Achmad Subeqan( ) Matematika FMIPA-ITS. Dosen Pembimbing: 1. Dra.Sri Suprapti H, MSi

dokumen-dokumen yang mirip
SOLUSI GELOMBANG BERJALAN UNTUK PERSAMAAN SCHRÖDINGER DENGAN PENUNDAAN TERDISTRIBUSI

GENERALISASI FUNGSI AIRY SEBAGAI SOLUSI ANALITIK PERSAMAAN SCHRODINGER NONLINIER

BAB II DASAR TEORI. 2.1 Teori Relativitas Umum Einstein

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

BAB II LANDASAN TEORI. selanjutnya sebagai bahan acuan yang mendukung tujuan penulisan. Materi-materi

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI. pada bab pembahasan. Materi-materi yang akan dibahas yaitu pemodelan

BIFURKASI HOPF PADA MODEL SILKUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

FUNGSI GELOMBANG DAN RAPAT PROBABILITAS PARTIKEL BEBAS 1D DENGAN MENGGUNAKAN METODE CRANK-NICOLSON

BAB I PENDAHULUAN. (konsep-konsep fisika) klasik memerlukan revisi atau penyempurnaan. Hal ini

Created By Aristastory.Wordpress.com BAB I PENDAHULUAN. Teori sistem dinamik adalah bidang matematika terapan yang digunakan untuk

FUNGSI GELOMBANG. Persamaan Schrödinger

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II TINJAUAN PUSTAKA

T 23 Center Manifold Dari Sistem Persamaan Diferensial Biasa Nonlinear Yang Titik Ekuilibriumnya Mengalami Bifurkasi Contoh Kasus Untuk Bifurkasi Hopf

REFORMULASI DARI SOLUSI 3-SOLITON UNTUK PERSAMAAN KORTEWEG-de VRIES. Dian Mustikaningsih dan Sutimin Jurusan Matematika FMIPA Universitas Diponegoro

BAB 2 TINJAUAN PUSTAKA

PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN POTENSIAL LINIER

BIFURKASI PITCHFORK SUPERKRITIKAL PADA SISTEM FLUTTER

Getaran Dalam Zat Padat BAB I PENDAHULUAN

Pengantar Metode Perturbasi Bab 1. Pendahuluan

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s)

BIFURKASI SADDLE-NODE PADA SISTEM INTERAKSI NONLINEAR SEPASANG OSILATOR TANPA PERTURBASI

BAB II LANDASAN TEORI. eigen dan vektor eigen, persamaan diferensial, sistem persamaan diferensial, titik

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

BAB 2 TINJAUAN PUSTAKA

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

Transformasi Laplace Peninjauan kembali variabel kompleks dan fungsi kompleks Variabel kompleks Fungsi Kompleks

( t) TINJAUAN PUSTAKA. x dengan nilai fungsi dari: x

BAB V PERSAMAAN LINEAR TINGKAT TINGGI (HIGHER ORDER LINEAR EQUATIONS) Persamaan linear tingkat tinggi menarik untuk dibahas dengan 2 alasan :

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Sistem Hasil Kali Persamaan Diferensial Otonomus pada Bidang

I PENDAHULUAN 1.1 Latar Belakang dan Perumusan Masalah

BIFURKASI PADA MODEL SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA DAN LAJU PENULARAN BILINEAR SKRIPSI

BAB I PENDAHULUAN Latar Belakang Masalah

FUNGSI DELTA DIRAC. Marwan Wirianto 1) dan Wono Setya Budhi 2)

EKSISTENSI SOLITON PADA PERSAMAAN KORTEWEG-DE VRIES

PENDAHULUAN FISIKA KUANTUM. Asep Sutiadi (1974)/( )

BARISAN SIMBOL DAN UKURAN INVARIAN FUNGSI MONOTON SEPOTONG-SEPOTONG KONTINU

Teori Atom Mekanika Klasik

= (2) Persamaan (2) adalah persamaan diferensial orde dua dengan akar-akar bilangan kompleks yang berlainan, solusinya adalah () =sin+cos (3)

BAB II LANDASAN TEORI. Pada bab ini akan dibahas mengenai definisi-definisi dan teorema-teorema

BAB II TINJAUAN PUSTAKA

POK O O K K O - K P - OK O O K K O K MAT A ERI R FISIKA KUANTUM

PERHITUNGAN MASSA KLASIK SOLITON

PROBABILITAS PARTIKEL DALAM KOTAK TIGA DIMENSI PADA BILANGAN KUANTUM n 5. Indah Kharismawati, Bambang Supriadi, Rif ati Dina Handayani

KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB I PENDAHULUAN. 1.1 Latar Belakang

1 BAB 4 ANALISIS DAN BAHASAN

BAB II KAJIAN TEORI. dinamik, sistem linear, sistem nonlinear, titik ekuilibrium, analisis kestabilan

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

Penerapan Teknik Serangga Steril Dengan Model Logistik. Dalam Pemberantasan Nyamuk Aedes Aegypti. Nida Sri Utami

perpindahan, kita peroleh persamaan differensial berikut :

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

ABSTRAK 1 PENDAHULUAN

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB I PENDAHULUAN Latar Belakang Masalah

BIFURKASI HOPF DALAM MODEL EPIDEMI DENGAN WAKTU TUNDAAN DISKRET

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

FONON I : GETARAN KRISTAL

Pertemuan 1 dan 2 KONSEP DASAR PERSAMAAN DIFERENSIAL

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan


METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

BAB II LANDASAN TEORI

RENCANA PELAKSANAAN PEMBELAJARAN Nama Sekolah : SMA Negeri 1 Sanden Mata Pelajaran : Kimia Kelas/Semester : XI/1 Alokasi Waktu : 3 JP

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK

Catatan Kuliah FI1101 Fisika Dasar IA Pekan #8: Osilasi

BAB II TEORI KODING DAN TEORI INVARIAN

matematika LIMIT ALJABAR K e l a s A. Pengertian Limit Fungsi di Suatu Titik Kurikulum 2006/2013 Tujuan Pembelajaran

ANALISIS KESTABILAN MODEL MANGSA-PEMANGSA DENGAN MANGSA YANG TERINFEKSI DI LINGKUNGAN TERCEMAR

BUKU DIKTAT ANALISA VARIABEL KOMPLEKS. OLEH : DWI IVAYANA SARI, M.Pd

PRISMA FISIKA, Vol. I, No. 1 (2013), Hal ISSN : Analisis Lintasan Foton Dalam Ruang-Waktu Schwarzschild

MODIFIKASI SISTEM PREDATOR-PREY: DINAMIKA MODEL LESLIE-GOWER DENGAN DAYA DUKUNG YANG TUMBUH LOGISTIK

BAB II LANDASAN TEORI

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu:

PEMODELAN MATEMATIKA DAN ANALISIS KESTABILAN LOKAL PADA PERUBAHAN POPULASI PENDERITA DIABETES MELITUS

Analisis dan Kontrol Optimal Sistem Gerak Satelit Menggunakan Prinsip Minimum Pontryagin

Bab III Model Proses Deformasi Benang Viscoelastis Linear di Lingkungan Fluida Newton

KAJIAN TENTANG LAX PAIR DAN PENERAPANNYA PADA PERSAMAAN LIOUVILLE

LANDASAN TEORI. Model ini memiliki nilai kesetimbangan positif pada saat koordinat berada di titik

BAB II KAJIAN TEORI. Persamaan diferensial sangat penting dalam pemodelan matematika khususnya

BAB 2 TINJAUAN PUSTAKA

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Teori Medan Klasik. USSR Academy of Sciences. Miftachul Hadi. Applied Mathematics for Biophysics Group. Physics Research Centre LIPI

TUJUAN INSTRUKSIONAL KHUSUS

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

PENYELESAIAN PERSAMAAN SCHRODINGER TIGA DIMENSI UNTUK POTENSIAL NON-SENTRAL ECKART DAN MANNING- ROSEN MENGGUNAKAN METODE ITERASI ASIMTOTIK

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

II. TINJAUAN PUSTAKA. Turunan fungsi f adalah fungsi lain f (dibaca f aksen ) yang nilainya pada ( ) ( ) ( )

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

BAB 2 TINJAUAN PUSTAKA

III. SATUAN ACARA PERKULIAHAN Mata kuliah : FISIKA KUANTUM Kode : FI 363 SKS : 3 Nama Dosen : Yuyu R.T, Parlindungan S. dan Asep S

Deret Fourier untuk Sinyal Periodik

ORBITAL DAN IKATAN KIMIA ORGANIK

Transkripsi:

ABSTRAK SOLUSI GELOMBANG BERJALAN UNTUK PERSAMAAN SCHRÖDINGER DENGAN PENUNDAAN TERDISTRIBUSI Achmad Subeqan( 1206 100 062) Matematika FMIPA-ITS Dosen Pembimbing: 1. Dra.Sri Suprapti H, MSi 2. Drs.IGN Rai Usadha, MSi Tugas akhir ini dikhususkan untuk mempelajari gelombang berjalan dari persamaan schrodinger nonlinier dengan penundaan terdistribusi berdasarkan penggunaan teori pertubasi singular geometri, teori diferensial manifold dan analisis pertubasi reguler untuk sistem hamiltonian. Berdasarkan asumsi bahwa kernel penundaan terdistribusi adalah besar dan rata-rata penundaanya kecil, pertama diinvestigasi eksistensi solusi gelombang soliter berdasarkan teori diferensial manifold.kemudian dengan menggunakan analisis pertubasi reguler untuk sistem hamiltonian, kita mengeksplorasi solusi gelombang berjalan secara periodik. Visualisasi solusi gelombang berjalan yang telah diperoleh diwujudkan dalam simulasi dengan menggunakan matlab. Berdasarkan simulasi terlihat bahwa solusi gelombang berjalan terjadi pada dua kasus yaitu saat c=0 maka didapatkan solusi gelombang homoklinik. Kemudian saat( c>0 dan c<0) solusi yang dihasilkan adalah gelombang berjalan secara periodik. Kata kunci: NLS dengan penundaan terdistribusi, gelombang berjalan, pertubasi reguler, pertubasi singular geometri, diferensial manifold, sistem hamiltonian. 1. Pendahuluan 1.1. Latar Belakang Masalah Persamaan Schrödinger diajukan pada tahun 1925 oleh fisikawan Erwin Schrödinger (1887-1961). Persamaan ini pada awalnya merupakan jawaban dari dualitas partikelgelombang yang lahir dari gagasan de Broglie yang menggunakan persamaan kuantisasi cahaya Planck dan prinsip fotolistrik Einstein untuk melakukan kuantisasi pada orbit elektron. Selain Schrödinger dua orang fisikawan lainnya yang mengajukan teorinya masing-masing adalah Werner Heisenberg dengan Mekanika Matriks dan Paul Dirac dengan Aljabar Kuantum. Ketiga teori ini merupakan tiga teori kuantum lengkap yang berbeda dan dikerjakan terpisah namun ketiganya setara. Teori Schrödinger kemudian lebih sering digunakan karena rumusan matematisnya yang relatif lebih sederhana. Meskipun banyak mendapat kritikan persamaan Schrödinger telah diterima secara luas sebagai persamaan yang menjadi postulat dasar mekanika kuantum. Penerapan persamaan Schrödinger pada sistem fisis memungkinkan kita mempelajari sistem tersebut dengan ketelitian yang tinggi. Penerapan ini telah memungkinkan perkembangan teknologi saat ini yang telah mencapai tingkatan nano. Penerapan ini juga sering melahirkan ramalan-ramalan baru yang selanjutnya diuji dengan eksperimen. Penemuan positron yang merupakan anti materi dari elektron adalah salah satu ramalan yang kemudian terbukti. Perkembangan teknologi dengan kecenderungan alat yang semakin kecil ukurannya pada gilirannya akan menempatkan persamaan Schrödinger sebagai persamaan sentral seperti halnya yang terjadi pada persamaan Newton selama ini. Persamaan Schrödinger telah diterapkan di berbagai bidang fisika- matematika, seperti optik nonlinier, sistem kuantum partikel banyak, fisika plasma, superkonduktivitas dan mekanika kuantum. Persamaan Solusi gelombang berjalan ini dan berbagai generalisasi telah dipelajari secara luas untuk waktu yang lama. 1

Pada tugas akhir ini dikhususkan untuk mempelajari gelombang berjalan persamaan Schrödinger nonlinear dengan penundaan terdistribusi dengan menerapkan teori perturbasi ksingular geometri, teori diferensial manifold dan analisis pertubasi reguler untuk sistem Hamiltonian. 2. Tinjauan Pustaka 2.1 Persamaan schrodinger nonlinier dengan penundaan terdistribusi Persamaan Schrödinger nonlinear (NLS) + + = 0...(2.1) keterangan : = 1. U: fungsi bernilai kompleks dari ruang koordinat x t : waktu α : koefisien dispersi β: koefisien Landau,. =. : konjugasi kompleks U. Untuk mengatasi adanya solusi gelombang berjalan dengan tundaan secara teoritis menggunakan persamaan Schrödinger nonlinear + + = 0,...(2.2) < < +, < < + dimana: : respon jangka penundaan nonlinier dan pengaruh parameter τ > 0, f *U konvolusi didefinisikan sebagai, =,...(2.3) Karena U adalah fungsi bernilai kompleks, kernel f dapat didefinisikan sebagai fungsi bernilai kompleks, yaitu kernel f yang memenuhi asumsi normalisasi = 1, 0,,...(2.4) Penundaan terdistribusi dengan besar dan rata-rata untuk kernel keterlambatan f (t) didefinisikan =. Biasanya kita menggunakan kernel penundaan terdistribusi Gamma = 1! dimana k> 0 dan konstanta n adalah bilangan bulat, dengan tundaanya= n / k> 0. Kemudian, besar harus memiliki nilai mendekati nol. Untuk contoh yaitu dua kasus = 1 = 1 = 1 = 2 Diasumsikan bahwa kernel keterlambatan f (t) terdistribusi dari sistem memiliki bentuk =...(2.5) dimana parameter w> 0. 2.2 Gelombang berjalan Gelombang adalah suatu gangguan dari keadaan setimbang yang bergerak dari satu tempat ke tempat lain (Young & Freedman, 1996:593). Sistem gelombang mempunyai fungsi gelombang yang menggambarkan perpindahan satu partikel dalam medium. Gelombang merambat dengan membawa energi. Sebagai contoh, cahaya membawa energi dari benda ke mata kita agar bisa diamati, atau gelombang radio pada telepon seluler membawa energi dari BTS ke terminal kita supaya suatu pesan bisa disampaikan. Gelombang yang berjalan juga memiliki kecepatan (yang terbatas). Untuk merambat dari satu titik ke titik 2

yang lain, cahaya merambat dengan kecepatan 3 10 8 m/detik. Gelombang juga memiliki sifat linieritas, artinya gelombang dengan frekuensi berlainan bisa saling melewati tanpa terjadi interferensi. Kecepatan gerak P diperoleh dari turunan persamaan (2.6), dengan demikian bisa dituliskan = 0...(2.7) yang selanjutnya akan memberikan kecepatan fasa terhadap fungsi y = = /...(2.8) Gambar 2.1 Perubahan sinusoidal dalam ruang dan waktu dari suatu gelombang monokromatis Suatu gelombang sinusoidal yang bergerak ke arah +x (sumbu-x positif) dinyatakan secara matematis sebagai:, = +...(2.6) Dimana: A: amplitudo gelombang T: perioda temporal gelombang λ: panjang gelombang φ o : fasa awal/acuan. Secara spasial dan temporal, suatu gelombang monokromatis akan berubah menurut pola sinusoid, seperti dilukiskan apda Gb.2.1.Untuk pengamatan pertama, ambil titik tertentu pada gelombang, misalnya titik P pada Gb.2.2. Pada titik ini sudut fasanya bernilai 2π (dengan asumsi φ o = 0 ). Selanjutnya kita amati pergerakan titik pada sudut fasa 2π ini. Maka untuk sudut fasa tetap ini akan berlaku = 2 konstan Sedangkan frekuensi f diperoleh dari nilai resiprokal dari perioda temporal T =...(2.9) Disamping frekuensi, dikenal pula frekuensi radian ω dan konstanta frase. = 2 2.10a = /...(2.10b) Sehingga kecepatan fasa terhadap p dapat dinyatakan = = /sec...(2.11) Secara umum, gelombang yang merambat pada sumbu-x dapat dinyatakan sebagai, = (arah sumbu x positif), = + (arah sumbu x negatif) 2.3 Teori perturbasi singular geometri Lemma (Teorema Perturbasi Singular geometri). =,,. =,,...(2.12) Dimana :, dan adalah parameter nyata. f,g adalah. di set dimana I interval terbuka yang bernilai 0. Gambar 2.2 Pergeseran posisi fasa konstan Diasumsikan untuk = 0, sistem normal, manifold hiperbolik kompak dimana set,, 0 = 0. manifold dikatakan normal hiperbolik jika linierisasi dari lemma diatas pada setiap titik di memiliki nilai 3

eigen l tepatnya pada sumbu imajiner = 0. kemudian untuk setiap 0 < < + jika > 0 tapi cukup kecil, ada manifold. 2.4 Teori Diferensial Manifold Geometri diferensial merupakan studi terhadap persoalan-persoalan geometri yang dibahas dengan menggunakan konsep analisis. Secara lebih mendalam, Klein mendefinisikannya sebagai studi sifat-sifat invarian dari manifold diferensiabel terhadap transformasi difeomorfisme. Obyek utama dalam riset geometri diferensial adalah manifold diferensiabel dan berbagai medan tensor di dalamnya. Maka untuk memahami geometri diferensial dan aplikasinya dalam fisika, kita mutlak harus memahami dahulu apa itu manifold diferensiabel. 2.4.1 Persamaan Manifold diferensial Persamaan Diferensial Manifold(J. Carr, 1981:35), = 2 4 2, = = Bagian pertama adalah solusi terintegrasi sepanjang, pada dimensi manifold stabil salah satu sistem asal = dengan > 0 untuk < < 0 dan 0 = 0, yang terakhir ini sama. Ψ, dan Ψ didefinisikan Ψ, =,. Ψ = lim Ψ,...(2.15) 3.Diagram alur kerja =...(2.13) dengan persamaannya sebagai berikut : = = = 1 1 1 = 1 + 1 2.5 Analisis pertubasi reguler untuk sistem Hamiltonian Analisis pertubasi reguler untuk sistem Hamiltonian dapat digunakan untuk menetapkan adanya solusi homoclinic. Kita perlu mendefinisikan fungsi yang sama sebagai Ψ, =, +, dimana:..(2.14) 4.Hasil dan Pembahasan Pada pembahasan ini, akan dibuktikan proposisi yang akan dijadikan objek pembuktian utama dari eksistensi solusi gelombang berjalan dan merupakan bagian dari tujuan utama untuk pembahasan ini. 4.1 Teori perturbasi singular geometri Lemma 4.1 =,, =,, 4

Dimana :, dan adalah parameter nyata. f,g adalah. di set dimana I interval terbuka yang bernilai 0. Diasumsikan untuk = 0, sistem normal, manifold hiperbolik kompak dimana set,, 0 = 0. Manifold dikatakan normal hiperbolik jika linierisasi dari lemma 4.1, pada setiap titik di memiliki nilai eigen l tepatnya pada sumbu imajiner = 0.Untuk setiap 0 < < + jika > 0 tapi cukup kecil, ada manifold. (I) Invarian secara lokal berdasarkan(lemma 4.1) (II), dan pada ruang (III) =, : = h untuk sembarang fungsi h dan y kompak untuk sembarang K; (IV) Ada eksistensi invarian lokal pada manifold stabil dan non stabil dan bahwa salah jika tanpa darinya, dan berbeda morfologinya antara dan. Selanjutnya lemma 4.1 digunakan sebagai bahan acuan untuk mengetahui apakah hasilnya berkorespondensi pada kasus non penundaan. Karena pernyataan poin I sampai dengan Poin IV bertujuan untuk mencari persistensi dari gelombang berjalan ketika penundaannya kecil. Untuk persamaan NLS penundaan (2.2) bentuk gelombang berjalan dengan, = =, =, & > 0,dimana A adalah fungsi real dan representasi amplitudo dari gelombang berjalan dengan nomer gelombang > 0 dan frekuensi > 0. bagian real dan imajiner dari persamaan non delay (yaitu (2.2) dengan =, = 0,. Persamaan NLS (2.1) dengan = = 1 dibaca: + = 0,. + 2 = 0,....(4.2) dimana melambangkan turunan pertama tehadap. Sehingga = menjadi: & = + > 0, persamaan(2.2) =,.(4.3) Selebihnya, jika kita memasukkan skala =, = ke dalam persamaan (2.3), maka menjadi seperti =,.(4.4) Dimana melambangkan turunan oleh z. sehingga ekuivalen dengan bentuk sebagai = =.(4.5) Berdasarkan sistem (4.5), didapatkan eksistensi dari solusi gelombang soliter dan solusi gelombang berjalan secara periodik dari persamaan NLS(2.1). Lemma 4.6 Pada ruang fase,, system (4.5) mempunyai orbit homoklinik pada titik pusat (0,0) dan orbit 5

periodik didalamnya. Jadi solusi gelombang soliter dan gelombang periodik lebih besar daripada 0. Bagian real dan bagian imajiner dari persamaan(2.2) dengan (2.5) dapat dinyatakan + + = 0,. + 2 = 0.(4.7) dengan = Misalkan = +, (4.8) & = +, kita dapat menuliskan kembali sistem (4.7) dengan (4.8) seperti : = +, (4.9) dengan = Teorema 4.11 / +...(4.10) untuk sembarang > 0, masing-masing semua solusi pada system (4.9) dan (4.10).,,,, 0 < <, 0 < 1 4 4.2 Analisis dengan integral abelian Perhatikan & = 1 2, =, kemudian perhatikan dua akar negatif dari = 2 =,, & <. Menurut lemma 4.2, 0 < & 0 <. Sesuai yang telah dijelaskan oleh P dan Q, orbit, pada level kurva = =, dimana =. didapatkan =, = Proposisi 4.12 Diberikan =, dan > 0, untuk 0 < <, maka: lim = 7 5, lim = 2, Untuk membuktikan proposisi 4.12, didefinisikan kembali & oleh integral =, = 0,1,2, Kemudian dibangun: = 2, Sehingga & diwujudkan = = 2 + 2, = =, 4 Selanjutnya dibentuk menjadi integral abelian dasar dari & oleh empat lemma sebagai 6

Lemma 4.13 Lemma 4.14 Lemma 4.15 lim = 2 3, lim = 8 15, lim = lim = 1, =, Lemma 4.16 Lemma 4.17 4 = 3 2 3 4 15 4 5 2 3 = 2 5 2 4 3 4 25 = = 2 1, = 8 7 2 7 & = 2 3 16 7 8 21 Lemma 4.18. 0 < <, = 2 4 + > 0 Lemma 4.19 jika = 0 untuk semua 0 < <, kemudian < 0. Selebihnya bentuk lemma 4.13 dan 4.14, didapatkan : lim =, lim = 1, (4.21) Lemma 4.22 untuk 0 < <, > 0. Tanpa menggunakan relasi 4.1, kemonotanan dari X dibuktikan proposisi 4.12 4.3 Pembuktian teorema 4.3 Karena : = / + Maka didapatkan definisi =. Jika kita mendiferensialkan terhadap maka kita mendapatkan: dimana : = 1, = 1 / +. dengan mendeferensialkan terhadap z, maka didapatkan: = 1, Lemma 4.20. jika = 0 untuk < < 1. 0 < <,maka Jika dinotasikan kembali =, maka sistem (4.9) dengan (4.10) dapat diganti oleh sistem : 7

= = +...(4.23) = =. Perlu dicatat bahwa jika = 0 maka sistem (4.23) dapat direduksi menjadi: = Solusi gelombang berjalan dari (2.8) tanpa penundaan. = = +...(4.24) = =. Sistem lambat (4.23) untuk = 0, kemudian alur sistem itu menjadi,,, : =, =...(4.25) Oleh substitusi ke dalam sistem lambat (4.23), maka h, h harus dinyatakan + + + +. + h + h + = h. + +. + h + h + = h...(4.26) Ketika adalah kecil, solusi dari bentuk persamaan diferensial parsial diperoleh dari pertubasi reguler series pada, karena h, h adalah nol ketika = 0, maka h, h menjadi h,, = h, + h, +,. h,, = h, + h, +,...(4.27) Berdasrkan substitusi (4.5) kedalam (4.4) dan gabungan kekuatan dari, seperti beberapa aljabar h, =, h, =. Jadi, pendekatan order pertama dai manifold invariant adalah =,,, : = + +,. = + +...(4.28) akan dipelajari alur dari (4.1) yang membatasi dan menunjukkan bahwa mempunyai solusi gelombang berjalan. Sistem lambat(4.1) dibatasi (4.6) dinyatakan = = 2 +....(4.29) Untuk konvensi, akan dibuktikan parameter penundaan dan kecepatan gelombang sebagai variabel, lalu sistem (4.29) ekuivalen dengan: =, = 2 +,...(4.30) = 0, = 0. Selanjutnya dapat didefinisikan:,τ = h c,τ h c,τ Dan menurut pengamatan bahwa nulitas dari orbit homoklinik berdasarkan lemma 4.2, ada orbit homoklinik yang tak bergantung pada ketika = 0, dengan, 0 = 0, dan dinyatakan,τ =τ,τ. diperoleh: Sehingga, 0 = Mc: = τ τ τ...(4.31) Berdasarkan lemma yang telah disebutkan oleh proposisi dari yang telah didefinisikan diatas. Lemma 4.32 untuk sebarang > 0 yang terlalu kecil, ada eksistensi kecepataan = bahwa didefinisikan pada (4.31) dinyatakan: 8

= 0, 0, Untuk ruang tangensial dari ± 0 manifold invariant dan,ada tiga vektor tangensial dan pada saat = 0 bahwa dengan mudah kita temukan (ketika = 0, 0 = 0) = h τ, 0,1,0, = 0, u u, 0,0 = 0,, 0,0, = 0,0,0,1, dimana pada sesuai > 1, dst, < 0, dapat dicek bahwa:,, = 1 g = ±...(4.33) dimana adalah sebuah permutasi dari1,2,3. kemudian dengan melihat bahwa persamaan untuk bentuk dapat dihitung = 3 2 = 2. Dengan cara yang sama, ketika mengaplikasikan ruang tangensial ± pada., = 1,2,3, dapat dihitung kembali. Sehingga menjadi:. =,,1,0, = v, u u, 0,0, =,,0,1, Ini dapat dilihat bahwa.,.,. =. Sebagai = 2 dengan diberikan ± =.,.,., maka: ± = 2...(4.34) Untuk lebih memudahkannya mengecek ± 0, ±. Sistem (4.34) dapat dicari solusinya dengan mudah pula yaitu: ± = ± 2....(4.35) Dimana berasal dari khayal, setelah diketahui orbit homoklinik dari lemma 4.2 dan γ 0 = 3 γ...(4.36) Berdasarkan lemma 4.2, solusi secara periodik dari sistem(4.5) dapat diketahui oleh level kurva dari =. Untuk sistem (4.30), data inisial fix, 0 dengan 0 < < 1. Diberikan, jadi solusi dari (4.16) dengan, 0 =, 0, maka ada eksistensi =, > 0 dan =, < 0 > 0, 0,, = 0;. < 0,, 0, = 0...(4.37) saat = 0, =, dimana =, 0, =, 0. didefinisikan sebuah fungsi Φ Φ,, =,, melambangkan turunan pertama terhadap, = adalah fungsi hamiltonian untuk sistem (4.5), dan integral untuk menunjukkan orbit dari(4.30), jadi = 2 + Sehingga Φ,, dinotasikan berbeda dari level diantara dua titik pada u-axis: Φ,, =,,. 9

Jadi Φ,, = 0 jika dan hanya jika solusi periodik untuk sistem (4.30) untuk menyelesaikan Φ = 0. Φ,, = Φ,, /, kemudian Φ,, mempunyai limit ketika mendekati nol: Φ, = lim Φ,, = 2. Berdasarkan (4.37), adalah solusi dari (4.5) dan integral ini ditunjukkan pada level kurva =, 0, dimana, 0 = 0,.sehingga Φ, = 2 1 3 3 = 0. Jadi, batasan kecepatan > 0 adalah hasil determinan oleh: 2 = 0...(4.38) Menjadi = 1 + 1. 6 Jadi dari proposisi 4.1 kita dapatkannya. Lemma 4.39 untuk 0 < <, mencari, sesuai yang diharapkan berdasarkan batasan kondisi kecepatan (4.38) untuk solusi secara periodik dengan =, dimana didefinisikan pada pembahasan bab 4.2, selanjutnya > 0, dan Φ,, 0 = 2 > 0, Kita dapatkan solusi persamaan Φ = 0 berdasarkan implikasi teorema fungsi.untuk lebih jelasnya, ada eksistensi sebuah fungsi halus yang unik : =, untuk masingmasing seperti dibawah ini: Φ,,, = 0, 0 < < 1 4, 0 < <. Dimana, adalah sebuah solusi dari (4.5) dan integral ini ditunjukkan pada level kurva =, 0. hubungan antara Φ dan adalah catatan 4.41 Φ =γmc Jika (2.2) tidak mempunyai respon penundaan nonlinier pada bentuk, maka persamaan korespondensinya pada(4.9) akan menjadi: dengan = ekuivalen dengan = / + = =,...(4.42) = =. Sistem (4.42) terbatas pada (4.29) yang berdasarkan: = = 2 +...(4.43). Karena lim = 2 5, lim = 1 2. fungsi menjadi: = 2 γ 0. 10

Dan diantara orbit dari (4.43) turunan dari hamiltonian pada kasus(c=0) terlihat bahwa solusi gelombang berjalan adalah homoklinik Yaitu: = 2 + 4.Kesimpulan dan Saran Dari hasil pembahasan dan simulasi diperoleh kesimpulan sebagai berikut : Φ, = 2 0. Dengan demikian,ketidak eksistensi dari solusi gelombang berjalan dengan 0 pada kasus ini. Simulai I c=0,5(tidak sama dengan nol) 1. Dengan metode analitik dengan berbagai kasus kita dapatkan solusi gelombang berjalan baik homoklinik maupun periodik. 2. Dengan visualisasi berupa simulasi I(c=0) bahwa terlihat terjadi solusi gelombang homoklinik seperti yang telah dijelaskan oleh analitik. 3. Dengan visualisasi berupa kasus II(c>0 dan c<0) bahwa terlihat Solusi gelombang soliter berjalan secara peiodik DAFTAR PUSTAKA Baker, R. E et al, 2008.Partial differential equations for self-organization in cellular and developmental biology, Oxford OX1 3QU, UK. Gambar 4.1 solusi gelombang untuk U saat c=0.5 Simulasi II(c=0) Carr,J, 1981. Application of Center Manifold Theory, Applied Mathematical Sciences, vol. 35, Springer, New York. Cushman,R.dan J. Sanders, A codimension two bifurcations with a third order Picard Fuchs equation, J. Different. Equat. 59 (1985) 243 256. Gambar 4.2 Solusi gelombang untuk U saat c=0. Simulasi III(saat c= -0,5) Djohan,Warsoma,1997. Dinamika Gelombang Cnoidal di Atas Dasar Tak Rata Menggunakan Persamaan Gelombang Dua Arah Boussinesq, Institut Teknologi Bandung Fenichel,N, Geometric singluar perturbation theory for ordinary diffenertial equations, J. Different. Equat. 31 (1979) 53 98. Gourley,S.A,2000. Travelling fronts in the diffusive nicholson s blowflies equation with distributed delays, Math Comput. Model. 32 (2000) 843 853. Gambar 4.3 solusi gelombang berjalan untuk U saat c= -0,5 Dari simulasi diatas juga terlihat bahwa untuk kasus (c tidak sama dengan 0) terjadi gelombang berjalan secara periodik. Sedangkan Jones, C.K.R.T. Geometrical singluar perturbation theory, in: R. Johnson (Ed.), 11