Laju Pengembangan Alam Semesta Berdasarkan Data Supernova Tipe Ia

dokumen-dokumen yang mirip
sangat pesat adalah kosmologi, yaitu studi tentang asal-mula, isi, bentuk, dan

Populasi Bintang. Ferry M. Simatupang

θ = 1.22 λ D...1 point θ = 2R d...2 point θ Bulan θ mata = 33.7 θ Jupiter = 1.7

Oleh : Chatief Kunjaya. KK Astronomi, ITB

POSITRON, Vol. II, No. 1 (2012), Hal ISSN : Efek Reaksi Balik Gelombang Gravitasi pada Lensa Gravitasi

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

Bab III MORFOLOGI-DENSITAS DAN MORFOLOGI RADIUS GUGUS GALAKSI ABELL 2219

FENOMENA ELEKTROKINETIK DALAM SEISMOELEKTRIK DAN PENGOLAHAN DATANYA DENGAN MENGGUNAKAN METODE PENGURANGAN BLOK. Tugas Akhir

MENENTUKAN MODEL PERTUMBUHAN PENDUDUK PROVINSI SUMATERA BARAT

BAB IV. Analisis Power spectrum CMB dan Power spectrum Galaksi. IV.1 Model Concordance

MEMBANGUN MODEL KADAR HEMOGLOBIN (Hb) PENDERITA POLISITEMIA VERA YANG MEMPERTIMBANGKAN MOOD SWINGS DENGAN METODE PENCOCOKAN KURVA

Penentuan Parameter Fisik dan Geometrik Selubung Bintang Be d Gugus NGC 663 Berdasarkan Polarisasi Intrinsiknya

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Pengaruh Konstanta Kosmologi Terhadap Model Standar Alam Semesta

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan

Riwayat Bintang. Alexandre Costa, Beatriz García, Ricardo Moreno, Rosa M Ros

Galaksi. Ferry M. Simatupang

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2016 TINGKAT PROVINSI

Rancang Bangun Alat Ukur Kadar Air Agregat Halus Berbasis Mikrokontroler ATmega8535 dengan Metode Kapasitif untuk Pengujian Material Dasar Beton

IDENTIFIKASI PARAMETER SISTEM PADA PLANT ORDE DENGAN METODE GRADIENT

Analisis Karakteristik Prakiraan Berakhirnya Gempa Susulan pada Segmen Aceh dan Segmen Sianok (Studi Kasus Gempa 2 Juli 2013 dan 11 September 2014)

STUDI ASPEK PERTUMBUHAN UDANG NENEK (Harpiosquilla raphidea) DI PERAIRAN JUATA LAUT KOTA TARAKAN

JAGAD RAYA TEORI TERBENTUKNYA JAGAD RAYA TEORI LEDAKAN BESAR

HUBUNGAN GAMMA-RAY BURST DAN SUPERNOVA

indahbersamakimia.blogspot.com Soal Olimpiade Astronomi Tingkat Provinsi 2011, Waktu : 150 menit

PERAMALAN INDEKS HARGA SAHAM GABUNGAN DENGAN MODEL RUNTUN WAKTU FUZZY TIGA FAKTOR

Teori Big Bang. 1. Awalnya, bumi masih merupakan planet homogen dan belum mengalami perlapisan atau

Sistem Magnitudo Terang suatu bintang dalam astronomi dinyatakan dalam satuan magnitudo Hipparchus (abad ke-2 SM) membagi terang bintang

KEKONVERGENAN MSE PENDUGA KERNEL SERAGAM FUNGSI INTENSITAS PROSES POISSON PERIODIK DENGAN TREN FUNGSI PANGKAT

Kesalahan Akibat Integrasi Numerik pada Sinyal Pengukuran Getaran dengan Metode Euler dan Trapesium

Satuan Besaran dalam Astronomi. Dr. Chatief Kunjaya KK Astronomi ITB

Bintang Ganda DND-2006

FORUM PELAJAR ASTRONOMI PEMBAHASAN SOAL. Soal-Soal Essay Pelatihan OSP Astronomi DKI Jakarta

STAR FORMATION RATE (SFR) PADA GALAKSI YANG BERINTERAKSI

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

Ide Dasar: Matahari dan bintang-bintang menggunakan reaksi nuklir fusi untuk mengubah materi menjadi energi. Bintang padam Ketika bahan bakar

Ruang Norm-n Berdimensi Hingga

ABSTRAK. Kata Kunci: Universitas Kristen Maranatha

MODEL HIBRIDA RUNTUN WAKTU FUZZY TERBOBOT-DERET FOURIER UNTUK PERAMALAN CURAH HUJAN DI DAERAH ALIRAN SUNGAI BENGAWAN SOLO

MODEL PREDIKSI GREY UNTUK GM(1,1) DAN GREY VERHULST

ILMU PENGETAHUAN BUMI DAN ANTARIKSA

ANALISIS SUB-BULUH PADA MODEL REAKTOR SUSUNAN BAHAN BAKAR BUJURSANGKAR ATAU HEKSAGONAL

KARAKTERISTIK GAMMA-RAY BURST

Analisis Kecepatan Seismik Dengan Metode Tomografi Residual Moveout

Bab II Dasar Teori Evolusi Bintang

KAJIAN PEMODELAN FISIS, AUTOMATA GAS KISI, DAN ANALITIS ALIRAN GLISERIN TESIS. ADITYA SEBASTIAN ANDREAS NIM: Program Studi Fisika

ABSTRAK. Teknologi pengkode sinyal suara mengalami kemajuan yang cukup. pesat. Berbagai metode telah dikembangkan untuk mendapatkan tujuan dari

PERAMALAN INDEKS HARGA SAHAM GABUNGAN (IHSG) MENGGUNAKAN JARINGAN SARAF TIRUAN ELMAN DENGAN ALGORITME GRADIENT DESCENT ADAPTIVE LEARNING RATE

PROGRAM PERSIAPAN OLIMPIADE SAINS BIDANG ASTRONOMI 2014 SMA 2 CIBINONG TES 20 MEI 2014

PENGENALAN ASTROFISIKA

Membandingkan Hasil Pengukuran Beda Tinggi dari Hasil Survei GPS dan Sipat Datar

PENERAPAN STRATEGI PEMBELAJARAN AKTIF TIPE PREDICTION GUIDE DALAM PEMBELAJARAN FISIKA DI SMA

Ronde Analisis Data. P (φ) = P 0 + P t cos φ dengan P t = 2πP 0r cp B

PENGEMBANGAN SENSOR JARAK GP2Y0A02YK0F UNTUK MEMBUAT ALAT PENGUKUR KETINGGIAN PASANG SURUT (PASUT) AIR LAUT

KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN

BAB I Pendahuluan 1.1 Latar Belakang Masalah

BAB III METODE PENELITIAN

ABSTRAK. Kata Kunci : Artificial Neural Network(ANN), Backpropagation(BP), Levenberg Marquardt (LM), harga emas, Mean Squared Error(MSE), prediksi.

MODEL PENAMPANG BUJUR BINTANG BEROTASI DENGAN VARIASI KECEPATAN SUDUT

TUGAS KOMPUTASI SISTEM FISIS 2015/2016. Pendahuluan. Identitas Tugas. Disusun oleh : Latar Belakang. Tujuan

Pemodelan 3D Pada Stabilitas Lereng Dengan Perkuatan Tiang Menggunakan Metode Elemen Hingga

Relasi Empirik Diameter Asteroid Dengan Fenomena Tsunami Dan Gempa

Pengembangan Alam Semesta

EFEK DARK MATTER TERHADAP EKSPANSI ALAM SEMESTA

POSITRON, Vol. VI, No. 2 (2016), Hal ISSN :

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di:

PENGUJIAN KEBULATAN HASIL PEMBUBUTAN POROS ALUMINIUM PADA LATHE MACHINE TYPE LZ 350 MENGGUNAKAN ALAT UKUR ROUNDNESS TESTER MACHINE

BAB I PENDAHULUAN. bawah interaksi gravitasi bersama dan berasal dari suatu awan gas yang sama

PERAMALAN INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN RUNTUN WAKTU FUZZY DENGAN PARTISI INTERVAL BERDASARKAN FREKUENSI DENSITAS

Analisa Pola dan Sifat Aliran Fluida dengan Pemodelan Fisis dan Metode Automata Gas Kisi

ANALISIS NUMERIK PROFIL SEDIMENTASI PASIR PADA PERTEMUAN DUA SUNGAI BERBANTUAN SOFTWARE FLUENT. Arif Fatahillah 9

Jurnal MIPA 37 (2) (2014): Jurnal MIPA.

TRANSFER MOMENTUM. Massa = m B

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

EVALUASI KEBISINGAN YANG DITIMBULKAN OLEH PERGERAKAN KERETA API TESIS MAGISTER. Oleh : Bayu Martanto Adji NIM

PROFIL HAMBATAN BELAJAR EPISTIMOLOGIS SISWA SMA PADA MATERI PERSAMAAN GAS IDEAL BERBASIS HASIL ANALISIS TES KEMAMPUAN RESPONDEN

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK

STUDI KONSOLIDASI RADIAL DENGAN BERBAGAI NILAI KOEFISIEN PERMEABILITAS DISEKITAR TIANG PANCANG PADA TANAH LEMPUNG. Oleh : MASRIANI ENDAYANTI

INTERPRETASI LITOLOGI BERDASARKAN DATA LOG SINAR GAMMA, RAPAT MASSA, DAN TAHANAN JENIS PADA EKSPLORASI BATUBARA

ANALISIS SINYAL EL NIÑO SOUTHERN OSCILLATION (ENSO) DAN HUBUNGANNYA DENGAN VARIABILITAS ARUS LINTAS INDONESIA DI SELAT LIFAMATOLA TUGAS AKHIR

Pengaruh Penambahan Jumlah Titik Ikat Terhadap Peningkatan Ketelitian Posisi Titik pada Survei GPS

PRISMA FISIKA, Vol. I, No. 1 (2013), Hal ISSN : Analisis Lintasan Foton Dalam Ruang-Waktu Schwarzschild

PENERAPAN PROSES POISSON NON-HOMOGEN UNTUK MENENTUKAN DISTRIBUSI PROBABILITAS KEDATANGAN NASABAH DI BNI BANJARBARU

PERBANDINGAN DAN KARAKTERISTIK BEBERAPA TES KONVERGENSI PADA DERET TAK HINGGA

STUDI PENEMPATAN SECTIONALIZER PADA JARINGAN DISTRIBUSI 20 KV DI PENYULANG KELINGI UNTUK MENINGKATKAN KEANDALAN

Ilmu Pengetahuan Bumi dan Antariksa

Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru, 28293, Indonesia.

SIMULASI PERBANDINGAN ANTENA MIKROSTRIP RECTANGULARPATCH DAN CIRCULARPATCH MENGGUNAKAN SOFTWARE MATLAB

PENENTUAN KOEFISIEN LINIER ELEKTRO OPTIS PADA AQUADES DAN AIR SULING MENGGUNAKAN GELOMBANG RF

ANALISIS PENGARUH KURS RUPIAH TERHADAP INDEKS HARGA SAHAM GABUNGAN MENGGUNAKAN DISTRIBUTED LAG MODEL

Keywords: Information Systems Salaries and Wages, Salaries and Wages Accuracy

Gunawan Hadi Prasetiyo, Optimasi Penempatan Recloser pada Penyulang Mayang Area Pelayanan dan Jaringan (APJ) Jember Menggunakan Simplex Method

ESTIMASI PARAMETER MODEL REGRESI LINIER BERGANDA DENGAN TEKNIK BOOTSTRAP

RANCANG BANGUN ALAT UKUR TINGKAT KEKERUHAN ZAT CAIR BERBASIS MIKROKONTROLLER AT89S51 MENGGUNAKAN SENSOR FOTOTRANSISTOR DAN PENAMPIL LCD

VERIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN EKSTRAKSI FILTER GABOR ABSTRAK

Bab 2 Metode Pendeteksian Planet Luar-surya

OPTIMALISASI JARAK TEMBAK PVC AIR SOFTGUN MENGGUNAKAN PERANCANGAN DESAIN FACTORIAL 23

Oleh. Muhammad Legi Prayoga

HUBUNGAN PANJANG DAN BERAT IKAN

Transkripsi:

ISSN 2302-8491 Jurnal Fisika Unand Vol. 5, No. 4, Oktober 2016 Laju Pengembangan Alam Semesta Berdasarkan Data Supernova Tipe Ia Fitri Rahma Yanti 1*, Wildian 1, Premana W. Premadi 2 Jurusan Fisika, Universitas Andalas 1,* Prodi Astronomi, Institut Teknologi Bandung 2 *fitrirahma.sulin@gmail.com ABSTRAK Analisa data yang diperoleh dari supernova tipe Ia (SN Ia) dapat memberikan informasi mengenai pengembangan alam semesta. Laju pengembangan alam semesta didefiniskan dengan konstanta Hubble (H 0 ). Dalam tugas akhir ini digunakan 151 data SN Ia dengan z 0,05 yang diunduh dari Supernova Cosmology Project. Metode yang digunakan untuk mendapatkan nilai H 0 yaitu dengan mendapatkan nilai gradien dari diagram Hubble memberikan hasil H 0 = 66,67 ± 1,20 km s -1 Mpc -1 dan menggunakan persamaan Friedmann yang dilambangkan dengan H 0 dengan masukkan beberapa nilai konstanta perlambatan (q 0 ). Residu (H 0 -H 0 ) terkecil memberikan H 0 = 66,73 km s -1 Mpc -1 (q 0 = -0,55) dengan residu 0,059087403, H 0 = 66,69 km s -1 Mpc -1 (q 0 = 0,5) dengan residu 0,023110894, H 0 = 67,94 km s -1 Mpc -1 (q 0 = -1) dengan residu 0,069846939 dan H 0 = 67,91 km s -1 Mpc -1 (q 0 = 0,15) dengan residu 0,036582237. Hasil ini menunjukkan bahwa menggunakan data dengan z rendah akan memberikan nilai H 0 yang berbeda dengan z tinggi. Berdasarkan keempat nilai residu di atas yang memiliki perbedaan sangat kecil namun memberikan bentuk geometri yang berbeda sehingga geometri alam semesta tidak dapat ditentukan dari hanya menggunakan data supernova tipe Ia dengan redshift rendah. Kata Kunci : Supernova tipe Ia, konstanta Hubble, gradien, persamaan Friedmann ABSTRACT Data analysis of type Ia supernovae (SN Ia) can provide information about the expansion of the universe. The current rate of expansion is defined as the Hubble constant (H 0 ). This research used 151 data with z 0.05 which is downloaded from Supernova Cosmology Project. The method used to determine the value of H 0 is obtained from gradient of Hubble diagram which its result is H 0 = 66.67 ± 1.2 km s -1 Mpc -1 and used Friedmann equation with some of deceleration constant (q 0 ). The smallest residue (H 0 -H 0 ) obtaining H 0 = 66.73 km s -1 Mpc -1 (q 0 = -0.55) with residue = 0.05908740, H 0 = 66.69 km s -1 Mpc -1 (q 0 = 0.5) with residue = 0.023110894, H 0 = 67.94 km s -1 Mpc -1 (q 0 = -1) with residue = 0.069846939 and H 0 = 67.91 km s -1 Mpc -1 (q 0 = 0.15) with residue = 0.036582237. The results indicate that by using the data with low z will provide different value of H 0 with high z. Based on the four residues value having very small diference but giving different geometry form, so geometry of the universe can not be determined from only using the data type Ia supernovae with low redshift. Keyword : Type Ia Supernovae, Hubble constant, gradient, Friedmann equation, Hubble time I. PENDAHULUAN Penelitian dengan menggunakan teknologi modern mengungkapkan bahwa alam semesta memiliki permulaan dan terus mengembang. Fakta ini didukung oleh data pengamatan Edwin Hubble pada tahun 1929 yang mengamati langit menggunakan teleskop, ia mendapati bahwa galaksi-galaksi terus bergerak menjauhi kita. Hubble mendapatkan bahwa semakin jauh suatu galaksi maka akan semakin cepat ia bergerak (Hubble, 1929). Hal ini diketahui melalui spektrum cahaya galaksi-galaksi yang garis-garisnya menunjukkan pergeseran ke arah frekuensi yang lebih rendah atau ke arah warna yang lebih merah. Kesimpulannya galaksi bergerak menjauh setiap saat, yang disebabkan oleh alam semesta yang mengembang (Sutantyo, 2010). Alam semesta dapat dianalisa dengan memperhatikan kondisi fisis skala besarnya yang dirangkum dalam parameter kosmologi, yaitu kerapatan massa (Ω m ), kerapatan energi vakum (Ω Ʌ ), persamaan keadaan (w), dan konstanta Hubble (H 0 ) sebagai nilai laju pengembangan alam semesta. Berbagai metode dikembangkan untuk menentukan laju pengembangan alam semesta, salah satunya mengamati objek langit yang dipilih sebagai lilin penentu jarak (standard candle) dengan mengukur jarak luminositas (Baade, 1938). Supernova tipe Ia adalah objek yang paling banyak digunakan dalam mengukur jarak luminositas karena ia memiliki kecerlangan intrinsik yang hampir sama untuk setiap peristiwa supernova tipe Ia. 378

Jurnal Fisika Unand Vol. 5, No. 4, Oktober 2016 ISSN 2302-8491 Beberapa penelitian yang terkait telah dilakukan Putri (2013) menggunakan data 468 supernova tipe Ia untuk mendapatkan nilai-nilai dari parameter kosmologi yaitu H 0 = 69,77 ± 2,10, Ω m = 0,18, Ω Ʌ = 0,82, dan w = -1 dengan cara fitting data. Wang (2000) menggunakan dua rentang redshift yaitu z = 0,05 mendapatkan nilai H 0 = 65 ± 1 km s -1 Mpc -1 pada Ω m = 0,7 ± 0,4 dan Ω Ʌ = 1,2 ± 0,5. Dan z = 0,1 dengan H 0 = 65 ± 1 km s -1 Mpc -1 pada Ω m = 0,3 ± 0,6 dan Ω Ʌ = 0,7 ± 0,7. Dalam penelitian ini digunakan 151 data supernova tipe Ia dengan rentang redshift z 0,05 yang diolah menggunakan software Python untuk membangun diagram Hubble sehingga mendapatkan laju pengembangan alam semesta yang dilambangkan dengan H 0. Berbeda dari penelitian sebelumnya pada penelitian ini fokus pada redshift rendah (z 0,05) yang diharapkan menghasilkan nilai parameter kosmologi yang lebih baik karena pada redshift rendah hanya akan memberikan nilai error setiap data yang lebih kecil. Selain itu nilai H 0 didapatkan dengan menggunakan persamaan model Friedmann (Pers. 1) dengan memasukkan berbagai nilai parameter perlambatan q 0 untuk mendapatkan gambaran geometri alam semesta. H 0 m M 43,17 5log 5log z 1, 086 1 1 1 q0 z 70 km s Mpc Nilai H 0 dapat memberikan nilai umur Hubble melalui hubungan : (1) 1 t (2) H 0 II. METODE Data supernova tipe Ia yang digunakan diunduh dari Supernova Cosmology Project dengan situs http://supernova.lbl.gov/ yang diamati menggunakan Hubble Space Telescope. Dalam penelitian ini data dibatasi pada z 0,05 yang memberikan jumlah data sebanyak 151 data. Hal ini bertujuan untuk menghindari error yang besar. Data tersebut diplot dalam bentuk kurva Hubble dengan hubungan antara kecepatan (cz) dengan jarak luminositas (dl). Nilai gradien kurva Hubble menunjukkan nilai laju pengembangan alam semesta yang dilambangkan dengan H 0. Selanjutnya nilai H 0 didapatkan dengan mneggunakan Pers.1 yang dilambangkan dengan H 0 dengan memasukan nilai q 0 diantaranya -0,55 (Ω m = 0,3 Ω Ʌ = 0,7), 0,5 (Ω m = 1 Ω Ʌ = 0), -1 (Ω m = 0 Ω Ʌ = 1), dan untuk kasus alam semesta terbuka diberikan nilai q 0 = 0,15 (Ω m = 0,3 Ω Ʌ = 0) (Schneider, 2015). Nilai H 0 -H 0 akan menghasilkan nilai residu, residu terkecil akan memberikan data terbaik. III. HASIL DAN DISKUSI Laju pengembangan alam semesta dapat digambarkan melalui diagram Hubble. Diagram Hubble dapat dibangun dalam hubungan redshift (z) dengan modulus jarak (m-m) (lihat Gambar 1). 379

ISSN 2302-8491 Jurnal Fisika Unand Vol. 5, No. 4, Oktober 2016 Gambar 1 Diagram Hubble dalam modulus jarak (m-m) dengan redshift (z) Diagram Hubble yang diberikan oleh Gambar 1 diubah ke bentuk kurva yang lebih linier dengan hubungan kecepatan cahaya dikalikan dengan redshift (cz) dengan jarak luminositas (dl) dalam satuan Mpc menggunakan Pers. 1. Lihat Gambar 2. Gambar 2 Diagram Hubble dalam redshift (z) dengan jarak luminositas dl (Mpc) Gambar 2 dapat dilihat bagian linear pada rentang redshift rendah untuk menentukan nilai konstanta Hubble (H 0 ) yang menggambarkan laju pengembangan alam semesta. Dalam penelitian ini digunakan data supernova tipe Ia dalam rentang redshift (z) 0,05, data ini berjumlah 151 data. Pemilihan data ini berdasarkan keterbatasan persamaan Friedman yang hanya berlaku pada data dengan rentang redshift rendah (z << 1) (Ryden, 2006). Selain itu pemilihan data tersebut berdasarkan pertimbangan nilai error masing-masing data yang semakin besar pada redshift tinggi. 380

Jurnal Fisika Unand Vol. 5, No. 4, Oktober 2016 ISSN 2302-8491 Gambar 3 Diagram Hubble dalam redshift (z) dengan jarak luminositas z 0,05 Data diolah menggunakan software Python untuk mendapatkan nilai gradien dari diagram Hubble (Gambar 3) yang menjadi nilai konstanta Hubble dan nilai errornya. Nilai yang didapat sebesar H 0 = 66,67359076 dapat dilihat pada Gambar 4. Gambar 4 Diagram Hubble dengan gradien garis pada data z 0,05 Nilai error didapatkan dengan menggunakan fungsi std_err pada program python, sehingga menghasilkan nilai error sebesar 1,19526489048, dapat ditulis H 0 = 66,67 ± 1,20. Nilai H 0 dari gradien sebesar 66,67 ± 1,20 dipecah menjadi tiga nilai yaitu, 66,67, 67,78 (66,67+1,2), dan 65,47 (66,67 1,2). Waktu Hubble didapatkan dengan menggunakan Pers. 2. Konstanta Hubble juga didapatkan dari persamaan yang memberikan hubungan antara modulus jarak dan redshift (Pers.1) dilambangkan dengan H 0. Menggunakan asumsi bahwa alam semesta datar (Ω m +Ω Ʌ =1) maka untuk kasus khusus pada Pers. 1 diberi masukkan dengan berbagai macam nilai q 0 diantaranya -0,55 (Ω m = 0,3 Ω Ʌ = 0,7), 0,5 (Ω m = 1 Ω Ʌ = 0), -1 (Ω m = 0 Ω Ʌ = 1) untuk asumsi alam semesta datar, dan untuk kasus alam semesta terbuka diberikan nilai q 0 = 0,15 (Ω m = 0,3 Ω Ʌ = 0) (Schneider, 2015). Sehingga diperoleh 151 nilai H 0 untuk setiap masukkan nilai q 0. Nilai H 0 tersebut dikurangi dengan masing-masing tiga nilai H 0 (66,67, 67,78, 65,47) sehingga diperoleh nilai residu. Residu terkecil merupakan pilihan terbaik yang paling mewakili data. Hasil olah data dapat dilihat sebagai berikut.: 381

ISSN 2302-8491 Jurnal Fisika Unand Vol. 5, No. 4, Oktober 2016 Tabel 1 Nilai H 0 = 66,67 t = 14,745 Gyr q 0 H 0 (km s -1 Mpc -1 ) Residu -0,55 66,7290874 0,059087403 0,5 66,69311089 0,023110894-1 66,86533557 0,195335573 0,15 66,80632628 0,136326283 Tabel 2 Nilai H 0 = 67,87 t = 14,481 Gyr 382 q 0 H 0 (km s -1 Mpc -1 ) Residu -0,55 67,94413371 0,074133705 0,5 67,90357145 0,033571453-1 67,93984694 0,069846939 0,15 67,90658224 0,036582237 Tabel 3 Nilai H 0 = 65,47 t = 15,014 Gyr q 0 H 0 (km s -1 Mpc -1 ) Residu -0,55 65,64640449 0,176404493 0,5 65,63699633 0,166996329-1 65,60002381 0,130023811 0,15 65,68360919 0,213609188 Tabel 4 Data dengan residu terkecil untuk masing-masing q 0 H 0 (km s -1 Mpc -1 ) q 0 H 0 (km s -1 Mpc -1 ) Residu 66,67-0,55 66,7290874 0,059087403 66,67 0,5 66,69311089 0,023110894 67,87-1 67,93984694 0,069846939 67,87 0,15 67,90658224 0,036582237 Tabel 1, 2 dan 3 dibandingkan untuk memperoleh residu terkecil pada setiap nilai q 0. Berdasarkan Tabel 4 dapat dilihat bahwa untuk kasus khusus yang dipresentasikan dengan nilai q 0 dapat memberikan nilai H 0 yang berbeda-beda. Nilai residu terkecil diberikan sebesar 0,0023110894 dengan nilai q 0 = 0,5 yang mempresentasikan geometri alam semesta yang datar. Jika dilihat dari keempat nilai residu diatas terlihat hanya memiliki perbedaan yang sangat kecil, namun perbedaan ini memberikan nilai geometri alam semesta yang berbeda. Hal ini sangat tidak relevan dengan keadaan yang terjadi saat ini. Hasil yang didapatkan diatas masih berada dalam rentang nilai H 0 yang dikemukan oleh Hubble Space Telescope yaitu H 0 = 72 ± 8 km s -1 Mpc -1. IV. KESIMPULAN Supernova tipe Ia merupakan salah satu objek yang dapat dijadikan standard candle. Data supernova tipe Ia dapat digunakan untuk menentukan laju pengembangan alam semesta. Data supernova tipe Ia dengan z (redshift) rendah menghasilkan nilai H 0 yang berbeda dari z tinggi dan memberikan nilai error (error slope gradien) yang lebih kecil. Berdasarkan nilai gradien diagram Hubble didapatkan nilai H 0 yaitu sebesar H 0 = 66,67 ± 1,20 km s -1 Mpc -1 dan dengan menggunakan persamaan Friedmann didapatkan hasil H 0 = 66,69 km s -1 Mpc -1 dengan masukkan nilai q 0 = 0,5 yang mengindikasikan alam semesta mengembang datar. Geometri alam semesta tidak dapat ditentukan dengan hanya menggunakan data supernova tipe Ia redshift rendah. DAFTAR PUSTAKA Hubble, E., 1929, A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae, PNAS, 168-73

Jurnal Fisika Unand Vol. 5, No. 4, Oktober 2016 ISSN 2302-8491 Putri, A.N.I., 2013, Supernova Ia sebagai Alat Ukur Parameter Kosmologi, Skripsi, Jurusan Astronomi, Institut Teknologi Bandung, Bandung Ryden, B, 2006. Introduction to Cosmology (The Ohio State University), Addison Wesley, San Fransisco Scheneider, P., 2015. Extragalactic Astronomy and Cosmology. Springer, Berlin Sutantyo,W., 2010, Bintang-bintang di Alam Semesta, ITB, Bandung Wang, Y., 2000, Flux- Averaging Analysis of Type Ia Supernovae Data, ApJ, Princeton 383