GRAF. V3 e5. V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )}

dokumen-dokumen yang mirip
(Lingkungan Internal MI UNIKOM) UNIVERSITAS KOMPUTER INDONESIA JURUSAN MANAJEMEN INFORMATIKA DISAJIKAN PADA SEMESTER V

BAB II LANDASAN TEORI

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

BAB II LANDASAN TEORI

LOGIKA DAN ALGORITMA

Kode MK/ Matematika Diskrit

Penggunaan Algoritma Dijkstra dalam Penentuan Lintasan Terpendek Graf

Graf. Program Studi Teknik Informatika FTI-ITP

BAB 2 LANDASAN TEORI

Struktur dan Organisasi Data 2 G R A P H

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

Aplikasi Algoritma Dijkstra dalam Pencarian Lintasan Terpendek Graf

BAB 2 LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

BAB II LANDASAN TEORI

Gambar 6. Graf lengkap K n

BAB II LANDASAN TEORI

Bagaimana merepresentasikan struktur berikut? A E

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog: 1.

BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan

BAB II LANDASAN TEORI

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016

BAB 2 LANDASAN TEORITIS

Graph seperti dimaksud diatas, ditulis sebagai G(E,V).

BAB II LANDASAN TEORI. Teori graf dikenal sejak abad ke-18 Masehi. Saat ini teori graf telah

Graph. Politeknik Elektronika Negeri Surabaya

MEMBANDINGKAN KEMANGKUSAN ALGORITMA PRIM DAN ALGORITMA KRUSKAL DALAM PEMECAHAN MASALAH POHON MERENTANG MINIMUM

BAB 2 LANDASAN TEORI

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga.

BAB 2 LANDASAN TEORI

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

BAB I PENDAHULUAN. dirasakan peranannya, terutama pada sektor sistem komunikasi dan

BAB II LANDASAN TEORI

Konsep. Graph adalah suatu diagram yang memuat informasi tertentu. Contoh : Struktur organisasi

G r a f. Pendahuluan. Oleh: Panca Mudjirahardjo. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V).

BAB II KAJIAN PUSTAKA. Sebuah graf G didefinisikan sebagai pasangan himpunan (V,E), dengan V

Pertemuan 11 GRAPH, MATRIK PENYAJIAN GRAPH

Analogi Pembunuhan Berantai Sebagai Graf Dalam Investigasi Kasus

PENGETAHUAN DASAR TEORI GRAF

BAB II LANDASAN TEORI

LATIHAN ALGORITMA-INTEGER

BAB 2 TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI

BAB II LANDASAN TEORI

Matematik tika Di Disk i r t it 2

SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013. Graf Berarah

BAB 2 LANDASAN TEORI

Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas

Sirkuit Euler & Sirkuit Hamilton SISTEM INFORMASI UNIVERSITAS GUNADARMA 2012/2013

BAB II TEORI GRAF DAN PELABELAN GRAF. Dalam bab ini akan diberikan beberapa definisi dan konsep dasar dari

Aplikasi Teori Graf dalam Manajemen Sistem Basis Data Tersebar

Graf. Matematika Diskrit. Materi ke-5

Penggunaan Graf Semi-Hamilton untuk Memecahkan Puzzle The Hands of Time pada Permainan Final Fantasy XIII-2

Aplikasi Shortest Path dengan Menggunakan Graf dalam Kehidupan Sehari-hari

Diktat Algoritma dan Struktur Data 2

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan

PEWARNAAN GRAF SEBAGAI METODE PENJADWALAN KEGIATAN PERKULIAHAN

Pencarian Lintasan Hamilton Terpendek untuk Taktik Safe Full Jungle Clear dalam Permainan League of Legends

Bab 2. Teori Dasar. 2.1 Definisi Graf

Graf dan Pengambilan Rencana Hidup

HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi

STUDI DAN IMPLEMENTASI PERSOALAN LINTASAN TERPENDEK SUATU GRAF DENGAN ALGORITMA DIJKSTRA DAN ALGORITMA BELLMAN-FORD

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kendal.

Permodelan Pohon Merentang Minimum Dengan Menggunakan Algoritma Prim dan Algoritma Kruskal

Matematika Diskret (Graf I) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

BAB II KAJIAN PUSTAKA

APLIKASI GRAF DALAM BISNIS TRAVEL BANDUNG-BOGOR

APLIKASI PEWARNAAN SIMPUL GRAF UNTUK MENGATASI KONFLIK PENJADWALAN MATA KULIAH DI FMIPA UNY

Graf. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.

BAB 2 LANDASAN TEORI

TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB

BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang

I. LANDASAN TEORI. Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

BAB 2 LANDASAN TEORI

Graph. Matematika Informatika 4. Onggo

BAB II LANDASAN TEORI

BAB 2 LANDASAN TEORI

Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio

Penerapan Pewarnaan Graf dalam Pengaturan Penyimpanan Bahan Kimia

Graf. Bahan Kuliah IF2120 Matematika Diskrit. Rinaldi Munir/IF2120 Matematika Diskrit 1

47 Matematika Diskrit BAB IV TEORI GRAF

BAB 2 LANDASAN TEORI

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017

Graf Sosial Aplikasi Graf dalam Pemetaan Sosial

BAB 2 TINJAUAN PUSTAKA

Aplikasi Teori Graf dalam Permainan Instant Insanity

BAB 2 LANDASAN TEORI

Pengaplikasian Graf dalam Pendewasaan Diri

Gambar8.1. Contoh Graf

BAB II LANDASAN TEORI

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Transkripsi:

GRAF Graf G(V,E) didefinisikan sebagai pasangan himpunan (V,E), dengan V adalah himpunan berhingga dan tidak kosong dari simpul-simpul (verteks atau node). Dan E adalah himpunan berhingga dari busur (vertices atau edge). V1 V4 e2 e1 e3 V2 e4 V3 e5 V = {v 1, v 2, v 3, v 4 } E = {e 1, e 2, e 3, e 4, e 5 } E = {(v 1,v 2 ), (v 1,v 2 ), (v 1,v 3 ), (v 2,v 3 ), (v 3,v 3 )} ISTILAH GRAF Gelang (loop) yaitu busur yang berawal dan berakhir pada simpul yang sama. Busur ganda (multiple edge) yaitu suatu busur yang menghubungkan simpul yang sama Ketetanggaan (adjacent) : dua buah simpul dikatakan bertetangga, jika terdapat busur e dengan ujung awal dan akhir adalah v 1 dan v 2. ( e=(v 1,v 2 ) ) Kehadiran (incident) : suatu busur dikatakan hadir pada suatu simpul, jika busur tersebut menghubungkan simpul tersebut. Derajat (degree) yaitu banyaknya busur yang ada pada suatu simpul v. ( d(v) ) Simpul terminal adalah simpul yang berderajat 1 Simpul terpencil adalah simpul yang berderajat 0, dan tidak bertetangga dengan simpul lain. n = V = kardinalitas simpul m = E = kardinalitas busur

MACAM GRAF Graf dapat dikelompokkan menjadi beberapa kategori, yaitu : 1. Graf Kosong (Null graph) Graf kosong adalah graf dengan himpunan busur merupakan himpunan kosong. N 4 2. Graf Sederhana (simple graph) Graf sederhana adalah graf yang tidak mempunyai gelang (loop) dan/atau sisi ganda (multiple edge) Terdapat beberapa macam graf sederhana, yaitu : a) Graf lengkap (complete graph) Graf lengkap adalah graf dengan setiap pasang simpulnya saling bertetangga, dengan jumlah busur (m) = (n.(n-1))/2. K 3 K 4 K 5 b) Graf teratur (regular graph) Graf teratur adalah graf yang semua simpul dalam graf trsebut berderajat sama, dengan jumlah busur (m) = (n.r)/2, dan r adalah nilai derajat simpul.

K 3 K 4 K 5 c) Graf Lintasan (paths) Graf lintasan adalah graf yang bentuknya menyerupai garis lurus, m=n-1. P 4 d) Graf lingkaran (Cycles) Graf lingkaran adalah graf yang bentuknya menyerupai lingkaran, dengan m=n Dinotasikan dengan C n C 2 e) Graf Roda (Wheels) Graf Roda adalah graf lingkaran yang setiap simpulnya dihubungkan dengan simpul di tengah lingkaran. Dinotasikan dengan W n W 6

3. Graf tidak sederhana (unsimple graph) Graf tidak sederhana adalah graf yang mempunyai gelang (loop) dan/atau sisi ganda (multiple edge) 1. Graf Ganda (Multigraph) adalah graf yang mempunyai sisi ganda 2. Graf Semu (Pseudograph) adalah graf yang mempunyai gelang / loop 4. Graf dengan kekhususan tertentu 1. Graf Petersen Graf Petersen adalah graf teratur yang mempunyai derajat simpul 3 pada semua simpulnya. K 4 K 6 2. Graf Planar Graf Planar adalah graf yang dapat digambarkan pada suatu bidang datar dengan busur-busur yang tidak saling memotong. K 4 K 6 3. Graf Bipartite Graf bipartite adalah graf G dengan himpunan simpulnya dapat dibedakan dan dipisahkan menjadi dua himpunan bagian, yaitu V 1 dan V 2, sedemikian sehingga

setiap busur di G menghubungkan ke satu simpul di V 1 ke satu simpul di V 2, dengan kata lain setiap pasang simpul di V 1 tidak bertetangga, dan setiap pasang simpul di V 2 juga tidak bertetangga. Dinotasikan Sebagai G(V 1, V 2 ) K n,m Jika setiap simpul di V 1 bertetangga dengan semua simpul di V 2, maka disebut graf bipartite lengkap (complete bipartite graph) K 2,3 K 2,3 4. Graf Berarah (Directed graph) Graf berarah adalah graf yang semua busurnya mempunyai arah. 5. Graf Berbobot (Weighted graph) Graf berbobot adalah graf yang setiap sisinya diberi sebuah harga (bobot) tertentu. 4 c 7 b d 6 10 4 8 e a

Graf Tidak Sederhana 1. Graf Ganda (multigraph) Graf yang mempunyai sisi ganda 2. Graf Semu (pseudograph) Graf yang mempunyai gelang/loop Representasi Graf dalam bentuk Matriks 1. Matriks Adjacent M simpul x simpul 2. Matriks Incident I simpul x busur Isomorfisma Isomorfik adalah dua buah benda yang sama tetapi secara geometri bersifat berbeda. Dua buah graf G1 dan G2 dikatakan mempunyai isomorfisma (isomorfiks), jika terdapat pemetaan satu-satu antara simpul-simpul di G1 dan simpul-simpul di G2, dan dipenuhinya syarat : (1) jumlah busur masing-masing graf sama, (2) jumlah node masingmasing graf sama, (3) terdapat kesesuaian antara busur-busur di dalam kedua graf tersebut G 1 G 5 G 3 G 2 G 4 G 6

Graf Komplemen Komplemen graf (G c ) adalah suatu graf sederhana dengan simpul yang sama dengan himpunan simpul graf G, dan memenuhi syarat bahwa dua buah simpul di G c bertetangga, jika dan hanya jika kedua simpul tidak bertetangga di G, sehingga G c dan G akan membentuk graf lengkap K 2,3 Komplemen K 2,3 K 2,3 Komplemen K 2,3 LINTASAN Sederetan busur atau simpul atau busur dan simpul secara berselang seling yang membentuk sambungan yang tidak putus pada graf G. Macam Lintasan 1. Lintasan Sederhana Lintasan yang setiap simpul yang dilalui berbeda 2. Lintasan Tertutup Lintasan yang berawal dan berakhir di simpul yang sama 3. Lintasan Terbuka Lintasan yang berawal dan berakhir di simpul berbeda Jalan (walk) adalah sederetan busur-busur yang membentuk sambungan yang tidak putus di G

Lintasan (path) adalah sederetan busur dan simpul berselang-seling dari simpul awal v 0 ke simpul akhir v n, sedemikian sehingga e 1 = (v 0,v 1 ), e 2 = (v 1,v 2 ),, e n =(v n-1,v n ), adalah busur-busur dalam graf. Panjang suatu lintasan adalah banyaknya busur-busur pada jalan tersebut. Penulisan lintasan pada graf sederhana, hanya menuliskan simpul-simpul yang dilalui, sedangkan pada graf dengan sisi ganda, harus menuliskan urutan busur dan simpul secara berselang-seling sesuai dengan jalan yang dilalui. Lintasan sederhana adalah lintasan yang setiap simpul yang dilalui berbeda (atau setiap busur yang dilalui hanya satu kali). Lintasan tertutup (closed path) adalah lintasan yang berawal dan berakhir pada simpul yang sama. Lintasan terbuka (open path) adalah lintasan yang berawal dan berakhir pada simpul yang berbeda. V 5 e 5 V 4 V 5 e 5 V 4 e 1 e 3 e 2 e 6 e 7 e 1 e 3 e 2 e 6 e 7 e 8 V 1 e 8 V 1 V 2 e 4 V 3 V 2 e 4 V 3 G 1 e 9 G 2 Jalan antara v 1 dan v 4 di G 1 : e 3 atau e 1 -e 2 -e 4 -e 7 atau e 1 -e 6 -e 7 Lintasan v 1 dan v 4 di G 1 : e 3 atau e 1 -e 2 -e 4 -e 7 atau e 1 -e 6 -e 7 Lintasan v 1 dan v 4 di G 2 : e 3 atau e 1 -v 5 -e 2 -v 2 -e 4 -e 2 -v 3 -e 7 atau e 1 - v 5 -e 6 -v 3 -e 7 Lintasan sederhana : v 1 - v 5 -v 3 -v 4 Lintasan tertutup : v 1 - v 5 -v 2 -v 3 -v 4 -v 1 Lintasan terbuka : v 1 - v 5 -v 2 -v 3 -v 4 Definisi Keterhubungan dalam graf : Suatu graf G disebut terhubung (connected) apabila setiap pasang simpul sembarang, misal: u dan v, di G mempunyai suatu lintasan dari simpul u menuju simpul v. Lintasan tertutup adalah lintasan dengan simpul awal dan simpul akhir lintasan sama (u=v). Contoh:

V 5 e 5 V 4 V 5 V 4 e 1 e 3 e 2 e 6 e 7 e 1 e 2 e 6 V 1 V 1 V 2 e 4 V 3 V 2 e 4 V 3 G 1 G 2 Graf G 1 adalah graf terhubung, sedangkan G 2 merupakan graf tidak terhubung (disconnected graf) Graf Euler Lintasan Euler adalah lintasan yang melalui masing-masing busur dalam graf tepat satu kali. Bila lintasan tersebut kembali ke simpul asal, membentuk lintasan tertutup, maka lintasan itu dinamakan sirkuit Euler. Graf yang mempunyai sirkuit Euler dinamakan graf Euler, dan graf yang mempunyai lintaan Euler dinamakan graf semi-euler. G 1 G 2 G 3 Graf Hamilton Lintasan Hamilton adalah lintasan yang melalui setiap simpul di dalam graf tepat satu kali. Bila lintasan itu kembali ke simpul awal dan membentuk lintasan tertutup maka disebut sirkuit Hamilton Graf yang memiliki sirkuit Hamilton dinamakan graf Hamilton, sedangkan graf yang memiliki lintasan Hamilton disebut graf semi Hamilton. G 1 G 2 G 3

APLIKASI GRAF MENCARI JARAK TERPENDEK (SHORTEST PATH) Banyak permasalahan transportasi dimodelkan sebagai bentuk graf, yaitu graf yang mempunyai berat ( weighted graf). Kota digambarkan sebagai simpul, hubungan antar kota digambarkan sebagai busur, dan jarak antar kota sebagai berat dari gambar. Algoritma Djikstra Terdapat beberapa algoritma untuk mencari jalur terpendek, diantaranya adalah yang dikemukakan oleh E. Djikstra pada tahun 1959. Algoritma ini digunakan untuk mencari jalur terpendek yang menghubungkan dua buah simpul dalam suatu graf, sehingga sering disebut single pair s shortest path. Langkah-langkah yang digunakan sebagai berikut : a) Iterasi pertama, simpul awal = v i, beri label untuk simpul yang lain, yaitu : 1. Jika simpul v j dengan j { v 1, v 2, v 3,.., v n }terhubung dengan v i oleh suatu busur (v i, v j ), maka label untuk v j = d(v j )= panjang busur tersebut 2. Jika v j tidak terhubung dengan v i maka d(v i ) = b) Iterasi kedua, pilih simpul dengan label minimum dari hasil iterasi pertama sebagai simpul awal, label untuk setiap simpul lain ditentukan dengan membandingkan nilai labelnya dengan jumlah nilai label simpul awal ditambahkan dengan panjang busur antara simpul awal dengan simpul tersebut, atau : d (v k ) = min{d(v k ), d(v j )+a(v j, v k )} dengan v j : simpul awal v k : simpul yang dicari labelnya d (v k) : nilai label yang baru d(v k) : nilai label hasil iterasi sebelumnya d(v j ) : nilai label hasil iterasi sebelumnya a(v j,v k ): panjang busur c) Ulangi iterasi kedua sampai simpul tujuan dipilih sebagai simpul awal.

a 3 4 c 7 b 3 4 2 e d 2 5 f Penyelesaian : Iterasi 1 Posisi awal di simpul a. d(a) = 0, d(b) = 4, d(c) = 3, d(d) = 7, d(e) =, d(f) =, Minimum di c, maka jalur yang didapat (a,c) Iterasi 2 Posisi awal di c d(b) = min {d(b), d(c)+ a(c, b)} = min {4, 3+ } = 4 d(d) = min {d(d), d(c)+ a(c, d)} = min {7, 3+ } = 7 d(e) = min {d(e), d(c)+ a(c, e)} = min {, 3+3} = 6 d(f) = min {d(f), d(c)+ a(c, f)} = min {, 3+ } = Minimum di b, jalur yang didapat (a, b) Iterasi 3 Posisi awal di b d(d) = min {d(d), d(b)+ a(b, d)} = min {7, 4+4} = 7 d(e) = min {d(e), d(b)+ a(b, e)} = min {6, 4+2} = 6 d(f) = min {d(f), d(b)+ a(b, f)} = min {, 4+ } = Minimum di e, jalur yang didapat (b, e) atau (c, e) Iterasi 4 Posisi awal di e d(d) = min {d(d), d(e)+ a(e, d)} = min {7, 6+ } = 7 d(f) = min {d(f), d(e)+ a(e, f)} = min {, 6+5} = 11 Minimum di d, jalur yang didapat (a, d)

Iterasi 5 Posisi awal di d d(f) = min {d(f), d(d)+ a(d, f)} = min {11, 7+2} = 9 Minimum di f, Iterasi dihentikan, jalur yang didapat (d, f) Maka jalur terpendek dari a ke f adalah {(a, d), (d, f)} dengan panjang 9. Algoritma Djikstra Procedure Djikstra (G: berat graf terhubung, dengan semua berat graf positif) {G mempunyai busur a=v0, v1,..,vn dan berat w(vi,vj) =, jika (vi,vj) tidak terhubung dengan busur lain} for i:=1 to n L(vi):= L(a):=0 S:={} {simpul telah diinisialisasi sehingga simpul a adalah kosong dan simpul lainnya adalah, dan S adalah himpunan kosong} while z S begin u:=a simpul tidak ada dalam S dengan L(u) minimal S :=S {u} For semua busur v tidak ada dalam S If L(u)+w(u,v) < L(v) then L(v) :=L(u)+w(u,v) {menambahkan simpul ke S dengan nilai minimal dan mengubah nilai busur yang tidak berada di S} end. {Lz)=panjang dari jalur terpendek dari a ke z} Algoritma Floyd Algoritma yang juga sering digunakan untuk menentukan panjang jalur terpendek untuk setiap pasangan simpul adalah algoritma Floyd, sering disebut dengan all pair s shortest path algoritma. Langkah-langkah dalam algoritma Floyd : a) Setiap simpul diberi nomor dari 1, 2,.., n. Susun matriks D 0 yang masing-masing elemennya menunjukkan panjang busur terpendek yang menghubungkan simpul tersebut. (elemen i, j menunjukkan panjang busur terpendek yang menghubungkan v i dengan v j ). Jika tidak ada busur yang menghubungkan v i dengan v j, maka d 0 ij = dan d 0 ii = 0 b) Lakukan iterasi sebanyak n kali dimana setiap iterasi disusun matrik D m (m {1,2,..,n}) dari matriks D m-1 dengan rumus : d m ij = min{d m-1 ij, d m-1 im + d m-1 mj}

c) Catat setiap jalur yang didapat dari setiap iterasi. Akhiri iterasi setelah m=n, sehingga D n menunjukkan panjang jalur terpendek yang menghubungkan simpul I dengan simpul j. a 3 4 c 7 b 3 4 2 e d 2 5 f Penyelesaian : Iterasi 0 Iterasi 1 Iterasi 2 Matriks d 0 = 0 4 3 7 4 0 4 2 3 0 3 7 4 0 2 2 3 0 5 2 5 0 Matriks d 1 = Matriks d 2 = 0 4 3 7 4 0 7 4 2 3 7 0 10 3 7 4 10 0 2 2 3 0 5 2 5 0 0 4 3 7 6 4 0 7 4 2 3 7 0 10 3 7 4 10 0 6 2 6 2 3 6 0 5 2 5 0

Iterasi 3 Iterasi 4 Iterasi 5 Iterasi 6 Matriks d 3 = Matriks d 4 = Matriks d 5 = Matriks d 6 = 0 4 3 7 6 4 0 7 4 2 3 7 0 10 3 7 4 10 0 6 2 6 2 3 6 0 5 2 5 0 0 4 3 7 6 9 4 0 7 4 2 6 3 7 0 10 3 12 7 4 10 0 6 2 6 2 3 6 0 5 9 6 12 2 5 0 0 4 3 7 6 9 4 0 7 4 2 6 3 7 0 9 3 8 7 4 9 0 6 2 6 2 3 6 0 5 9 6 8 2 5 0 0 4 3 7 6 9 4 0 7 4 2 6 3 7 0 9 3 8 7 4 9 0 6 2 6 2 3 6 0 5 9 6 8 2 5 0