MA4183 MODEL RISIKO Control your Risk!

dokumen-dokumen yang mirip
MA4183 MODEL RISIKO Control your Risk!

MA4181 MODEL RISIKO Risk is managed, not avoided

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko

MA4183 MODEL RISIKO Control your Risk!

MA4181 MODEL RISIKO Risk is managed, not avoided

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4183 MODEL RISIKO Control your Risk!

Pengantar Statistika Matematik(a)

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Enjoy the Risks

MA4181 MODEL RISIKO Enjoy the Risks

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Proses Stokastik

MA5181 PROSES STOKASTIK

Pengantar Statistika Matematik(a)

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

PERSATUAN AKTUARIS INDONESIA

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA5181 PROSES STOKASTIK

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIKA We love Statistics

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

UKURAN RISIKO BERDASARKAN PRINSIP PENENTUAN PREMI : PROPORTIONAL HAZARD TRANSFORM. Aprida Siska Lestia

Prosiding Statistika ISSN:

Uji Hipotesis dan Aturan Keputusan

MA4081 PENGANTAR PROSES STOKASTIK Bab 3 Distribusi Eksponensial dan Aplikasinya

Pengantar Proses Stokastik

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Pengantar Proses Stokastik

MA3081 STATISTIKA MATEMATIKA We love Statistics

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematika II

Prosiding Statistika ISSN:

STK 203 TEORI STATISTIKA I

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematika II

Pengantar Proses Stokastik

Pengantar Proses Stokastik

UJIAN A70 PERIODE JUNI 2014 SOLUSI UJIAN PAI A70. A70-Pemodelan dan Teori Risiko 9/14/2014

Pengantar Statistika Matematika II

BAB II TINJAUAN PUSTAKA

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Peubah Acak dan Distribusi Kontinu

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

Peubah Acak dan Distribusi

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK

BAB II LANDASAN TEORI

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik

Prosiding Statistika ISSN:

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

DISTRIBUSI ERLANG DAN PENERAPANNYA. Rini Kurniasih 1, Getut Pramesti 2 Mahasiswi Pendidikan Matematika FKIP UNS, Dosen Pendidikan Matematika FKIP UNS

/ /16 =

MA5181 PROSES STOKASTIK

STATISTIK PERTEMUAN VI

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang

PERSATUAN AKTUARIS INDONESIA

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG

Pengantar Statistika Matematika II

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA3081 STATISTIKA MATEMATIK(A) Bab 2: Distribusi Samp

MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI

Pemodelan Data Curah Hujan Menggunakan Proses Shot Noise Modeling Rainfall Data Using a Shot Noise Process

MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika

PEMBANGKIT RANDOM VARIATE

MA5181 PROSES STOKASTIK

Transkripsi:

Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Tentang MA4183 Model Risiko A. Jadwal kuliah: Selasa; 07.00- Rabu/Kamis; B. Penilaian: 1. Ujian: Ujian 1, Minggu ke-6, 30 September 2014 (25%) Ujian 2, Minggu ke-10, 28 Oktober 2014 (25%) Ujian 3, Minggu ke-15, 2 Desember 2014 (25%) 2. Kuis dan Tugas/Presentasi (25%) C. Buku teks: 1. Yiu-Kuen Tse, 2009, Nonlife Actuarial Models: Theory, Methods and Evaluation 2. Stuart Klugman, Harry Panjer, Gordon Willmot, 2004, Loss Models MA4183 Model Risiko i K. Syuhada, PhD.

Daftar Isi 1 Distribusi Frekuensi Klaim 1 1.1 Distribusi Binomial......................... 1 1.2 Distribusi Geometrik........................ 3 1.3 Distribusi Poisson.......................... 3 1.4 Kelas Distribusi (a, b, 0)...................... 4 1.5 Zero-Modified and Zero-Truncated Distributions......... 6 1.6 Compound distribution....................... 7 2 Distribusi Severitas Klaim 1 2.1 Aplikasi Dalam Asuransi...................... 1 2.2 Fungsi Kesintasan.......................... 3 2.3 Distribusi Eksponensial dan Pareto................ 4 2.4 Transformasi Peubah Acak..................... 5 2.5 Sifat Ekor Pada Severitas Klaim.................. 5 3 Model Kerugian Agregat 1 3.1 Model Risiko Individu....................... 2 3.2 Model Risiko Kolektif........................ 3 ii

BAB 1 Distribusi Frekuensi Klaim Silabus: Distribusi binomial, geometrik dan Poisson; kelas distribusi (a, b, 0); zero-modified and zero-truncated distributions; compound distribution Asuransi berkaitan erat dengan risiko karena dengan produk asuransi-lah terjadi perpindahan (tranfer) risiko dari pemegang polis kepada pihak asuransi. Pada pemodelan kerugian klaim (claim losses) terdapat dua ukuran penting yang harus diperhatikan yaitu frekuensi klaim (claim frequency) dan besar atau severitas klaim (claim severity). 1.1 Distribusi Binomial Distribusi yang tepat untuk memodelkan frekuensi klaim adalah distribusi diskrit, antara lain binomial, geometrik, negatif binomial dan Poisson. Misalkan peubah acak X menyatakan banyak klaim yang diproses dari semua klaim yang masuk. Misalkan X B(n, θ), maka fungsi peluangnya P (X = k) = Ck n θ k (1 θ) n k, k = 0, 1, 2,..., n Sifat momen, atau momen ke-m, dapat ditentukan dengan memanfaatkan 1

fungsi peluang (fp), yaitu E(X m ) = n x m P (X = k). k=0 Untuk m = 1, misalnya, didapat E(X) =, dst. Momen ke-m dapat pula ditentukan dengan menggunakan fungsi pembangkit momen (fpm): M X (t) = Catatan: Fpm suatu peubah acak berkorespondensi satu-satu dengan distribusi peubah acak tersebut. Bagaimana dengan fungsi pembangkit peluang (fpp), manfaat apa yang dapat diperoleh dengan fpp? Bagaimana menentukan peluang secara rekursif? Dapatkah ditentukan hubungan antara fpm dan fpp? Misalkan X 1, X 2,..., X n sampel acak dari X yang berdistribusi binomial dengan parameter (n, θ). Parameter θ dapat ditaksir dengan menggunakan metode likelihood maksimum sbb: Fungsi likelihood dan log-likelihood:... Turunan pertama terhadap parameter dan normalisasi:... Penaksir θ:... Turunan kedua terhadap parameter:... Tugas: Pandang data berdistribusi binomial dengan berbagai nilai parameter. Lakukan analisis statistika deskriptif dan inferensial terhadap data tersebut. MA4183 Model Risiko 2 K. Syuhada, PhD.

1.2 Distribusi Geometrik Distribusi lain yang dapat digunakan untuk memodelkan frekuensi klaim adalah distribusi geometrik. Pertanyaannya, definisi peubah acak apakah yang tepat untuk menggambarkan distribusi ini? Misalkan X Geo(α) dengan fungsi peluang p(x) = (1 α) x 1 α, x = 1, 2,... Kita dapat menentukan sifat momen seperti sebelumnya, E(X) = 1 α, V ar(x) = 1 α, 2 dan juga fpm dan fpp. Selain itu, misalkan X Geo(α), kita dapat pula menentukan sifat distribusi dari X + 1. Namun yang menarik untuk dikaji adalah apakah sifat khusus yang hanya dimiliki distribusi geometrik? Jelaskan! 1.3 Distribusi Poisson Misalkan X peubah acak yang menyatakan banyaknya/frekuensi klaim pada suatu periode waktu. Distribusi untuk X adalah Poisson dengan parameter λ. Ciri khas distribusi ini adalah nilai mean dan variansi yang sama yaitu λ, E(X) = V ar(x) = λ. Dalam praktiknya, mungkinkah kita memperoleh data dengan nilai mean sama dengan variansi? (selanjutnya nanti akan dipelajari konsep overdispersion dan underdispersion) Bagaimana kaitan antara distribusi Poisson dan Binomial? adakah manfaat yang dapat kita ambil? MA4183 Model Risiko 3 K. Syuhada, PhD.

Teorema Jika X 1,..., X n peubah acak-peubah acak yang saling bebas dengan X i P OI(λ i ) maka X = X 1 + + X n P OI(λ 1 +... + λ n ). Misalkan X dan Y peubah acak Poisson dengan parameter, berturut-turut, λ 1 dan λ 2. Kita dapat menentukan distribusi X X + Y = n sebagai berikut P (X = k X + Y = n) P (X = k, X + Y = n) = P (X + Y = n) P (X = k, Y = n k) = P (X + Y = n) P (X = k) P (Y = n k) = P (X + Y = n) = exp( λ 1) λ k 1 (k!) 1 exp( λ 2 ) λ n k 2 ((n k)!) 1 exp( (λ 1 + λ 2 )) (λ 1 + λ 2 ) n (n!) 1 = n! k!(n k)! ( λ1 λ 1 + λ 2 ) k ( λ2 λ 1 + λ 2 ) n k. Dengan kata lain, X X + Y = n B(n, λ 1 /(λ 1 + λ 2 )). 1.4 Kelas Distribusi (a, b, 0) Perhatikan fungsi peluang dari peubah acak Poisson(λ): f(x) = e λ λ x, x = 0, 1, 2,... x! yang dapat dituliskan rekursif dengan memperhatikan fungsi peluang untuk X = x 1, f(x 1) = e λ λ x 1 (x 1)!. MA4183 Model Risiko 4 K. Syuhada, PhD.

Diperoleh f(x) f(x 1) = e λ λ x / e λ λ x 1 x! (x 1)! = λ x atau f(x) = ( ) λ f(x 1), x = 1, 2,... x Distribusi-distribusi diskrit yang sudah dikenalkan sebelumnya (binomial, geometrik, binomial negatif, Poisson) dapat dikelompokkan menjadi sebuah Kelas Distribusi (a, b, 0) dengan fungsi peluang memenuhi sifat rekursif: ( f(x) = a + b ) f(x 1), x = 1, 2,..., x dengan a, b konstanta dan f(0) diberikan. Catatan: Kelas distribusi (a, b, 1) dapat pula dibentuk dengan analogi. MA4183 Model Risiko 5 K. Syuhada, PhD.

1.5 Zero-Modified and Zero-Truncated Distributions Misalkan X B(3, 0.4). Kita dapat menentukan distribusi peluang sebagai berikut: X P (X = k) 0 0.216 1 0.432 2 0.288 3 0.064 Dalam aplikasi teori peluang, seringkali kita dihadapkan pada fenomena dimana peluang terjadinya 0 telah ditentukan, misalnya P (X = 0) = 0.3, atau bahkan mungkin tidak ada, P (X = 0) = 0. Untuk itu, perlu adanya modifikasi fungsi peluang diatas. Distribusi yang dihasilkan dikatakan sebagai zero-modified and zero-truncated distributions. Misalkan peubah acak X dari suatu distribusi (a, b, 0) memiliki fungsi peluang f(x). Misalkan f M (x) fungsi peluang yang merupakan modifikasi dari f(x); f M (x) adalah fungsi peluang dari distribusi (a, b, 1). Untuk f M (0) yang ditentukan, hubungan antara f M (x) dan f(x) adalah f M (x) = c f(x), x = 1, 2,... dengan c konstanta. Catatan: Fungsi peluang f M (x) haruslah terdefinisi dengan baik; akibatnya, c dapat diperoleh, c = 1 f M (0) 1 f(0). Untuk distribusi Binomial dengan parameter (3, 0.4) diatas, kita dapat menghi- MA4183 Model Risiko 6 K. Syuhada, PhD.

tung f M (k), k = 1, 2, 3 sebagai berikut: f M (1) = 1 f M (0) 1 f(0) f(1) = 1 0.3 1 0.216 0.432 = 0.386. Dengan cara sama, kita peroleh f M (2) = 0.258 dan f M (3) = 0.056. Untuk zero-truncated distribution, nilai P (X = 0) = 0. Diperoleh nilai seperti tabel berikut: X P (X = k) Zero-Modified Zero-Truncated 0 0.216 0.3 0 1 0.432 0.386 2 0.288 0.258 3 0.064 0.056 Latihan: 1. Tentukan zero-modified distribution untuk X yang berdistribusi Poisson dengan parameter 2.5 2. Misalkan X adalah zero-truncated distribution dari X. Diketahui, fungsi peluang dan fungsi pembangkit peluang X, berturut-turut, adalah f X (x) dan P X (t). Tentukan fungsi pembangkit peluang untuk X 1.6 Compound distribution Misalkan X 1,..., X n sampel acak dari X dengan fungsi distribusi F X. Apakah yang dapat kita katakan tentang distribusi S = X 1 + + X n,? MA4183 Model Risiko 7 K. Syuhada, PhD.

Bagaimana dengan S = X 1 + + X N,? (dimana N adalah peubah acak) Jika N peubah acak bernilai integer yang saling bebas dengan X 1,..., X N, maka peubah acak S = X 1 + + X N dikatakan memiliki compound distribution. Catatan: - Distribusi N disebut sebagai distribution pertama (primary distribution), sedangan distribusi X dikatakan distribusi kedua (secondary distribution) - Penamaan distribusi: primary-secondary distribution - Distribusi compound Poisson adalah distribusi dengan distribusi pertama adalah distribusi Poisson dan sebarang distribusi untuk distribusi kedua Untuk menentukan distribusi S, perhatikan ilustrasi berikut. Misalkan X i B(1, θ) dan kita tahu X i = 0, 1. Sehingga nilai yang mungkin untuk S adalah {0, 1, 2}. P (S = 0) = P (X 1 = 0, X 2 = 0) = P (X 1 = 0)P (X 2 = 0) = f(0)f(0) P (S = 1) = P (X 1 = 0, X 2 = 1) + P (X 1 = 1, X 2 = 0) = f(0)f(1) + f(1)f(0) MA4183 Model Risiko 8 K. Syuhada, PhD.

P (S = 2) = P (X 1 = 1, X 2 = 1) = f(1)f(1) Jadi, fungsi peluang S adalah P (S = s) = x P (X 1 = x, X 2 = s x). Dalam menentukan distribusi S dengan N peubah acak alias compound distribution, distribusi N harus ditentukan lebih dahulu. Dengan demikian, kita peroleh P (S = s) = n P (S N = n)f N (n), dengan sifat momen pertama E(S) = E(E(S N)) = dan fungsi pembangkit momen M S (t) =. Latihan: 1. Misalkan S 1 memiliki compound distribution dengan distribusi pertama Poisson dengan parameter 1 dan kedua Geometrik dengan parameter p 1. Misalkan S 2 memiliki compound distribution dengan distribusi pertama Poisson dengan parameter 2 dan kedua Geometrik dengan parameter p 2. Diketahui S 1 dan S 2 saling bebas. Misalkan S = S 1 + S 2. Hitung P (S = s), s = 0, 1, 2,. 2. Tentukan fpm dan fpp dari dari geometric-binomial compoun distribution MA4183 Model Risiko 9 K. Syuhada, PhD.

BAB 2 Distribusi Severitas Klaim Silabus: Fungsi kesintasan, distribusi exponensial, Weibull dan Pareto; mixed and mixture distributions; tail weight and CTE; Aplikasi: deductibles, policy limit dan coinsurance Severitas klaim atau claim severity menyatakan besar kerugian suatu klaim asuransi. Umumnya, severitas klaim dimodelkan dengan distribusi kontinu nonnegatif. Secara khusus, akan dibahas distribusi eksponensial dan Pareto serta sifat-sifat yang menyertainya seperti sifat ekor dan kuantil. 2.1 Aplikasi Dalam Asuransi Salah satu motivasi yang dapat digunakan dalam mempelajari sifat-sifat khusus peubah acak seperti sifat ekor, kuantil dll adalah manfaat atau aplikasi dalam bidang profesional seperti asuransi. Dalam hal ini, kajian aplikasi akan ditekankan pada pembayaran klaim oleh perusahaan asuransi (insurer), khususnya pada kasus adanya modifikasi cakupan polis (policy coverage). Pandang situasi seseorang mengasuransikan kendaraan yang dimilikinya. Tidak jarang pengendara bersikap ceroboh terhadap kendaraannya karena keyakinan akan dijamin oleh asuransi. Untuk mengurangi risiko dan mengendalikan 1

masalah-masalah perilaku pemegang polis (moral hazard), perusahaan asuransi melakukan modifikasi cakupan polis seperti deductibles, policy limits dan coinsurance. Misalkan X menyatakan besar uang yang dibayar (amount paid) dalam suatu kejadian kerugian (loss event) dimana tidak ada modifikasi cakupan atau disebut ground-up loss. Misalkan X L menyatakan besar uang yang dibayar dimana ada modifikasi cakupan atau cost per loss; X P menyatakan besar uang yang dibayar dalam suatu kejadian pembayaran (payment event) dimana ada modifikasi cakupan. Catatan: loss event terjadi jika terdapat kerugian, payment event terjadi hanya jika pihak asuransi membayar kerugian. Deductibles Suatu polis asuransi dengan per-loss deductible d tidak akan menbayar pada pemegang polis (the insured) jika kerugian X kurang dari atau sama dengan d; akan membayar pemegang polis sebesar X d jika kerugian X lebih dari d. Jadi, besar uang yang dibayar dalam suatu kejadian kerugian, X L, adalah X L = X d, untuk X > d, dan X L = 0 untuk X d. Distribusi peluang untuk X L adalah... Peubah acak X P (excess-loss variable) didefinisikan jika terjadi pembayaran, yaitu saat X > d, X P = X d X > d. Fungsi kesintasan S XP adalah... Catatan: X L memiliki censored distribution, X P memiliki truncated distribution. MA4183 Model Risiko 2 K. Syuhada, PhD.

Latihan. Misalkan X dan Y, dengan deductible d = 0.25. Hitung E(X L ), E(X P ), E(Y L ), E(Y P ), jika X berdistribusi eksponensial dan Y berdistribusi lognormal. Policy limit Modifikasi lain dari cakupan polis adalah menentukan suatu nilai u yang ditentukan dari awal dengan aturan X U = u, untuk X u, dan X U = X untuk X < u. Notasi: X U = X u. Coinsurance Dapatkah anda menjelaskan tentang Coinsurance? 2.2 Fungsi Kesintasan Fungsi kesintasan (survival function) merupakan komplemen dari fungsi distribusi. Dapat pula dikatakan bahwa fungsi kesintasan S(x) adalah nilai kumulatif peluang yang lebih besar dari x atau S(x) = 1 F (x) = P (X > x), dengan sifat-sifat sbb:... Fungsi hazard berkaitan dengan peluang mendapatkan kegagalan pada suatu waktu, h(x) = f(x) S(x) = P (x < X < x + dx X > x) MA4183 Model Risiko 3 K. Syuhada, PhD.

Suatu peubah acak X dapat berdistribusi kontinu dan diskrit, F (x) = P (X x) = dengan sifat ekspektasi... x f(x) dx + x P (X = x) Contoh: Misalkan X U(0, 10). Misalkan Y = X 2 untuk X > 2. 2.3 Distribusi Eksponensial dan Pareto Misalkan X peubah acak eksponensial. Fungsi distribusi dan fungsi hazardnya dapat ditentukan sbb. Distribusi eksponensial sering digunakan untuk menentukan distribusi waktu antar-kedatangan. Peubah acak X berdistribusi Pareto dengan parameter α > 0 dan γ > 0 jika fungsi distribusinya F (x). Distribusi ini cocok untuk memodelkan pendapatan. Karakteristik menarik dari distribusi Pareto adalah tidak dimilikinya fpm dan dapat diturunkannya distribusi ini dari distribusi eksponensial. Misalkan X exp(λ), dengan Λ berdistribusi Gamma(α, β). Kita ketahui f X (x λ) = λ e λ x, x 0, dan Jadi, f Λ (λ α, β) = ( 1 β )α Γ(α) λα 1 e 1 β λ, λ 0. 0 f X (x λ) f Λ (λ α, β) = = α [ β β α βx + 1 ] α+1 MA4183 Model Risiko 4 K. Syuhada, PhD.

atau 0 f X (x λ) f Λ (λ α, β) = αγ α (x + γ) α+1, dengan γ = 1/β, yang merupakan fungsi peluang dari distribusi Pareto(α, γ). Dengan kata lain, gamma-exponensial mixture berdistribusi Pareto. 2.4 Transformasi Peubah Acak Beberapa cara dapat digunakan untuk memanipulasi suatu peubah acak menjadi peubah acak baru. Peubah acak baru ini diperoleh dengan membentuk fungsi peubah acak. Sebagai contoh, diketahui peubah acak X dengan fungsi distribusi tertentu. Kita dapat membentuk fungsi peubah acak Y = X λ ; Y = X 1 α, dsb. Contoh lain, misalkan X 1,..., X n peubah acak dengan fungsi peluang f X1,..., f Xn. Peubah acak baru X dapat dibentuk dengan fungsi peluang f X (x) = p 1 f X1 (x) + + p n f Xn (x), dengan p i 0, n i=1 p i = 1. 2.5 Sifat Ekor Pada Severitas Klaim Severitas klaim dapat bernilai sangat besar walau dengan frekuensi yang kecil. Kerugian dengan nilai ekstrim, yang terjadi pada ekor kanan (upper tail) distribusi, perlu diperhatikan karena akan mempengaruhi kebijakan polis berikutnya. Distribusi dengan ekor tebal (fat/heavy/thick tail) dapat diidentifikasi melalui eksistensi momen. Sebagai contoh, distribusi Pareto memiliki hingga order α. Jadi, jika α < 2 maka distribusi Pareto tidak memiliki variansi. Artinya, terdapat indikasi adanya distribusi ekor tebal. MA4183 Model Risiko 5 K. Syuhada, PhD.

Untuk membandingkan perilaku ekor distribusi, kita dapat menghitung limit rasio kedua fungsi kesintasan. Semakin cepat suatu fungsi kesintasan menuju nol, maka semakin tipis ekor distribusi tersebut. Cara lain untuk menentukan ketebalan ekor adalah dengan menentukan (i) fungsi hazard dan (ii) fungsi kuantil. Misalkan X suatu kerugian acak atau random loss dengan fungsi distribusi F X. Kita dapat menentukan suatu nilai d α sedemikian hingga P (X d α ) = F (d α ) = α. Dengan kata lain, d α = F 1 X (α), atau d α adalah α-kuantil dari distribusi X. Keakuratan d α dapat dihitung dengan peluang cakupan atau coverage probability. Catatan: d α sering dikatakan VaR α (X) yang menyatakan kerugian maksimum yang dapat ditolerir padan tingkat α. Ukuran lain yang dapat dihitung dengan memanfaatkan d α adalah CTE atau Conditioan Tail Expectation, ) E (X X > d α, yang, apabila kita menggunakan VaR α (X), ukuran tersebut disebut Expected Shortfall (ES). Perhatikan kasus distribusi eksponensial dengan parameter λ. Kita peroleh ( ) E X VaR α (X) X > VaR α (X) = 1 λ = E(X). MA4183 Model Risiko 6 K. Syuhada, PhD.

BAB 3 Model Kerugian Agregat Silabus: Model risiko individu, model risiko kolektif Informasi yang telah diperoleh tentang distribusi frekuensi dan severitas klaim bermanfaat dalam membangun model risiko individu dan kolektif. Pada model risiko individu, misalkan kerugian (loss) untuk setiap polis, X i untuk i = 1,..., n, terjadi pada suatu blok. Asumsi kerugian-kerugian tersebut saling bebas dan berdistribusi identik; X 1,..., X n sampel acak dari X. Kerugian atau risiko agregatnya adalah S = X 1 + + X n. Dalam praktiknya, seringkali polis bernilai nol. Dengan demikian, perlu diperhatikan bahwa X memiliki mixed distribution. Pada model risiko kolektif, kerugian agregat diasumsikan mengikuti suatu compound distribution, atau S = X 1 + + X N, dengan N peubah acak yang menyatakan frekuensi klaim dan X 1,..., X N peubah acak-peubah acak, yang bersifat iid, menyatakan severitas klaim. 1

3.1 Model Risiko Individu Ilustrasi - Misalkan diketahui peluang adanya suatu klaim adalah 0.2, atau P (I = 1) = 0.2, dengan I peubah acak Bernoulli dengan parameter p = 0.2 atau {I = 1} menyatakan kejadian terjadinya klaim. Jika suatu klaim terjadi, kerugiannya merupakan peubah acak eksponensial dengan parameter λ = 0.5. mean kerugian dalam suatu loss event (kejadian kerugian) adalah E(Y ) = µ Y = 1 λ = 1 0.5 = 2. Jadi, untuk suatu polis yang acak, mean kerugiannya adalah Artinya, E(X) = E(I)E(Y ) = (0.2)(2) = 0.4. Sementara itu, apabila diketahui adalah 500 polis yang saling bebas, mean kerugian agregatnya adalah E(S) = n E(X) = (500)(0.4) = 200. Latihan: Suatu portofolio memiliki 100 polis asuransi yang saling bebas. Setiap polis memiliki peluang 0.2 untuk mengajukan klaim. Ketika suatu klaim diajukan, kerugian sebesar 10, 50, dan 80 memiliki peluang berturut-turut 0.4, 0.4, dan 0.2. Tentukan mean klaim agregate dari portofolio tersebut. Jawab: Peubah acak yang menyatakan kerugian memiliki distribusi peluang: Y = y 10 50 80 P (Y = y) 0.4 0.4 0.2 dengan mean E(Y ) = 10(0.4) + 50(0.4) + 80(0.2) = 40. Untuk suatu polis MA4183 Model Risiko 2 K. Syuhada, PhD.

acak, E(X) = (0.2)(40) = 8. Jadi, suatu portofolio dengan 100 polis yang saling bebas memiliki mean agregat E(S) = 100(8) = 800. 3.2 Model Risiko Kolektif Pandang kerugian agregat S yang memiliki compound distribution dengan distribusi pertama untuk N dan distribusi kedua untuk X. Asumsikan bahwa X dan N saling bebas. Kita dapat menentukan beberapa sifat untuk S antara lain fungsi pembangkit momen, M S (t) = E(e ts ) = E(e t(x 1+ +X N ) ) = E [ E ( e t(x 1+ +X N ) N )] = E [ E ( e ) tx 1 E ( )] e tx N [ {E ( = E )} ] e tx N = E [{M X (t)} N] [ {e log M = E } ] X (t) N = E [ e log M X(t)N ] = M N (log M X (t)) Sedangkan mean dan variansi untuk S adalah E(S) = E(N)E(X); V ar(s) = E(N)V ar(x) + V ar(n)[e(x)] 2. MA4183 Model Risiko 3 K. Syuhada, PhD.