Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

dokumen-dokumen yang mirip
SOLUSI PERSAMAAN LAPLACE MENGGUNAKAN METODE CRANK-NICHOLSON SKRIPSI

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November

Perbandingan Skema Numerik Metode Finite Difference dan Spectral

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson

Sidang Tugas Akhir - Juli 2013

Metode Beda Hingga untuk Penyelesaian Persamaan Diferensial Parsial

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

EFEK DISKRITASI METODE GALERKIN SEMI DISKRET TERHADAP AKURASI DARI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

ISSN (Media Cetak) ISSN (Media Online) Implementasi Metode Eliminasi Gauss Pada Rangkaian Listrik Menggunakan Matlab

APLIKASI FUNGSI GREEN MENGGUNAKAN ALGORITMA MONTE CARLO DALAM PERSAMAAN DIFERENSIAL SEMILINEAR

Penyelesaian Masalah Syarat Batas dalam Persamaan Diferensial Biasa Orde Dua dengan Menggunakan Algoritma Shooting Neural Networks

PENYELESAIAN MASALAH NILAI EIGEN UNTUK PERSAMAAN DIFERENSIAL STURM-LIOUVILLE DENGAN METODE NUMEROV

Analisis Numerik Integral Lipat Dua Fungsi Trigonometri Menggunakan Metode Romberg

PENGARUH PERUBAHAN NILAI PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDE 3

PERBANDINGAN METODE HEUN DAN ADAM BASHFORTH MOULTON DALAM MENYELESAIKAN PERSAMAAN LEGENDRE SKRIPSI. oleh. Marihot Janter Sinaga NIM

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

METODE GAUSS-SEIDEL PREKONDISI DENGAN MENGGUNAKAN EKSPANSI NEUMANN ABSTRACT

KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI

MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA

BAB I PENDAHULUAN. digunakan untuk masalah-masalah dalam kehidupan sehari-hari, diantaranya

BAB I PENDAHULUAN Latar Belakang Masalah

Estimasi Solusi Model Pertumbuhan Logistik dengan Metode Ensemble Kalman Filter

SKEMA NUMERIK UNTUK MENYELESAIKAN PERSAMAAN BURGERS MENGGUNAKAN METODE CUBIC B-SPLINE QUASI-INTERPOLANT DAN MULTI-NODE HIGHER ORDER EXPANSIONS

METODE FINITEDIFFERENCE INTERVAL UNTUK MENYELESAIKAN PERSAMAAN PANAS

METODE BEDA HINGGA UNTUK MENENTUKAN HARGA OPSI SAHAM TIPE EROPA DENGAN PEMBAGIAN DIVIDEN. Lidya Krisna Andani ABSTRACT

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method

Solusi Numerik Persamaan Gelombang Dua Dimensi Menggunakan Metode Alternating Direction Implicit

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah

PEMODELAN DAN SIMULASI NUMERIK SEBARAN AIR PANAS SPRAY POND MENGGUNAKAN METODE VOLUME HINGGA

SIMULASI MODEL PERPINDAHAN PANAS PADA PROSES PENETASAN TELUR MENGGUNAKAN SYARAT BATAS INTERFACE SKRIPSI

PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

PENYELESAIAN PERSAMAAN PANAS BALIK (BACKWARD HEAT EQUATION) Oleh: RICHA AGUSTININGSIH

Perbandingan Model Black Scholes dan Brennan Schwartz untuk Menentukan Harga American Option

FOURIER April 2013, Vol. 2, No. 1, PENYELESAIAN PERSAMAAN TELEGRAPH DAN SIMULASINYA. Abstract

METODE ELEMEN BATAS UNTUK MASALAH TRANSPORT

BAB I PENDAHULUAN Latar Belakang Masalah

APLIKASI METODE BEDA HINGGA SKEMA EKSPLISIT PADA PERSAMAAN KONDUKSI PANAS

Sagita Charolina Sihombing 1, Agus Dahlia Pendahuluan

Prosiding Matematika ISSN:

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK

BAB I PENDAHULUAN Latar Belakang Masalah

METODE BERTIPE NEWTON UNTUK AKAR GANDA DENGAN KONVERGENSI KUBIK ABSTRACT

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

JAWABAN ANALITIK SEBAGAI VALIDASI JAWABAN NUMERIK PADA MATA KULIAH FISIKA KOMPUTASI ABSTRAK

PEMODELAN WIND TURBINE ROTOR TIPE HAWT (HORIZONTAL AXIS WIND TURBINE) MENGGUNAKAN METODE VOLUME HINGGA

FAMILI METODE ITERASI DENGAN KEKONVERGENAN ORDE TIGA. Rahmawati ABSTRACT

PENERAPAN SKEMA JACOBI DAN GAUSS SEIDEL PADA PENYELESAIAN NUMERIK PERSAMAAN POISSON

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR

SIMULASI MODEL PENGARUH INHIBITOR Na2CrO4 (NATRIUM BIKROMAT) TERHADAP LAJU KOROSI BAJA AISI 1045 DI LINGKUNGAN AIR LAUT SKRIPSI

SOLUSI NON NEGATIF MASALAH NILAI AWAL DENGAN FUNGSI GAYA MEMUAT TURUNAN

KOMPUTASI DISTRIBUSI SUHU DALAM KEADAAN MANTAP (STEADY STATE) PADA LOGAM DALAM BERBAGAI DIMENSI

Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

PENCARIAN AKAR-AKAR PERSAMAAN NONLINIER SATU VARIABEL DENGAN METODE ITERASI BARU HASIL DARI EKSPANSI TAYLOR

SIMULASI ARUS LALU LINTAS DENGAN CELLULAR AUTOMATA

PENYELESAIAN PERSAMAAN DIFERENSIAL TUNDA LINIER ORDE 1 DENGAN METODE KARAKTERISTIK

KONTROL OPTIMAL UNTUK DISTRIBUSI TEMPERATUR DENGAN PENDEKATAN BEDA HINGGA

APROKSIMASI DISTRIBUSI PANAS DENGAN MENGGUNAKAN METODE FORWARD-BACKWARD DIFFERENCE

PENYELESAIAN MODEL DISTRIBUSI SUHU BUMI DI SEKITAR SUMUR PANAS BUMI DENGAN METODE KOEFISIEN TAK TENTU. Jl. Prof. H. Soedarto, S.H.

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI

ANALISIS DAN SIMULASI DISTRIBUSI TEMPERATUR RUANGAN BERDASARKAN BENTUK ATAP MENGGUNAKAN FINITE DIFFERENCE METHOD BERBASIS PYTHON

KONSEP DASAR PERSAMAAN DIFERENSIAL

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA

METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT

Matematika dan Statistika

BUKU RANCANGAN PENGAJARAN MATA AJAR METODE NUMERIK. oleh. Tim Dosen Mata Kuliah Metode Numerik

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO

METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT

BAB I PENDAHULUAN. perkembangan bakteri, sedangkan dalam bidang teknik yaitu pemodelan

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT

METODE TRANSFORMASI DIFERENSIAL FRAKSIONAL UNTUK MENYELESAIKAN MASALAH STURM-LIOUVILLE FRAKSIONAL

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan

PENYELESAIAN SISTEM PERSAMAAN LINEAR FUZZY KOMPLEKS MENGGUNAKAN METODE DEKOMPOSISI DOOLITTLE

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS

Modifikasi Metode Gauss atau Operasi Baris Elementer pada Solusi Sistim Persamaan Linier 3 Variabel dan 3 Persamaan

OPTIMASI PENGGUNAAN AIR CONDITIONER (AC) PADA SUATU RUANGAN DENGAN METODE ELEMEN HINGGA SKRIPSI LAMTIUR SIMBOLON

Jurnal Matematika Integratif ISSN Volume 12 No 1, April 2016, pp 35 42

Metode Chebyshev-τ untuk Menghitung Nilai Eigen pada Masalah Kestabilan Hidrodinamika

OPTIMASI MASALAH TRANSPORTASI MENGGUNAKAN METODE POTENSIAL PADA SISTEM DISTRIBUSI PT. MEGA ELTRA PERSERO CABANG MEDAN SKRIPSI

PERBANDINGAN SOLUSI MODEL GERAK ROKET DENGAN METODE RUNGE-KUTTA DAN ADAM- BASHFORD

PENGARUH PERUBAHAN PARAMETER TERHADAP NILAI ERROR PADA METODE RUNGE-KUTTA ORDO-2 SKRIPSI MIZWAR ARIFIN SRG

Jurnal MIPA 37 (2) (2014): Jurnal MIPA.

SHABRINA ROSE HAPSARI M SURAKARTA

PENERAPAN SISTEM PERSAMAAN LINEAR ITERATIF MAKS-PLUS PADA MASALAH LINTASAN TERPANJANG

METODE BEDA HINGGA UNTUK PERSAMAAN DIFERENSIAL BIASA ORDE DUA LINEAR DENGAN SYARAT BATAS DIRICHLET GALUH MAHARANI

BAB I PENDAHULUAN Latar Belakang Masalah

SOLUSI NUMERIK PERSAMAAN LAPLACE DAN HELMHOLTZ DENGAN MENGGUNAKAN METODE ELEMEN BATAS

1.1 Latar Belakang dan Identifikasi Masalah

PRISMA FISIKA, Vol. IV, No. 02 (2016), Hal ISSN :

Transkripsi:

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 320 Persamaan Laplace Menggunakan Metode Crank-Nicholson (The Solution of Laplace Equation Using Crank-Nicholson Method) Titis Miranti 1, Rusli Hidayat 2, Kusbudiono 3 1,2,3 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Jember (UNEJ) Jln. Kalimantan 37, Jember 68121 2 E-mail: rusli_mat@yahoo.co.id Abstrak Persamaan Laplace sering digunakan untuk memodelkan permasalahan permasalahan yang muncul dari berbagai bidang dalam dunia real. Pesamaan Laplace termasuk dalam persamaan diferensial parsial tipe eliptik. Persamaan Laplace dengan syarat batas yang tidak sederhana menyebabkan permasalahan dalam mencari solusi analitiknya. Sehingga untuk memperoleh solusi tersebut dibutuhkan suatu metode Numerik. Metode Crank-Nicholson merupakan salah satu contoh metode numerik. Metode Crank Nicholson biasanya digunakan dalam mencari solusi persamaan diferensial parsial tipe parabolik. Dalam penelitian ini, persamaan Laplace diselesaikan dengan menggunakan metode Crank Nicholson. Persamaan Laplace dan syarat batas yang digunakan memiliki bentuk solusi analitik sehingga dapat dicari nilai error dari solusi numerik. Kata Kunci: Persamaan Laplace, Syarat Batas, metode numerik dan metode Crank - Nicholson Abstract Laplace equation is often used to make a model of many problems that arise from various fields in the real world. Laplace equation is included the partial differential equations of elliptic type. Laplace equation with the not simple boundary condition cause a problem in finding analytical solution. So that, to obtain the solution requires a numerical method. Crank-Nicholson s method is one example of numerical methods. Crank Nicholson s method is usually used to search the solutions of partial differential equations of parabolic type. In this study, the Laplace equation is solved by using the method of Crank - Nicholson. Laplace equation and boundary conditions used has the form analytic solutions, so we can find it's accuracy with error calculation. Keywords: Laplace Equation, Boundary Condition, Numerical Method and Crank- Nicholson's Method 1 Pendahuluan Matematika sebagai cabang keilmuan yang mengalami perkembangan secara terus menerus mempunayi peranan penting dalam penyelesaian suatu permasalahan. Permasalahan permasalahan yang muncul dalam bidang ilmu lainnya dapat

Titis Miranti, et al. Persamaan Laplace... 321 dimodelkan kedalam bentuk matematika sehingga dapat diselesaikan dengan menggunakan metode metode matematika. Bagian dari ilmu matematika yang mampu merepresentasikan sistem fisik dan kejadian-kejadian dalam dunia real kedalam bentuk matematik disebut sebagai pemodelan matematika [1]. Persamaan Laplace adalah salah satu jenis persamaan diferensial parsial yang banyak digunakan untuk memodelkan permasalahan dalam bidang sains. Persamaan ini merupakan contoh klasik dari persamaan eliptik dan merupakan jenis persamaan diferensial linier orde dua dengan dua peubah [2]. Persamaan Laplace yang sulit diselesaikan dengan metode analitik dapat diselesaikan dengan menggunakan metode numerik. numerik merupakan solusi pendekatan atau perkiraan dari solusi analitiknya. numerik yang baik adalah solusi numerik dengan galat sangat kecil [3]. Metode Crank-Nicholson merupakan gabungan dari metode beda hingga skema eksplisit dan skema implisit [4]. Metode Crank - Nicholson digunakan untuk mecari solusi dari suatu ditribusi temperatur [5]. Durmin [6] melakukan perbandingan studi perpindahan panas dengan menggunakan metode Crank - Nicholson dan metode beda hingga skema eksplisit. Hasil yang diperoleh dari penelitian tersebut adalah metode Crank Nicholson lebih efektif dalam memperoleh solusi permasalahan perpindahan panas. Penelitian penelitian tersebut mempunyai bentuk persamaan diferensial parsial tipe parabolik. Harijanto [7] mengkaji solusi persamaan Laplace menggunakan beberapa metode numerik, yaitu metode Jacoby, Gauss-Siedel dan SOR dengan 10 titik grid. Jumlah itersai yang dibutuhkan dari masing masing metode tersebut sehingga dapat menacapai galat yang kecil adalah sebesar 361, 361 dan 124. Oleh karena itu, pada artikel ini dicari solusi numerik persamaan Laplace dengan menggunakan metode beda hingga Crank Nicholson. Dalam hal ini akan dibahas tentang langkah langkah untuk memperoleh solusi persamaan Laplace menggunakan metode Cran Nicholson dan juga hasil solusinya terhadap solusi analitiknya. 2 Metode Penelitian Tahapan tahapan yang harus dilakukan untuk memperoleh solusi persamaan Laplace menggunakan metode Cran Nicholson dapat dilihat pada gambar diagram alir berikut : ambar 1 Diagram alir proses analisis numerik persamaan Laplace menggunakan metode Crank - Nicholson

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 322 Diagram alir pada Gambar 1 dapat diuraikan sebagai berikut : a. Kajian pustaka persamaan Laplace dan metode Crank-Nicholson meliputi penentuan persamaan Laplace dan syarat batas yang akan diselesaikan, yaitu : Turunan kedua fungsi u terhadap x dan y dengan pendekatan metode Crank- Nicholson. b. Diskritisasi persamaan Laplace dilakukan dengan mengubah turunan kedua fungsi u terhadap x dan y pada persamaan Laplace kedalam pendekatan metode Crank- Nicholson. c. Pembuatan program dengan menggunakan bantuan software Matlab 7.8.347 bertujuan untuk memudahkan kegiatan simulasi pada tahapan selanjutnya. d. Simulasi lebar grid dilakukan untuk mengetahui pengaruh lebar grid terhadap solusi numerik dari persamaan Laplace menggunakan metode Crank- Nicholson. Lebar grid ditentukan dengan pembagi lebar grid. Pembagi lebar grid domain x adalah m (x) dan pembagi pembagi lebar grid domain y adalah m (y).e. Hasil yang diperoleh dari simulasi pada tahap sebelumnya kemudian dianalisis sehingga dapat diambil suatu kesimpulan. 3 Hasil Penelitian dari persamaan Laplace dengan menggunakan metode Crank-Nicholson ini akan dibandingkan dengan solusi analitinya. analitik persamaan Laplace dengan syarat batas yang digunakan dalam penelitian ini adalah k=1,2,3,... (8) Diskritisasi persamaan Laplace menggunakan metode Crank-Nicholson menghasilkan bentuk persamaan baru sebagai berikut dimana Dengan melakukan perhitungan setiap nilai u (I,j) untuk setiap 1< i < m (x) -1 dan 1< j <

Titis Miranti, et al. Persamaan Laplace... 323 m (y) -1 maka akan diperoleh persamaan persamaan Setelah diperoleh bentuk persamaan persamaan yang menyatakan solusi persamaan Laplace, maka selanjutnya adalah mensubtitusikan syarat batas yang telah ditentukan sebelumnya. Titik - titik yang disebut sebagai syarat batas adalah titik-titik u (i,j) yang mempunyai indeks i = 0, i = m (x), j = 0 dan j = m (y). Dengan melakukan tahapan tersebut dan sedikit memodifikasi bentuk persamaan yang baru maka akan diperoleh bentuk matriks A merupakan sebuah matriks yang memiliki ordo ((m ( x) 1)(m ( y) 1)) ((m ( x) 1)(m ( y) 1)). Isi matriks ini ada koefisien-koefisien dari variabel-variabel yang akan dicari nilainya pada matriks U. Tahapan untuk membuat matriks A adalah sebagai berikut : a. Matriks A merupakan penjumlahan dari 7 matriks yang kesemuanya harus mempunyai ordo yang sama. Misalkan matriks-matriks tersebut adalah matriks A1, A2, A3, A4 A5, A6 dan A7. b. A1 adalah matriks yang pertama berisi koefisien β. Bentuk matriks A1 adalah c. A2 adalah matriks yang berisi nilai 0 dan 1. Matriks A2 dibuat dengan terlebih dahulu membuat matriks kolom yang memiliki ordo ((m (x) -1)*( m (y) -1)-1)*1. Sebagai ketentuannya, semua elemen dari matriks kolom tersebut adalah 1 kecuali pada baris ke m (y) -1 dan kelipatannya bernilai 0. Bentuk dari matriks A2 adalah d. Cara membuat matriks A3 hampir sama dengan matriks A2. Matriks A3 berisi nilai 0 dan y. Bentuk dari matriks A3 adalah

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 324 e. Matriks A4 dan A5 berisi nilai 0 dan α. Perbedaan matriks A4 dan A5 terletak pada letak diagonal elemen α tersebut. Bentuk matriks A4 dan A5 adalah f. Matriks A6 dibuat dengan terlebih dahulu membentuk matriks kolom dengan ordo ((m (x) -2)*( m (y) -1)1)*1. Elemen dari matriks kolom ini adalah α dan 0 dengan ketentuan semua elemen barisnya bernilai α kecuali pada baris pertama dan baris kelipatan m (y) -1 elemennya adalah 0. Bentuk matriks A6 adalah g. Matriks kolom untuk membuat matriks A7 hampir sama dengan matriks kolom untuk membuat matriks A6. Semua elemen baris pada matriks kolom pembuat matriks A7 adalah α kecuali pada baris kelipatan m (y) -1 elemennya adalah 0. Bentuk matriks A7 adalah

Titis Miranti, et al. Persamaan Laplace... 325 h. Jika semua matriks A1, A2, A3, A4 A5, A6 dan A7 telah dibuat maka selanjutnya untuk membuat matriks A adalah dengan menjumlahkan ketujuh matriks tersebut. Sehingga diperoleh matriks A adalah (((m U dan B merupakan sebuah matriks yang memiliki ordo (x) 1)(m (y) 1)) 1). Elemen elemen dari matriks U adalah variabel - variabel yang menjadi solusi dari persamaan Laplace. Sedangkan melemen elemen dari matriks B adalah matriks syarat batas. Bentuk dari matriks U dan matriks B adalah sebagai berikut

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 326 dari persamaan Laplace mempunyai bentuk matriks (A*U) + B = 0. Bentuk Matriks tersebut dapat diselesaikan dengan U = A (-1) (-B) Simulasi dilakukan dengan memberikan lebar grid yang berbeda pada domain x dan y. Adapun beberapa pembagi lebar grid yang digunakan dalam simulasi program ini antara lain adalah 40, 50 dan 60. Simulasi dengan menggunakan pembagi lebar grid sebesar 40 menghasilkan galat sebesar 0,0407%, pembagi lebar grid 50 menghasilkan galat sebesar 0,0327 dan pembagi lebar grid 60 menghasilkan galat sebesar 0,0273%. Galat terkecil dihasilkan dari pembagi lebar grid terbesar, yaitu 60. Berikut adalah hasil plot secara numerik dan analitiknya : Gambar 2 Grafik Persamaan Laplace dengan Lebar Grid dan y = 1/60 (a) Grafik Eksak (b) Grafik solusi Numerik Simulasi juga dilakukan dengan beberapa kombinasi pembagi lebar grid pada domain x dan domain y. Tujuannya adalah untuk mengetahui pengaruh lebar grid terhadap solusi numerik persamaan Laplace. Simulasi ini menggunakan nilai parameter awal (1/2.1/2). Hasil simulasi yang dilakukan disajikan dalam tabel - tabel berikut : Tabel 1 Tabel Hasil simulasi Lebar Grid Domain x Berubah dan Lebar Grid domain y Tetap m (x) Numerik Eksak (a) Selisih Galat Relatif 50 50 0,0500 0,0513 0,0013 0,0238 50 40 0,0497 0,0513 0,0016 0,0312 50 60 0,0502 0,0513 0,0011 0,0214 Tabel 2 Tabel Hasil simulasi Lebar Grid Domain x Tetap dan Lebar Grid domain y Berubah m (x) Numerik Eksak Selisih Galat Relatif 50 50 0,0500 0,0513 0,0013 0,0238 40 50 0,0499 0,0513 0,0014 0,0273 60 50 0,0501 0,0513 0,0012 0,0234 (b)

Titis Miranti, et al. Persamaan Laplace... 327 Tabel 3 Tabel Hasil simulasi Lebar Grid Domain x dan Lebar Grid domain y Berubah m (x) Numerik Eksak Selisih Galat Relatif 40 40 0,0496 0,0513 0,0017 0,0331 40 60 0,0501 0,0513 0,0012 0,0234 60 40 0,0497 0,0513 0,0016 0,0312 60 60 0,0503 0,0513 0,0010 0,0195 Berdasarkan Tabel 1, Tabel 2 dan Tabel 3 dapat dilihat bahwa perubahan lebar grid domain x dan domain y menyebabkan perubahan hasil solusi numerik persamaan Laplace. Perubahan lebar grid ditunjukkan dengan perubahan pembagi lebar grid pada domain x dan domain y. dengan nilai galat yang paling kecil dihasilkan dari pembagi lebar grid paling besar, yaitu sebesar 60. Nilai galat relatif yang dihasilkan sebesar 0,0195. Sedangkan solusi dengan galat paling besar yaitu sebesar 0,0331 dihasilkan dari pembagi lebar grid paling kecil yaitu 40. 4 Kesimpulan Dan Saran numerik terbaik yang diperoleh dari persamaan Lapalce menggunakan metode Crank Nicholson dengan parameter awal U(1/2,1/2) adalah sebesar 0,0503 dan galat relatifnya sebesar 0,0195. Penelitian ini hanya membahas solusi persamaan Laplace dalam koordinat kartesius yang diselesaikan dengan metode Crank-Nicholson. Penelitian selanjutnya dapat dilakukan pembahasan solusi persamaan Laplace dalam koordinat polar dengan menggunakan syarat batas yang lebih bervariatif selain itu juga dapat menggunakan metode-metode numerik lainnya. UCAPAN TERIMAKASIH Penulis mengucapkan terima kasih kepada Bapak Kiswara Agung Santoso, S.Si., M.Kom. dan Bapak Prof. Drs. I Made Tirta, M.Sc., Ph.D. yang telah memberikan kritik dan saran serta masukan dalam penyempurnaan artikel ini. DAFTAR PUSTAKA [1] Sutimin dan Widowati. 2007. Buku Ajar Pemodelan Matematika. Semarang: Jurusan Matematika Fakultas MIPA Universitas Diponegoro. [2] Hidayat, R. 2006. Persamaan Diferensial Parsial. Jember: Jember University Press. [3] Triatmodjo, B. 2002. Metode Numerik. Yogyakarta: Beta Offset

Prosiding Seminar Nasional Matematika, Universitas Jember, 19 November 2014 328 [4] Chapra, S. C. dan Canale, R. P. 2010. Numerical Methods For Engineers, 6nd Edition. New York: McGraw-Hill Companies [5] Sailah, S. 2010. Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank-Nicholson. Jurnal Penelitian Sains FMIPA Universitas Sriwijaya. 13 : 17-22. [6] Durmin. 2013. Studi Perbandingan Perpindahan Panas Menggunakan Metode Beda Hingga dan Crank-Nicholson.[serial online]. http://digilib.its.ac.id/its-paper- 12021140-003535/29484.[8 Juli 2014] [7] Harijanto, A. 1996. Persamaan Lapalce dengan Aproksimasi Finite Difference Menggunakan Metode Iteratif untuk Menentukan Distribusi Potensial Listrik. Tidak Diterbitkan. Laporan Penelitian. Jember: Lembaga Penelitian Universitas Jember. [8] Hamzah, M., Djoko, S., Wahyudi, W. P. dan Budi, S. 2008. Pemodelan Perembesan Air dalam Tanah. Semnas Matematika dan Pendidikan Matematika. 1: 346-353. [9] Munir, R. 1999. Metode Numerik. Bandung: Penetbit ITB