamika

Kalor dan Hukum Termodinamika Kalor dan Hukum Termodinamika 1 Sensor suhu dengan menggunakan tangan tidak akurat 2 A. SUHU / TEMPERATUR Suhu benda menunjukkan derajat panas suatu Benda. Suhu suatu benda juga merupakan berapa besarnya

Lebih terperinci

KINETIKA & LAJU REAKSI

KINETIKA & LAJU REAKSI 1 KINETIKA & LAJU REAKSI Tim Teaching MK Stabilitas Obat Jurusan Farmasi FKIK UNSOED 2013 2 Pendahuluan Seorang farmasis harus mengetahui profil suatu obat. Sifat fisika-kimia, stabilitas. Sifat tersebut

Lebih terperinci

Dengan mengalikan kedua sisi persamaan dengan T akan dihasilkan

Dengan mengalikan kedua sisi persamaan dengan T akan dihasilkan Hukum III termodinamika Hukum termodinamika terkait dengan temperature nol absolute. Hukum ini menyatakan bahwa pada saat suatu system mencapai temperature nol absolute, semua proses akan berhenti dan

Lebih terperinci

G A S _KIMIA INDUSTRI_ DEWI HARDININGTYAS, ST, MT, MBA WIDHA KUSUMA NINGDYAH, ST, MT AGUSTINA EUNIKE, ST, MT, MBA

G A S _KIMIA INDUSTRI_ DEWI HARDININGTYAS, ST, MT, MBA WIDHA KUSUMA NINGDYAH, ST, MT AGUSTINA EUNIKE, ST, MT, MBA G A S _KIMIA INDUSTRI_ DEWI HARDININGTYAS, ST, MT, MBA WIDHA KUSUMA NINGDYAH, ST, MT AGUSTINA EUNIKE, ST, MT, MBA Elemen Berwujud Gas pada 25 0 C dan 1 atm Karakteristik Fisika dari Gas Gas diasumsikan

Lebih terperinci

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG KESETIMBANGAN ENERGI Konsep dan Satuan Perhitungan Perubahan Entalpi Penerapan Kesetimbangan Energi Umum

Lebih terperinci

DATA KESETIMBANGAN UAP-AIR DAN ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH

DATA KESETIMBANGAN UAP-AIR DAN ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH Jurnal Teknik Kimia : Vol. 6, No. 2, April 2012 65 DATA KESETIMBANGAN UAP-AIR DAN ETHANOL-AIR DARI HASIL FERMENTASI RUMPUT GAJAH Ni Ketut Sari Jurusan Teknik Kimia Fakultas Teknologi Industry UPN Veteran

Lebih terperinci

6/12/2014. Distillation

6/12/2014. Distillation Distillation Distilasi banyak digunakan untuk mendapatkan minyak atsiri. Minyak atsiri dapat bermanfaat sebagai senyawa antimikroba, diantaranya: 1. Minyak biji pala 2. Minyak daun jeruk 1 Distillation

Lebih terperinci

HUKUM DASAR KIMIA. 2CUO. 28GRAM NITROGEN 52 GRAM MAGNESIUM NITRIDA 3 MG + N 2 MG 3 N 2

HUKUM DASAR KIMIA. 2CUO. 28GRAM NITROGEN 52 GRAM MAGNESIUM NITRIDA 3 MG + N 2 MG 3 N 2 HUKUM DASAR KIMIA. 2CUO. 28GRAM NITROGEN 52 GRAM MAGNESIUM NITRIDA 3 MG + N 2 MG 3 N 2 HUKUM DASAR KIMIA 1) Hukum Kekekalan Massa ( Hukum Lavoisier ). Yaitu : Dalam sistem tertutup, massa zat sebelum

Lebih terperinci

4/16/2017. Start-up CSTR A, B Q A, B A, B. I Gusti S. Budiaman, Gunarto, Endang Sulistyawati Siti Diyar Kholisoh. (Levenspiel, 1999, page 84)

4/16/2017. Start-up CSTR A, B Q A, B A, B. I Gusti S. Budiaman, Gunarto, Endang Sulistyawati Siti Diyar Kholisoh. (Levenspiel, 1999, page 84) April 2017 I Gusti S. Budiaman, Gunarto, Endang Sulistyawati Siti Diyar Kholisoh PERANCANGAN REAKTOR (1210323) SEMESTER GENAP TAHUN AKADEMIK 2016-2017 JURUSAN TEKNIK KIMIA FTI UPN VETERAN YOGYAKARTA Reaktor

Lebih terperinci

IDENTIFIKASI SUMBER EMISI DAN PERHITUNGAN BEBAN EMISI

IDENTIFIKASI SUMBER EMISI DAN PERHITUNGAN BEBAN EMISI IDENTIFIKASI SUMBER EMISI DAN PERHITUNGAN BEBAN EMISI Oleh: *) Martono ABSTRAK Agar mampu menghitung beban emisi langkah pertama kita harus memahami sumber emisi dan beban emisi sehingga mampu mengestimasi

Lebih terperinci

Disusun Sebagai Persyaratan Untuk Menyelesaikan Pendidikan Jurusan Teknik Kimia Program Studi S1 (Terapan) Teknik Energi Politeknik Negeri Sriwijaya

Disusun Sebagai Persyaratan Untuk Menyelesaikan Pendidikan Jurusan Teknik Kimia Program Studi S1 (Terapan) Teknik Energi Politeknik Negeri Sriwijaya RANCANG BANGUN ALAT INCINERATOR TIPE BATCH (MENGHITUNG PANAS PEMBAKARAN DI PRIMARY DAN SECONDARY CHAMBER PADA PROSES PEMBAKARAN LIMBAH INFEKSIUS DI INCINERATOR) Disusun Sebagai Persyaratan Untuk Menyelesaikan

Lebih terperinci

BAB V PERHITUNGAN KIMIA

BAB V PERHITUNGAN KIMIA BAB V PERHITUNGAN KIMIA KOMPETENSI DASAR 2.3 : Menerapkan hukum Gay Lussac dan hukum Avogadro serta konsep mol dalam menyelesaikan perhitungan kimia (stoikiometri ) Indikator : 1. Siswa dapat menghitung

Lebih terperinci

BAB 3. Perhitungan Perubahan Entalpi

BAB 3. Perhitungan Perubahan Entalpi BAB Perhitungan Perubahan Entali.1. ransisi Fasa ransisi Fasa terjadi dari fasa adat menjadi fasa air, dari fasa air menjadi fasa gas, dan sebaliknya. Pada roses transisi ini terjadi erubahan entali (dan

Lebih terperinci

Perancangan Proses Kimia PERANCANGAN

Perancangan Proses Kimia PERANCANGAN Perancangan Proses Kimia PERANCANGAN SISTEM/ JARINGAN REAKTOR 1 Rancangan Kuliah Section 2 1. Dasar dasar Penggunaan CHEMCAD/HYSYS 2. Perancangan Sistem/jaringan Reaktor 3. Tugas 1 dan Pembahasannya 4.

Lebih terperinci

ANALISA KINERJA PULVERIZED COAL BOILER DI PLTU KAPASITAS 3x315 MW

ANALISA KINERJA PULVERIZED COAL BOILER DI PLTU KAPASITAS 3x315 MW ANALISA KINERJA PULVERIZED COAL BOILER DI PLTU KAPASITAS 3x315 MW Andrea Ramadhan ( 0906488760 ) Jurusan Teknik Mesin Universitas Indonesia email : andrea.ramadhan@ymail.com ABSTRAKSI Pulverized Coal (PC)

Lebih terperinci

B T A CH C H R EAC EA T C OR

B T A CH C H R EAC EA T C OR BATCH REACTOR PENDAHULUAN Dalam teknik kimia, Reaktor adalah suatu jantung dari suatu proses kimia. Reaktor kimia merupakan suatu bejana tempat berlangsungnya reaksi kimia. Rancangan dari reaktor ini tergantung

Lebih terperinci

1. Hukum Lavoisier 2. Hukum Proust 3. Hukum Dalton 4. Hukum Gay Lussac & Hipotesis Avogadro

1. Hukum Lavoisier 2. Hukum Proust 3. Hukum Dalton 4. Hukum Gay Lussac & Hipotesis Avogadro - - 1. Hukum Lavoisier 2. Hukum Proust 3. Hukum Dalton 4. Hukum Gay Lussac & Hipotesis Avogadro 1. Hukum Lavoisier (Hukum Kekekalan Massa) : Dalam sistem tertutup, massa zat sebelum dan sesudah reaksi

Lebih terperinci

Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung

Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung Heri Rustamaji Jurusan Teknik Kimia Universitas Lampung Optimasi mencakup dua proses : ❶ formulasi problem optimasi dalam bentuk persamaan matematis, ❷ penyelesaian problem matematis yang terbentuk Tujuan

Lebih terperinci

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) BIDANG KIMIA SUB KIMIA FISIK 16 Mei 2017 Waktu : 120menit Petunjuk Pengerjaan H 1. Tes ini terdiri atas

Lebih terperinci

II. DESKRIPSI PROSES. Tahap-tahap reaksi formaldehid Du-Pont untuk memproduksi MEG sebagai

II. DESKRIPSI PROSES. Tahap-tahap reaksi formaldehid Du-Pont untuk memproduksi MEG sebagai II. DESKRIPSI PROSES 2.1 Macam Macam Proses 1. Proses Formaldehid Du Pont Tahap-tahap reaksi formaldehid Du-Pont untuk memproduksi MEG sebagai berikut : CH 2 O + CO + H 2 O HOCH 2 COOH 700 atm HOCH 2 COOH

Lebih terperinci

LAMPIRAN A NERACA MASSA

LAMPIRAN A NERACA MASSA LAMPIRAN A NERACA MASSA Kapasitas produksi = 70 ton/tahun 1 tahun operasi = 00 hari = 70 jam 1 hari operasi = 4 jam Basis perhitungan = 1 jam operasi Kapasitas produksi dalam 1 jam opersi = 70 ton tahun

Lebih terperinci

LAMPIRAN. Lampiran 1 LANGKAH-LANGKAH ANALISA DENGAN. MENGGUNAKAN ANSYS 15.0 : a. Geometry dan Mesh

LAMPIRAN. Lampiran 1 LANGKAH-LANGKAH ANALISA DENGAN. MENGGUNAKAN ANSYS 15.0 : a. Geometry dan Mesh LAMPIRAN Lampiran 1 LANGKAH-LANGKAH ANALISA DENGAN MENGGUNAKAN ANSYS 15.0 : a. Geometry dan Mesh 1. Evaporator didesain terlebih dahulu. Desain dapat dilakukan dengan menggunakan aplikasi seperti AutoCAD,

Lebih terperinci

Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi

Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi 4.1 Pertimbangan Awal Pembakar (burner) adalah alat yang digunakan untuk membakar gas hasil gasifikasi. Di dalam pembakar (burner), gas dicampur

Lebih terperinci

- Fasa (phase) dalam terminology/istilah dalam mikrostrukturnya

- Fasa (phase) dalam terminology/istilah dalam mikrostrukturnya 1. Diagram Fasa dalam Sistem Logam - Fasa (phase) dalam terminology/istilah dalam mikrostrukturnya adalah suatu daerah (region) yang berbeda struktur atau komposisinya dari daerah lain. - Diagram fasa

Lebih terperinci

Diktat TERMODINAMIKA DASAR

Diktat TERMODINAMIKA DASAR Bab III HUKUM TERMODINAMIKA I : SISTEM TERTUTUP 3. PENDAHULUAN Hukum termodinamika pertama menyatakan bahwa energi tidak dapat diciptakan dan dimusnahkan tetapi hanya dapat diubah dari satu bentuk ke bentuk

Lebih terperinci

BAB V VALIDASI DAN ANALISIS HASIL SIMULASI MODEL SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON

BAB V VALIDASI DAN ANALISIS HASIL SIMULASI MODEL SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON BAB V VALIDASI DAN ANALISIS HASIL SIMULASI MODEL SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON 5.1. Pendahuluan Pada Bab 5 ini akan dibahas mengenai validasi dan analisis dari hasil simulasi yang dilakukan

Lebih terperinci

PENGUKURAN KESETIMBANGAN UAP-CAIR ISOTHERMAL

PENGUKURAN KESETIMBANGAN UAP-CAIR ISOTHERMAL PENGUKURAN KESETIMBANGAN UAP-CAIR ISOTHERMAL Laboratorium Thermodinamika Teknik Kimia FTI-ITS 2012 SISTEM BINER ETHANOL + GLISEROL DAN ISOPROPANOL + GLISEROL PADA TEKANAN RENDAH Masita Fardini Akbarina

Lebih terperinci

PERHITUNGAN NERACA PANAS

PERHITUNGAN NERACA PANAS PERHITUNGAN NERACA PANAS Data-data yang dibutuhkan: 1. Kapasitas panas masing-masing komponen gas Cp = A + BT + CT 2 + DT 3 Sehingga Cp dt = Keterangan: Cp B AT T 2 2 C T 3 = kapasitas panas (kj/kmol.k)

Lebih terperinci

Referensi: 1) Smith Van Ness Introduction to Chemical Engineering Thermodynamic, 6th ed. 2) Sandler Chemical, Biochemical adn

Referensi: 1) Smith Van Ness Introduction to Chemical Engineering Thermodynamic, 6th ed. 2) Sandler Chemical, Biochemical adn Referensi: 1) Smith Van Ness. 001. Introduction to Chemical Engineering Thermodynamic, 6th ed. ) Sandler. 006. Chemical, Biochemical adn Engineering Thermodynamics, 4th ed. 3) Prausnitz. 1999. Molecular

Lebih terperinci

Materi Pokok Bahasan :

Materi Pokok Bahasan : STOIKIOMETRI Kompetensi : Memiliki kemampuan untuk menginterpretasikan serta menerapkan dalam perhitungan kimia. Memiliki kemampuan untuk mengaplikasikan pengetahuan yang dimilikinya dan terbiasa menggunakan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Fasa (phase) adalah suatu wujud atau kondisi dari suatu zat yang dapat berupa cair, padat, dan gas. Aliran multi fasa (multiphase flow) adalah aliran simultan dari

Lebih terperinci

Chemical Engineering Thermodynamics II

Chemical Engineering Thermodynamics II Chemical Engineering Thermodynamics II Dosen: : Ir. M. Fahrurrozi, M.Sc., h.d. Why do we learn thermodynamics? Application in distillation systems: Equilibrium composition Theoretical heat/cooling requirement

Lebih terperinci

Kinetika Kimia. Abdul Wahid Surhim

Kinetika Kimia. Abdul Wahid Surhim Kinetika Kimia bdul Wahid Surhim 2014 Kerangka Pembelajaran Laju Reaksi Hukum Laju dan Orde Reaksi Hukum Laju Terintegrasi untuk Reaksi Orde Pertama Setengah Reaksi Orde Pertama Reaksi Orde Kedua Laju

Lebih terperinci

WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA

WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA WEEK 8,9 & 10 (Energi & Perubahan Energi) TERMOKIMIA Binyamin Mechanical Engineering Muhammadiyah University Of Surakarta Termokimia dapat didefinisikan sebagai bagian ilmu kimia yang mempelajari dinamika

Lebih terperinci

LOGO STOIKIOMETRI. Marselinus Laga Nur

LOGO STOIKIOMETRI. Marselinus Laga Nur LOGO STOIKIOMETRI Marselinus Laga Nur Materi Pokok Bahasan : A. Konsep Mol B. Penentuan Rumus Kimia C. Koefisien Reaksi D. Hukum-hukum Gas A. Konsep Mol Pengertian konsep mol Hubungan mol dengan jumlah

Lebih terperinci

TUTORIAL III REAKTOR

TUTORIAL III REAKTOR TUTORIAL III REAKTOR REAKTOR KIMIA NON KINETIK KINETIK BALANCE EQUILIBRIUM CSTR R. YIELD R. EQUIL R. PLUG R. STOIC R. GIBBS R. BATCH REAKTOR EQUILIBRIUM BASED R-Equil Menghitung berdasarkan kesetimbangan

Lebih terperinci

TERMODINAMIKA LANJUT: ENTROPI

TERMODINAMIKA LANJUT: ENTROPI SELF-PROPAGATING ENTREPRENEURIAL EDUCATION DEVELOPMENT (SPEED) Termodinamika Lanjut Brawijaya University 2012 TERMODINAMIKA LANJUT: ENTROPI Dr.Eng Nurkholis Hamidi; Dr.Eng Mega Nur Sasongko Program Master

Lebih terperinci

TL 2104 PTL TL 2104 PENGANTAR TEKNIK LINGKUNGAN. Prodi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung

TL 2104 PTL TL 2104 PENGANTAR TEKNIK LINGKUNGAN. Prodi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung TL 2104 PENGANTAR TEKNIK LINGKUNGAN Prodi Teknik Lingkungan Fakultas Teknik Sipil dan Lingkungan Institut Teknologi Bandung Pendahuluan Tugas seorang Environmental Engineer: Desain unit-unit pengolahan

Lebih terperinci

Kesetimbangan Fasa Bab 17

Kesetimbangan Fasa Bab 17 14.49 Pada diagram fase dibawah ini kesetimbangan cair uap digambarkan sebagai T terhadap xa pada tekanan konstan, tentukan fase-fase dan hitunglah derajat kebebasan dari daerah yang ditandai. Jawab: Daerah

Lebih terperinci

Hukum Dasar Kimia Dan Konsep Mol

Hukum Dasar Kimia Dan Konsep Mol A. PENDAHULUAN Hukum Dasar Kimia Dan Konsep Mol Hukum dasar kimia merupakan hukum dasar yang digunakan dalam stoikiometri (perhitungan kimia), antara lain: 1) Hukum Lavoisier atau hukum kekekalan massa.

Lebih terperinci

KIMIA TERAPAN STOIKIOMETRI DAN HUKUM-HUKUM KIMIA Haris Puspito Buwono

KIMIA TERAPAN STOIKIOMETRI DAN HUKUM-HUKUM KIMIA Haris Puspito Buwono KIMIA TERAPAN STOIKIOMETRI DAN HUKUM-HUKUM KIMIA Haris Puspito Buwono Semester Gasal 2012/2013 STOIKIOMETRI 2 STOIKIOMETRI adalah cabang ilmu kimia yang mempelajari hubungan kuantitatif dari komposisi

Lebih terperinci

SOLUBILITAS EMPAT MACAM ORGANIC SOLVENT MASING- MASING DALAM TIGA MACAM POLYMER MENGGUNAKAN PIEZO-ELECTRIC QUARTZ CRYSTAL MICROBALANCE METHOD

SOLUBILITAS EMPAT MACAM ORGANIC SOLVENT MASING- MASING DALAM TIGA MACAM POLYMER MENGGUNAKAN PIEZO-ELECTRIC QUARTZ CRYSTAL MICROBALANCE METHOD SEMINAR SKRIPSI SOLUBILITAS EMPAT MACAM ORGANIC SOLVENT MASING- MASING DALAM TIGA MACAM POLYMER MENGGUNAKAN PIEZO-ELECTRIC QUARTZ CRYSTAL MICROBALANCE METHOD NURYADI 305 00 006 TANIA HAFSARI 305 00 037

Lebih terperinci

BAB II DASAR TEORI. FeO. CO Fe CO 2. Fe 3 O 4. Fe 2 O 3. Gambar 2.1. Skema arah pergerakan gas CO dan reduksi

BAB II DASAR TEORI. FeO. CO Fe CO 2. Fe 3 O 4. Fe 2 O 3. Gambar 2.1. Skema arah pergerakan gas CO dan reduksi BAB II DASAR TEORI Pengujian reduksi langsung ini didasari oleh beberapa teori yang mendukungnya. Berikut ini adalah dasar-dasar teori mengenai reduksi langsung yang mendasari penelitian ini. 2.1. ADSORPSI

Lebih terperinci

I. Beberapa Pengertian Dasar dan Konsep

I. Beberapa Pengertian Dasar dan Konsep BAB II ENERGETIKA I. Beberapa Pengertian Dasar dan Konsep Sistem : Bagian dari alam semesta yang menjadi pusat perhatian kita dengan batasbatas yang jelas Lingkungan : Bagian di luar sistem Antara sistem

Lebih terperinci

KONSEP MOL DAN STOIKIOMETRI

KONSEP MOL DAN STOIKIOMETRI KONSEP MOL DAN STOIKIOMETRI HUKUM-HUKUM DASAR KIMIA 1. Asas Lavoiser atau kekekalan massa jumlah sebelum dan setelah reaksi kimia adalah tetap 2. Hukum Gas Ideal P V = nrt Dengan P adalah tekanan (atm),

Lebih terperinci

TERMODINAMIKA SIKLUS KERJA DAN PEMAKAIAN BAHAN BAKAR MESIN DIESEL EMPAT LANGKAH 350 HP, 400 RPM (KAJIAN TEORITIS) Aloysius Eddy Liemena *) Abstract

TERMODINAMIKA SIKLUS KERJA DAN PEMAKAIAN BAHAN BAKAR MESIN DIESEL EMPAT LANGKAH 350 HP, 400 RPM (KAJIAN TEORITIS) Aloysius Eddy Liemena *) Abstract TERMODINAMIKA SIKLUS KERJA DAN PEMAKAIAN BAHAN BAKAR MESIN DIESEL EMPAT LANGKAH 350 HP, 400 RPM (KAJIAN TEORITIS) Aloysius Eddy Liemena *) Abstract The actual working cycles of internal combustion engines

Lebih terperinci

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA Disusun oleh : 1. Fatma Yunita Hasyim (2308 100 044)

Lebih terperinci

Lembar Kegiatan Siswa

Lembar Kegiatan Siswa Lembar Kegiatan Siswa LEMBAR KEGIATAN PERTEMUAN I I. Lembar Kegiatan Siswa (LKS)-01 : Kelompok Nama Kelompok : Nama Anggota : 1. 4. 2. 5. 3. 6. A. Petunjuk: 1. Bacalah dulu infornasi singkat pada LKS ini,

Lebih terperinci

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles

HUKUM TERMODINAMIKA II Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles HUKUM ERMODINAMIKA II hermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Boles Hukum ermodinamika II Sistem a. Suatu benda pada temperatur tinggi, yang mengalami sentuhan

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN

PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN PRAKTIKUM OPERASI TEKNIK KIMIA II MODUL 7 WETTED WALL COLUMN LABORATORIUM RISET DAN OPERASI TEKNIK KIMIA PROGRAM STUDI TEKNIK KIMA FAKULTAS TEKNOLOGI INDUSTRI UPN VETERAN JAWA TIMUR SURABAYA I. TUJUAN

Lebih terperinci

II. DESKRIPSI PROSES. (2007), metode pembuatan VCM dengan mereaksikan acetylene dengan. memproduksi vinyl chloride monomer (VCM). Metode ini dilakukan

II. DESKRIPSI PROSES. (2007), metode pembuatan VCM dengan mereaksikan acetylene dengan. memproduksi vinyl chloride monomer (VCM). Metode ini dilakukan II. DESKIPSI POSES A. Jenis - Jenis Proses a) eaksi Acetylene (C2H2) dengan Hydrogen Chloride (HCl) Menurut Nexant s ChemSystem Process Evaluation/ esearch planning (2007), metode pembuatan VCM dengan

Lebih terperinci

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI

TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI TUGAS AKHIR BIDANG STUDI KONVERSI ENERGI Dosen Pembimbing : Ir. Joko Sarsetiyanto, MT Program Studi Diploma III Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya Oleh

Lebih terperinci

ANALISA PENGARUH VARIASI LAJU ALIRAN UDARA TERHADAP EFEKTIVITAS HEAT EXCHANGER MEMANFAATKAN ENERGI PANAS LPG

ANALISA PENGARUH VARIASI LAJU ALIRAN UDARA TERHADAP EFEKTIVITAS HEAT EXCHANGER MEMANFAATKAN ENERGI PANAS LPG ANALISA PENGARUH VARIASI LAJU ALIRAN UDARA TERHADAP EFEKTIVITAS HEAT EXCHANGER MEMANFAATKAN ENERGI PANAS LPG Oleh : I Made Agus Wirawan Pembimbing : Ir. Hendra Wijaksana, M.Sc. Ketut Astawa, ST., MT. ABSTRAK

Lebih terperinci

LAMPIRAN A HASIL PERHITUNGAN NERACA MASSA

LAMPIRAN A HASIL PERHITUNGAN NERACA MASSA LAMPIRAN A HASIL PERHITUNGAN NERACA MASSA Kapasitas Produksi 15.000 ton/tahun Kemurnian Produk 99,95 % Basis Perhitungan 1.000 kg/jam CH 3 COOH Pada perhitungan ini digunakan perhitungan dengan alur maju

Lebih terperinci

Prarancangan Pabrik Sikloheksana dengan Proses Hidrogenasi Benzena Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES

Prarancangan Pabrik Sikloheksana dengan Proses Hidrogenasi Benzena Kapasitas Ton/Tahun BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES 2.1. Spesifikasi Bahan Baku dan Produk 2.1.1. Spesifikasi Bahan Baku 1. Benzena a. Rumus molekul : C6H6 b. Berat molekul : 78 kg/kmol c. Bentuk : cair (35 o C; 1 atm) d. Warna :

Lebih terperinci

H 2 O (L) H 2 O (G) KESETIMBANGAN KIMIA. N 2 O 4 (G) 2NO 2 (G)

H 2 O (L) H 2 O (G) KESETIMBANGAN KIMIA. N 2 O 4 (G) 2NO 2 (G) H 2 O (L) H 2 O (G) KESETIMBANGAN KIMIA. N 2 O 4 (G) 2NO 2 (G) Purwanti Widhy H Kesetimbangan adalah suatu keadaan di mana tidak ada perubahan yang terlihat seiring berjalannya waktu. Kesetimbangan kimia

Lebih terperinci

II. DESKRIPSI PROSES. Proses produksi Metil Akrilat dapat dibuat melalui beberapa cara, antara

II. DESKRIPSI PROSES. Proses produksi Metil Akrilat dapat dibuat melalui beberapa cara, antara 11 II. DESKRIPSI PROSES A. Jenis-Jenis Proses Proses produksi Metil Akrilat dapat dibuat melalui beberapa cara, antara lain : 1. Pembuatan Metil Akrilat dari Asetilena Proses pembuatan metil akrilat adalah

Lebih terperinci

Abdul Wahid Surhim 2014

Abdul Wahid Surhim 2014 Abdul Wahid Surhim 2014 Kerangka Pembelajaran Persamaan Kimia Pola Reaktivitas Kimia Berat Atom dan Molekul Mol Rumus Empirik dari Analisis Informasi Kuantitatif dari Persamaan yang Disetarakan Membatasi

Lebih terperinci

TERMOKIMIA PENGERTIAN HAL-HAL YANG DIPELAJARI

TERMOKIMIA PENGERTIAN HAL-HAL YANG DIPELAJARI TERMOKIMIA PENGERTIAN TERMOKIMIA ilmu kimia yang mempelajari perubahan kalor atau panas suatu zat yang menyertai suatu reaksi atau proses kimia dan fisika disebut termokimia. HAL-HAL YANG DIPELAJARI Perubahan

Lebih terperinci

BASIC THERMODYNAMIC CONCEPTS

BASIC THERMODYNAMIC CONCEPTS BASIC THERMODYNAMIC CONCEPTS SYSTEM Definition: Region of space which is under study Surrounding: the whole universe excluding the system Example: Cash In Ci Cash Out Co BANK Cc Ci : all deposits Co :

Lebih terperinci

BAB IV PEMODELAN DAN SIMULASI SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON DENGAN MENGGUNAKAN SOFTWARE MATLAB/SIMULINK

BAB IV PEMODELAN DAN SIMULASI SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON DENGAN MENGGUNAKAN SOFTWARE MATLAB/SIMULINK BAB IV PEMODELAN DAN SIMULASI SEL BAHAN BAKAR MEMBRAN PERTUKARAN PROTON DENGAN MENGGUNAKAN SOFTWARE MATLAB/SIMULINK 4.1. Pendahuluan Pada bab ini akan dibahas mengenai pengembangan model dalam software

Lebih terperinci

UNIVERSITAS DIPONEGORO PERHITUNGAN PERFORMA ALAT PENUKAR KALOR AIR PREHEATER A DAN B TIPE ROTARY LAP UNIT 1 PLTU 3 JAWA TIMUR TANJUNG AWAR-AWAR

UNIVERSITAS DIPONEGORO PERHITUNGAN PERFORMA ALAT PENUKAR KALOR AIR PREHEATER A DAN B TIPE ROTARY LAP UNIT 1 PLTU 3 JAWA TIMUR TANJUNG AWAR-AWAR UNIVERSITAS DIPONEGORO PERHITUNGAN PERFORMA ALAT PENUKAR KALOR AIR PREHEATER A DAN B TIPE ROTARY LAP UNIT 1 PLTU 3 JAWA TIMUR TANJUNG AWAR-AWAR TUGAS AKHIR ADITYA MAHENDRA SASMITA 21050112083011 FAKULTAS

Lebih terperinci

DESTILASI UAP. Group B ( PTK 2) Darwin Junaidi ( ) Agustina Gunawan ( ) Harris Kristanto ( )

DESTILASI UAP. Group B ( PTK 2) Darwin Junaidi ( ) Agustina Gunawan ( ) Harris Kristanto ( ) DESTILASI UAP Group B ( PTK 2) Darwin Junaidi (5203011002) Agustina Gunawan (5203011010) Harris Kristanto (5203011020 ) Definisi Destilasi Destilasi secara umum adalah pemisahan 2 komponen atau lebih berdasarkan

Lebih terperinci

Ensembel Kanonik Klasik

Ensembel Kanonik Klasik Ensembel Kanonik Klasik Menghitung Banyak Status Keadaan Sistem Misal ada dua sistem A dan B yang boleh bertukar energi (tapi tidak boleh tukar partikel). Misal status keadaan dan energi masing-masing

Lebih terperinci

LEMBAR SOAL ULANGAN TENGAH SEMESTER GANJIL TAHUN (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Rabu, 29 Septembr 2010

LEMBAR SOAL ULANGAN TENGAH SEMESTER GANJIL TAHUN (UTAMA) Mata Pelajaran (Beban) : Fisika 4 ( 4 sks) Hari/Tanggal : Rabu, 29 Septembr 2010 J A Y A R A Y A PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS (SMA) NEGERI 78 JAKARTA Jalan Bhakti IV/1 Komp. Pajak Kemanggisan Telp. 5327115/5482914 JAKARTA

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA BAHAN AJAR KIMIA DASAR BAB IV STOIKIOMETRI

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA BAHAN AJAR KIMIA DASAR BAB IV STOIKIOMETRI No. BAK/TBB/SBG201 Revisi : 00 Tgl. 01 Mei 2008 Hal 1 dari 6 BAB IV STOIKIOMETRI A. HUKUM GAY LUSSAC Bila diukur pada suhu dan tekanan yang sama, volum gas yang bereaksi dan volum gas hasil reaksi berbanding

Lebih terperinci

BAB V SIFAT-SIFAT ZAT MURNI

BAB V SIFAT-SIFAT ZAT MURNI BAB V SIFA-SIFA ZA MURNI ubungan antara volume spesifik atau volume molar terhadap temperature dan tekanan untuk zat murni dalam keadaan kesetimbangan ditunjukkan dengan permukaan tiga dimensi seperti

Lebih terperinci

REAKTOR BATCH Chp. 12 Missen, 1999

REAKTOR BATCH Chp. 12 Missen, 1999 REKTOR BTCH Chp. 12 Missen, 1999 BTCH VERSUS CONTINUOUS OPERTION DESIGN EQUTIONS FOR BTCH RECTOR (BR) Pertimbangan umum t adalah waktu reaksi yang diperlukan untuk mencapai konversi f 1 sampai f 2 adalah

Lebih terperinci

Bab I Thermodinamika untuk Teknik Lingkungan

Bab I Thermodinamika untuk Teknik Lingkungan Bab I Thermodinamika untuk Teknik Lingkungan Termodinamika adalah studi tentang energi yang terjadi pada proses reaksi (baik fisika maupun kimia), dan transformasi energi dari satu bentuk energi ke bentuk

Lebih terperinci

KULIAH - XIV TERMODINAMIKA TEKNIK I TKM 203 (4 SKS) SEMESTER III DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA TAHUN 2006 MHZ 1

KULIAH - XIV TERMODINAMIKA TEKNIK I TKM 203 (4 SKS) SEMESTER III DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA TAHUN 2006 MHZ 1 KULIAH - XIV ERMODINAMIKA EKNIK I KM 03 (4 SKS) SEMESER III DEPAREMEN EKNIK MESIN FAKULAS EKNIK UNIVERSIAS SUMAERA UARA AHUN 006 MHZ Hukum ermodamika I adalah : BAB IV HUKUM ERMODINAMIKA II - Menetakan

Lebih terperinci