Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

dokumen-dokumen yang mirip
Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA5181 PROSES STOKASTIK

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIKA We love Statistics

Peubah Acak dan Distribusi Kontinu

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Proses Stokastik

MA5181 PROSES STOKASTIK

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

Pengantar Proses Stokastik

Pengantar Proses Stokastik

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah. MA5181 Proses Stokastik

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

Pengantar Statistika Matematik(a)

MA5181 PROSES STOKASTIK

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematik(a)

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Proses Stokastik

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

STATISTIK PERTEMUAN VI

A. Distribusi Gabungan

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Peubah Acak dan Distribusi

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Sebaran Peubah Acak Bersama

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

A. Distribusi Gabungan

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

Sebaran Peubah Acak Bersama

/ /16 =

MA4183 MODEL RISIKO Control your Risk!

MA3081 STATISTIKA MATEMATIKA We love Statistics

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)

Catatan Kuliah. MA5181 Proses Stokastik

Pengantar Statistika Matematika II

MA 2081 STATISTIKA DASAR UTRIWENI MUKHAIYAR 24 FEBRUARI 2011

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Dengan demikian, untuk sembarang B = [a, b], maka persamaan (5.1) menjadi

P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)

MA4081 PENGANTAR PROSES STOKASTIK

MA4183 MODEL RISIKO Control your Risk!

MA4181 MODEL RISIKO Enjoy the Risks

MA4181 MODEL RISIKO Enjoy the Risks

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp

MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson

Pengantar Statistika Matematika II

Fungsi Peluang Gabungan

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

MA4183 MODEL RISIKO Control your Risk!

Learning Outcomes Sebaran Kontinu Nilai Harapan dan Ragam Beberapa Sebaran Kontinu. Peubah Acak Kontinu. Julio Adisantoso.

Catatan Kuliah. MA4183 Model Risiko

MA4081 PENGANTAR PROSES STOKASTIK

MA4181 MODEL RISIKO Risk is managed, not avoided

Metode Statistika (STK 211) Pertemuan ke-5

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

CATATAN KULIAH PENGANTAR PROSES STOKASTIK

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4183 MODEL RISIKO Control your Risk!

MA4181 MODEL RISIKO Risk is managed, not avoided

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

MA2081 Statistika Dasar

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

STATISTIKA UNIPA SURABAYA

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Transkripsi:

BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X) x f X (x) dx dimana p X dan f X adalah fungsi peluang dari X. Catatan: 1. Ekspektasi adalah rata-rata tertimbang (weighted average) dari nilai yang mungkin dari X 2. Ekspektasi mean momen pertama 3. Ekspektasi suatu peubah acak adalah nilai rata-rata (long-run average value) dari percobaan bebas yang berulang 3. Apakah ekspektasi harus berhingga? (Diskusi!) Contoh/Latihan: 1. Pengurus dan Anggota HIMATIKA sebanyak 12 orang akan berangkat ke Jakarta dengan menggunakan 3 bis. Ada 36 mahasiswa di bis 1, 4 mahasiswa di bis 2 dan 44 mahasiswa di bis 3. Ketika bis sampai tujuan, seorang mahasiswa dipilih secara acak. Misalkan X menyatakan 1

banyaknya mahasiswa di bis dimana seseorang tersebut terpilih. Hitung E(X). ( 4.2667) 2. Jika X P ois(λ), tentukan E(X). ( λ) 3. Misalkan X adalah peubah acak dengan nilai yang mungkin 1,, 1 dan peluang: p( 1).2, p().5, p(1).3 Hitung E(X 2 ). (.5) SIFAT-SIFAT EKSPEKTASI 1. E(g(X)) g(x) f X(x) dx 2. E(a X + b Y ) a E(X) + b E(Y ) 3. E(XY ) E(X) E(Y ), jika X dan Y saling bebas. 4. E(X) P (X > x) dx, untuk X > (*) 5. E(X r ) xr f X (x) dx (momen ke-r) 6. E((X µ X ) r ) (x µ X) r f X (x) dx (momen pusat ke-r) 7. E((X µ X ) 2 ) V ar(x) E(X 2 ) (E(X)) 2 Deviasi standar dari X adalah akar kuadrat Variansi dari X. 8. E(e tx ) etx f X (x) dx M X (t) (fungsi pembangkit momen) 9. M X () E(X), M X () E(X2 ) Contoh/Latihan: 1. Misalkan Y menunjukkan banyaknya gol yang diciptakan oleh seorang pemain sepak bola di suatu pertandingan yang terpilih acak: y 1 2 3 4 5 6 p(y).1.2.3.2.1.5.5 Misalkan W adalah banyaknya pertandingan dimana seorang pemain sepak bola menciptakan 3 atau lebih gol dalam 4 pertandingan terpilih acak. Berapa nilai harapan banyak pertandingan dimana pemain menciptakan 3 atau lebih gol? MA481 Pros.Stok. 2 K. Syuhada, PhD.

P (Y 3).4 P ( sukses ) p E(W ) n p 4 (.4) 1.6 2. Misalkan X peubah acak dengan M X (t) sebagai fungsi pembangkit momen. Didefinisikan f(t) ln M X (t). Tunjukkan bahwa f () V ar(x) saat t, f (t) M X(t)/M X (t) f (t) M X (t) M X(t) (M X (t))2 (M X (t)) 2 f () M X () M X() (M X ())2 (M X ()) 2 E(X 2 ) (E(X)) 2 V ar(x) dimana M X () 1, M X () E(X), M X () E(X2 ). 3. Diketahui fungsi peluang: f(x) c (4x 2x 2 ), < x < 2 Hitung E(X) dan P (1/2 < X < 3/2) 2 f(x) dx 2 c(4x 2x 2 ) dx 1 Diperoleh c 3/8. E(X) x 3/8 (4x 2x 2 ) dx 1 P (1/2 < X < 3/2) 3/2 1/2 3/8 (4x 2x 2 ) dx 11/16 4. Diketahui X B(n, p). Buktikan: ( ) 1 E p + q(1 qn ) X + 1 (n + 1)p MA481 Pros.Stok. 3 K. Syuhada, PhD.

Bukti: E 5. Diketahui: ( ) 1 X + 1 n 1 i + 1 n!(n i)! i! pi q n i n n!(n i)! (i + 1)! p i q n i i i 1 (n + 1)p 1 (n + 1)p n i n+1 j1 C n+1 i+1 pi+1 q n i C n+1 j p j q n+1 j 1 [ 1 C n+1 p q n+1 ] (n + 1)p 1 ( ) 1 q n+1 (n + 1)p p + q qn+1 (n + 1)p p + q(1 qn ) (n + 1)p f(x) 1 Γ(r) (λ x)r 1 λ exp( λ x) Tentukan E(X k ), k 2, 3 X Gamma(r, λ) dengan M X (t) (1 λ t) r. M X(t), M X (t) 6. Misalkan X peubah acak berdistribusi Poisson dengan parameter θ. Tunjukkan bahwa: E ( X n) θ E ( (X + 1) n 1) MA481 Pros.Stok. 4 K. Syuhada, PhD.

Bukti: E ( X n) λ i n e λ λ i / i! i i n e λ λ i / i! i1 i n 1 e λ λ i / (i 1)! i1 (j + 1) n 1 e λ λ j+1 / j! j (j + 1) n 1 e λ λ j / j! j λ E ( (X + 1) n 1) 7. Misalkan X menyatakan lama (jam) mhs belajar TP dan fungsi peluang X adalah sbb: f(x) { x 2, 2 x < 3 1, 4 < x < 6 4 (a) Berapa persen mhs menghabiskan waktu lebih dari 15 menit utk belajar TP? (b) Berapa rata-rata lama waktu mhs belajar TP? (c) Jika seorang mhs menghabiskan waktu lebih dari 13 menit, berapa peluang mhs itu selesai belajar kurang dari 4.5 jam? (d) Hitung P (X 2), P (X 3), P (X E(X)), P (X < E(X)) (a) P (X > 2.5) 3 (x 2) dx + 6 1/4 dx 2.5 4 (b) E(X) 1/3 (c) P (X < 4.5 X > 13/6) P (13/6 < X < 4.5)/P (X > 13/6) (d) P (X E(X)), P (X < E(X)) P (X < 1/3) 1/2 MA481 Pros.Stok. 5 K. Syuhada, PhD.

8. Misalkan X peubah acak dengan fungsi distribusi F (x), x < 2.2, 2 x <.5, x < 2.2.6, 2.2. x < 3.6 + q, 3 x < 4.6 + 2q, 4 x < 5.5 1, x 5.5 dan diketahui P (X > 3.3).25. a. Tentukan fungsi pembangkit momen dari X atau M X (t) b. Gunakan M X (t) untuk menentukan Var(X). p( 2).2, p().3, p(2.2).1, p(3) q, p(4) q, p(5.5).4 2q a. P (X > 3.3) p(4) + p(5.5) q +.4 2q.25 q.15 M X (t) E(e tx ) e tx p(x) e 2t p( 2) + e t p() + e 2.2t p(2.2) + e 3t p(3) + e 4t p(4) + e 5.5t p(5.5).2 e 2t +.3 +.1 e 2.2t +.15 e 3t +.15 e 4t +.1 e 5.5t b. M X(t).2 e 2t +.3 +.1 e 2.2t +.15 e 3t +.15 e 4t +.1 e 5.5t.4 e 2t +.22 e 2.2t +.45 e 3t +.6 e 4t +.55 e 5.5t M X().4 +.22 +.45 +.6 +.55 1.42 MA481 Pros.Stok. 6 K. Syuhada, PhD.

1.2 FUNGSI PELUANG BERSAMA Ilustrasi. Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter kecelakaan. Banyaknya kecelakaan pada seseorang setiap tahun berdistribusi Poisson dengan parameter λ. Perusahaan juga menduga bahwa pemegang polis baru akan memiliki parameter kecelakaan yang nilainya adalah peubah acak gamma dengan parameter s dan α. Jika seorang pemegang polis baru mengalami n kecelakan di tahun pertama, kita dapat menentukan peluang bersyarat dari parameter kecelakaannya. Selain itu, kita juga dapat menentukan banyak kecelakaan (yang diharapkan) pada tahun berikutnya. Misalkan X dan Y ada peubah acak-peubah acak diskrit yang terdefinisi di ruang sampel yang sama. Fungsi peluang bersama (joint pmf) dari X dan Y adalah p X,Y (x, y) P (X x, Y y) Catatan: 1. Kondisi bahwa X dan Y terdefinisi pada ruang sampel yang sama berarti 2 peubah acak tsb memberikan informasi secara bersamaan terhadap keluaran (outcome) dari percobaan yang sama 2. {X x, Y y} adalah irisan kejadian {X x} dan {Y y}; kejadian dimana X bernilai x dan Y bernilai y Proposisi Fungsi peluang bersama p X,Y memenuhi sifat-sifat berikut: 1. p X,Y (x, y), (x, y) 2. (x, y) R 2 : p X,Y (x, y) terhitung 3. x,y p X,Y (x, y) 1 Proposisi Misalkan X dan Y peubah acak-peubah acak diskrit yang didefinisikan pada ruang sampel yang sama. Maka, p X (x) y p X,Y (x, y), x R MA481 Pros.Stok. 7 K. Syuhada, PhD.

dan p Y (y) x p X,Y (x, y), y R adalah fungsi peluang marginal dari X dan fungsi peluang marginal dari Y. Contoh/Latihan: 1. Diberikan data ttg jumlah kamar tidur dan kamar mandi dari 5 rumah yang akan dijual sbb (X kamar tidur, Y kamar mandi): X\Y 2 3 4 5 Total 2 3 3 14 12 2 28 4 2 11 5 1 Total 23 5 a. Hitung p X,Y (3, 2) b. Tentukan fungsi peluang bersama dari X dan Y X\Y 2 3 4 5 Total 2.6....6 3.28.24.4..56 4.4.22.1.2.38 Total.38.46.14.2 1. 2. Misalkan kita punyai 2 komponen elektronik yang identik. Misalkan juga X dan Y adalah waktu hidup (jam, diskrit). Asumsikan fungsi peluang bersama dari X dan Y adalah p X,Y (x, y) p 2 (1 p) x+y 2, x, y N dimana < p < 1. Tentukan dan identifikasikan fungsi peluang marginal dari X dan Y. p X (x) y p X,Y (x, y) p 2 (1 p) x+y 2 y1 p 2 (1 p) x 2 (1 p) y p (1 p) x 1 y1 MA481 Pros.Stok. 8 K. Syuhada, PhD.

3. Diantara 8 orang politisi: 2 Golkar, 2 Demokrat, 4 PDIP. Tiga dari 8 politisi ini dipilih secara acak dengan pengembalian. Misalkan X adalah banyaknya Golkar, Y banyaknya Demokrat. Tentukan fungsi peluang bersama X dan Y. Hitung P (X Y ) p X,Y (x, y) C 3 x,y,3 x y (1/4) x (1/4) y (1/2) 3 x y, x, y, 1, 2, 3 X\Y 1 2 3 Total 1/8 3/16 3/32 1/64 27/64 1 3/16 3/16 3/64 27/64 2 3/32 3/64 9/64 3 1/64 1/64 Total 27/64 27/64 9/64 1/64 1 4. Pandang keadaan pada soal 2. Tentukan peluang bahwa (a) kedua komponen elektronik tsb bertahan lebih dari 4 jam? (b) salah satu komponen bertahan setidaknya 2 kali dari komponen yang lain? p X,Y (x, y) p 2 (1 p) x+y 2 x>4 y>4 x5 y5 (1 p) 8 P (X 2Y ) + P (Y 2X) 2 P (X 2Y ) 2 p 2 (1 p) x+y 2 y1 x2y 2(1 p) 3 3p + p 2 Definisi: Misalkan X dan Y adalah peubah acak-peubah acak yang terdefinisi di ruang sampel yang sama. Fungsi distribusi bersama dari X dan Y, F X,Y adalah F X,Y (x, y) P (X x, Y y), x, y R Contoh: MA481 Pros.Stok. 9 K. Syuhada, PhD.

Misalkan sebuah titik diambil secara acak dari {(x, y) R 2 : < x < 1, < y < 1} Misalkan X dan Y menyatakan koordinat x dan y dari titik yang terpilih. Tentukan fungsi distribusi bersama dari X dan Y. Jawab: Kasus 1: x <, y < Kasus 2: x < 1, y < 1 Kasus 3: x < 1, y 1 Kasus 4: x 1, y < 1 Kasus 5: x 1, y 1 Proposisi. Misalkan X dan Y peubah acak-peubah acak terdefinisi di ruang sampel yang sama. Untuk semua bilangan riil a, b, c, d dimana a < b dan c < d, P (a < X b, c < Y d) F X,Y (b, d) F X,Y (b, c) F X,Y (a, d)+f X,Y (a, c) Definisi. Misalkan X dan Y adalah peubah acak-peubah acak yang didefinisikan pada ruang sampel yang sama. Fungsi non-negatif f X,Y adalah fungsi peluang bersama dari X dan Y untuk semua bilangan riil a, b, c, d dimana a < b dan c < d, P (a X b, c Y d) Catatan: b a d c f X,Y (x, y) dxdy f X,Y (x, y) 2 x y F X,Y (x, y) 2 y x F X,Y (x, y) Proposisi. Suatu fungsi peluang bersama f X,Y (x, y) dari peubah acak X dan Y memenuhi 2 sifat berikut 1. f X,Y (x, y) untuk semua (x, y) R 2 2. f X,Y (x, y) dxdy 1 Proposisi Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi MA481 Pros.Stok. 1 K. Syuhada, PhD.

peluang bersama f X,Y (x, y). Maka dan f X (x) f Y (y) f X,Y (x, y)dy, x R f X,Y (x, y)dx, y R adalah fungsi peluang marginal dari X dan Y. Contoh/Latihan: 1. Misalkan X dan Y memiliki fungsi peluang bersama (i) f(x, y) c (y 2 x 2 ) e y, y x y, < y < (ii) f(x, y) c x y 2, x 1, y 1 a. Tentukan c b. Tentukan fungsi peluang marginal X dan Y c. Hitung P (Y > 2X) d. Apakah X dan Y saling bebas? a. Untuk menentukan c: 1 Jadi c 1/8. y y c (y 2 x 2 ) e y dx dy 8c b. Fungsi peluang marginal: f X (x) 1/4 e x (1 + x ) f Y (y) 1/6 y 3 e y, y c. P (Y > 2X) y/2 y c (y 2 x 2 ) e y dx dy d. X dan Y tidak saling bebas. MA481 Pros.Stok. 11 K. Syuhada, PhD.

Catatan: X dan Y saling bebas jika f(x, y) f X (x) f Y (y) 2. Pandang 2 komponen elektronik A dan B dengan masa hidup X dan Y. Fungsi peluang bersama dari X dan Y adalah f X,Y (x, y) λ µ exp( λx + µy), x, y > dimana λ >, µ > a. Tentukan peluang bahwa kedua komponen berfungsi pada saat t b. Tentukan peluang bahwa komponen A adalah komponen yang pertama kali rusak c. Tentukan peluang bahwa komponen B adalah komponen yang pertama kali rusak a. P (X > t, Y > t) t t e (λ+µ)t λ µ e (λ x+µ y) dy dx b. P (X < Y ) x λ λ + µ λ µ e (λ x+µ y) dy dx 3. Ketika kebakaran terjadi dan dilaporkan ke perusahaan asuransi, perusahaan asuransi tersebut segera membuat perkiraan awal X yaitu besar nilai klaim yang akan diberikan. Setelah klaim dihitung secara lengkap, perusahaan harus melunasi pembayaran klaim sebesar Y. Perusahaan menentukan bahwa X dan Y memiliki fungsi peluang bersama f X,Y (x, y) 2 x 2 (x 1) y (2x 1)/(x 1), x > 1, y > 1 a. Tentukan f X (x) b. Jika besar klaim awal yang diberikan adalah 2, tentukan peluang bahwa klaim yang diterima berikutnya adalah antara 1 dan 3. MA481 Pros.Stok. 12 K. Syuhada, PhD.

a. f X (x) 1 b. P (1 < Y < 3 X 2) 2 x 2 (x 1) y (2x 1)/(x 1) dy 3 1 8/9 ( fx,y (x, y) f X (x) ) dy X2 MA481 Pros.Stok. 13 K. Syuhada, PhD.

1.3 EKSPEKTASI BERSYARAT Ilustrasi 1. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat. Misalkan banyaknya buruh yang terluka/cedera setiap kecelakaan adalah peubah acak yang saling bebas dengan mean dua. Asumsikan bahwa banyaknya buruh yang terluka di setiap kecelakaan saling bebas dengan banyaknya kecelakaan yang terjadi. Berapa banyak orang terluka rata-rata per minggu? Ilustrasi 2. Seorang narapidana terjebak dalam suatu sel penjara yang memiliki tiga pintu. Pintu pertama akan membawanya ke sebuah terowongan dan kembali ke sel dalam waktu dua hari. Pintu kedua dan ketiga akan membawanya ke terowongan yang kembali ke sel dalam tempo masing-masing empat dan satu hari. Asumsikan bahwa sang napi selalu memilih pintu 1, 2, dan 3 dengan peluang.5,.3 dan.2, berapa lama waktu rata-rata (expected number of days) yang dibutuhkan untuk dia agar selamat? Definisi: Misalkan X dan Y adalah peubah acak-peubah acak diskrit. Jika p X (x) > maka fungsi peluang bersyarat dari Y diberikan X x (notasi: p Y X (y x)), adalah p Y X (y x) p X,Y (x, y), y R p X (x) Jika p X (x), kita definiskan p Y X (y x) namun tidak dikatakan sebagai fungsi peluang bersyarat. Catatan: Fungsi peluang bersyarat adalah fungsi peluang! Proposisi. Misalkan X dan Y adalah peubah acak-peubah acak diskrit. Kedua peubah acak ini dikatakan saling bebas (independen) jika dan hanya jika p X,Y (x, y) p X (x) p Y (y) x, y R Contoh/Latihan: 1. Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter kecelakaan. Banyaknya kecelakaan pada seseorang setiap tahun berdistribusi Poisson dengan parameter λ. Perusahaan juga menduga bahwa pemegang polis baru akan memiliki parameter kecelakaan yang nilainya adalah peubah acak gamma dengan parameter s dan α. Jika seorang pemegang polis baru mengalami n kecelakan di tahun pertama, tentukan peluang bersyarat dari parameter kecelakaannya. Tentukan banyak kecelakaan (yang diharapkan) pada MA481 Pros.Stok. 14 K. Syuhada, PhD.

tahun berikutnya. Misalkan N menyatakan banyak kecelakaan per tahun yang berdistribusi Poisson dengan mean λ, dimana Λ berdistribusi Gamma dengan parameter s dan α (Catatan: Λ adalah huruf besar dari λ). P (Λ λ, N n) f Λ N (λ n) P (N n) 1 P (N n) P (N n Λ λ) f Λ(λ) 1 e λ λ n P (N n) n! C λ n+α 1 e (s+1)λ, s α Γ(α) λα 1 e s λ dengan C konstanta. Fungsi peluang f Λ N haruslah berdistribusi Gamma dengan parameter s + 1 dan n + α. Jadi, f Λ N (λ n) (s + 1)n+α Γ(n + α) λn+α 1 e (s+1)λ Banyak kecelakaan yang diharapkan (expected number of accidents), E(Λ N n), adalah nilai harapapan (expected value) dari distribusi Gamma dengan parameter s + 1 dan n + α yaitu (n + α)/(s + 1). 2. Banyaknya orang Z yang datang ke ruang UGD selama sejam memiliki distribusi Poisson dengan parameter λ. Peluang orang yang datang adalah laki-laki adalah p dan peluang perempuan datang adalah q. Misalkan X dan Y berturut-turut adalah banyaknya laki-laki dan perempuan yang datang ke UGD selama sejam. a. Tunjukan bahwa X P OI(pλ) dan Y P OI(qλ) b. Apakah X dan Y saling bebas? Peubah acak Z berdistribusi Poisson: f Z (z) e λ λ z, z, 1, 2,... z! Untuk Z z, maka kedatangan pasien laki-laki adalah peubah acak Binomial dengan parameter (z, p): f X Z (x z) C z x p x (1 p) z x, x, 1,..., z MA481 Pros.Stok. 15 K. Syuhada, PhD.

dan untuk pasien perempuan: f Y Z (y z) Cy z q x (1 q) z y, y, 1,..., z Sehingga fungsi peluang bersama X dan Y diberikan Z z: f X,Y Z (x, y z) Cx,y z p x q y, x + y z Untuk mendapatkan fungsi peluang marginal dari X, kita hitung f X (x) z f X,Z (x, z) z f X Z (x z) f Z (z) e pλ (pλ) x x! Jadi, X P OI(pλ). Dengan cara sama, kita peroleh Y P OI(qλ). Selanjutnya, untuk menentukan apakah X dan Y saling bebas kita tunjukkan bahwa f X,Y (x, y) z f X,Y,Z (x, y, z) z f X,Y Z (x, y z) f Z (z) f X (x) f Y (y) Misalkan X berdistribusi Uniform pada selang (, 1). Misalkan Y X n. Maka F Y (y) P (Y y) P (X n y) P (X y 1/n ) F X (y 1/n ) y 1/n dan fungsi peluang dari Y adalah f Y (y) (1/n) y 1/n 1, y 1 Misalkan X peubah acak kontinu dengan fungsi peluang f X. Misalkan Y X 2, F Y (y) P (Y y) P (X 2 y) P ( y X y) F X ( y) F X ( y) dan fungsi peluangnya adalah f Y (y) 1 ( 2 f X ( y) f X ( ) y) y MA481 Pros.Stok. 16 K. Syuhada, PhD.

Misalkan X dan Y peubah acak-peubah acak positif saling bebas. Misalkan (i) Z X/Y (ii) Z XY, maka F Z (z) P (Z z) P (X/Y z) P (X zy ) zy f Y (y) dan fungsi peluangnya: f X (x) f Y (y) dx dy zy f Y (y) F X (zy) dy f X (x) dx dy f X/Y (z) y f Y (y) f X (zy) dy Misalkan X dan Y saling bebas dan kita ingin menentukan fungsi distribusi dan fungsi peluang X + Y, F Z (z) P (Z z) P (X + Y z) P (X zy ) z y z y f X (x) f Y (y) dx dy f X (x) dx f Y (y) dy F X (z y) f Y (y) dy, dimana fungsi distribusi F X+Y F Y. Fungsi peluangnya adalah ini disebut konvolusi dari distribusi F X dan f X+Y (z) d dz F X (z y) f Y (y) dy d dz F X(z y) f Y (y) dy f X (z y) f Y (y) dy Tentukan distribusi dari X + Y jika X dan Y peubah acak-peubah acak saling bebas berdistribusi (i) Uniform(, 1) (ii) Poisson dengan parameter λ i. MA481 Pros.Stok. 17 K. Syuhada, PhD.

Definisi: Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi peluang bersama f X,Y (x, y). Jika f X (x) > maka ekspektasi bersyarat dari Y diberikan X x adalah ekspektasi dari Y relatif terhadap distribusi bersyarat Y diberikan X x, E(Y X x) y f X,Y (x, y) f X (x) dy y f Y X (y x) dy Proposisi. Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi peluang bersama f X,Y (x, y). Misalkan ekspektasi dari Y hingga. Maka atau E(Y ) E(Y X x) f X (x) dx E(Y ) E(E(Y X x)) Definisi: Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi peluang bersama f X,Y (x, y). Jika f X (x) > maka variansi bersyarat dari Y diberikan X x adalah variansi dari Y relatif terhadap distribusi bersyarat Y diberikan X x, ( (Y ) ) 2 X V ar(y X x) E E(Y X x) x Proposisi. Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi peluang bersama f X,Y (x, y). Misalkan variansi dari Y hingga. Maka V ar(y ) E(V ar(y X x)) + V ar(e(y X)) Latihan: 1. Misalkan X dan Y peubah acak kontinu dengan fungsi eluang bersama f(x, y) e x(y+1), x, y e 1 a. Tentukan f Y (y) b. Hitung P (X > 1 Y 1 2 ) c. Hitung E(X Y 1 2 ) MA481 Pros.Stok. 18 K. Syuhada, PhD.

P (X > 1 Y 1 2 ) 1 1 e 3/2 e x(y+1) 1/(y + 1) dx 3 3 2 x dx 2 e 2. K meninggalkan kantor setiap hari kerja antara pukul 6-7 malam. Jika dia pergi t menit setelah pukul 6 maka waktu untuk mencapai rumah adalah peubah acak berdistribusi Seragam pada selang (2, 2 + (2t)/3). Misalkan Y adalah banyak menit setelah pukul 6 dan X banya menit untuk mencapai rumah, berapa lama waktu mencapai rumah? Y U(, 6), X Y y U(2, 2 + (2y)/3). E(X) 6 E(X Y y) f Y (y) dy 3 3. Jika X i Bin(n i, p), tentukan E(X 1 + X 2 X 1 ) 4. Jika X dan Y peubah acak-peubah acak Poisson saling bebas dengan parameter λ x dan λ y, tentukan E(X X + Y n). Bagaimana jika X dan Y berdistribusi Geometrik identik dengan parameter p? Kita ketahui bahwa jika X dan Y saling bebas maka Akibatnya, f X,Y (x, y) f X (x) g Y (y), E(XY ) E(X) E(Y ) Konsekuensi ini juga berlaku untuk setiap fungsi g dan h, E ( g(x)h(y ) ) E ( g(x) ) E ( h(y ) ) Definisi: Kovariansi antara peubah acak X dan Y, dinotasikan Cov(X, Y ), adalah ( (X ) ( ) ) Cov(X, Y ) E E(X) Y E(Y ) MA481 Pros.Stok. 19 K. Syuhada, PhD.

Catatan: Jika X dan Y saling bebas maka Cov(X, Y ) (implikasi). Sifat-sifat kovariansi Cov(X, Y ) Cov(Y, X) Cov(X, X) V ar(x) Cov(a X, Y ) a Cov(X, Y ) ( n Cov i1 X i, ) m j1 Y j n m i1 j1 Cov(X i, Y j ) Perhatikan bahwa: ( n ) ( n ) n V ar X i Cov X i, X j i1 i1 j1 n n Cov(X i, X j ) i1 i1 j1 n V ar(x i ) + Cov(X i, X j ) i j Korelasi antara peubah acak X dan Y, dinotasikan ρ(x, Y ), didefinisikan sebagai ρ(x, Y ) Cov(X, Y V ar(x) V ar(y ), asalkan V ar(x) dan V ar(y ) bernilai positif. Dapat ditunjukkan pula bahwa 1 ρ(x, Y ) 1 Koefisien korelasi adalah ukuran dari derajat kelinieran antara X dan Y. Nilai ρ(x, Y ) yang dekat dengan +1 atau 1 menunjukkan derajat kelinieran yang tinggi. Nilai positif korelasi mengindikasikan nilai Y yang cenderung membesar apabila X membesar. Jika ρ(x, Y ) maka dikatakan X dan Y tidak berkorelasi. Latihan: 1. Tunjukkan bahwa Cov(X, E(Y X)) Cov(X, Y ) MA481 Pros.Stok. 2 K. Syuhada, PhD.

2. Misalkan X peubah acak normal standar dan I (bebas dari X) sdh P (I 1) P (I ) 1/2. Didefinisikan Y X, jika I 1; Y X, jika I Tunjukkan bahwa Cov(X, Y ) MA481 Pros.Stok. 21 K. Syuhada, PhD.