PROBABILITAS BERSYARAT. Dr. Julan Hernadi

dokumen-dokumen yang mirip
BAB V PENGANTAR PROBABILITAS

PEMAHAMAN KONSEP DASAR TEORI PELUANG (suatu koreksi terhadap artikel Mungkinkah memenangkan super deal 2 milyar, penulis : Puji Iryanti)

Hidup penuh dengan ketidakpastian

LOGO STATISTIKA MATEMATIKA I TEORI PELUANG HAZMIRA YOZZA IZZATI RAHMI HG JURUSAN MATEMATIKA UNAND

PENGANTAR MODEL PROBABILITAS

DALIL-DALIL PROBABILITAS

BAB 3 Teori Probabilitas

1.1 Konsep Probabilitas

PERMUTASI, KOMBINASI DAN PELUANG. Kaidah pencacahan membantu dalam memecahkan masalah untuk menghitung

KATA PENGANTAR. Salatiga, Juni Penulis. iii

ATURAN DASAR PROBABILITAS. EvanRamdan

PELUANG KEJADIAN MAJEMUK

Probabilitas dan Proses Stokastik

STATISTIK INDUSTRI 1. Agustina Eunike, ST., MT., MBA

Distribusi Probabilitas Diskrit: Binomial, Multinomial, & Binomial Negatif

Teori Probabilitas 3.2. Debrina Puspita Andriani /

KONSEP DASAR PROBABILITAS

Definisi 1.1: Jika S dan A adalah himpunan semua kejadian tertentu yang memenuhi, maka

Probabilitas dan Proses Stokastik

STATISTIK II MODUL Oleh. Drs.Hasanuddin Pasiama, MSi PROGRAM KELAS KARYAWAN FAKULTAS EKONOMI UNIVERSITAS MERCU BUANA JAKARTA 2007

Peluang. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas LOGO

Probabilitas. Oleh Azimmatul Ihwah

Pertemuan 2. Hukum Probabilitas

Pertemuan Ke-1 BAB I PROBABILITAS

TEORI PROBABILITAS. Amir Hidayatulloh, S.E., M.Sc Prodi Akuntansi Fakultas Ekonomi dan Bisnis Universitas Ahmad Dahlan

Statistika Farmasi

BAB 2 LANDASAN TEORI. Definisi 1 Himpunan semua hasil yang mungkin dari suatu percobaan disebut ruang sampel dan dinyatakan dengan S.

Teori Probabilitas. Debrina Puspita Andriani /

Materi #2 TIN315 Pemeliharaan dan Rekayasa Keandalan Genap 2015/2016

SOAL-SOAL LATIHAN PELUANG UJIAN NASIONAL

Kaidah Bayes dan Kejadian Bebas

Pengantar Proses Stokastik

TEORI PROBABILITAS 1

1. 10 orang finalis suatu lomba kecantikan akan dipilih secara acak 3 yang terbaik. Banyak cara pemilihan tersebut ada cara.

Peluang Aturan Perkalian, Permutasi, dan Kombinasi dalam Pemecahan Masalah Ruang Sampel Suatu Percobaan Peluang Suatu Kejadian dan Penafsirannya

Beberapa Hukum Peluang. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Pert 3 PROBABILITAS. Rekyan Regasari MP

Ruang Sampel, Titik Sampel dan Kejadian

TEORI PROBABILITAS (TEORI KEMUNGKINAN)

Peluang Bersyarat dan Kejadian Bebas

MATERI BAB I RUANG SAMPEL DAN KEJADIAN. A. Pendahuluan Dari jaman dulu sampai sekarang orang sering berhadapan dengan peluang.

BAB II PROBABILITAS Ruang sampel (sample space)

Definisi Peluang bersyarat A bila B diketahui dilambangkan dengan P(A B) dan didefinisikan sebagai, P(B) > 0

TEORI KEMUNGKINAN (PROBABILITAS)

BAB 2 PELUANG RINGKASAN MATERI

SOAL-JAWAB MATEMATIKA PELUANG

Ruang Sampel dan Kejadian

PELUANG. Permutasi dengan beberapa elemen yang sama: Dari n obyek terdapat n

Nilai Probabilitas berkisar antara 0 dan 1.

Aksioma Peluang. Bab Ruang Contoh

Pertemuan 1 KONSEP DASAR PROBABILITAS

Probabilitas suatu peristiwa adalah harga angka yang menunjukkan seberapa besar kemungkinan suatu peristiwa terjadi.

BAB V TEORI PROBABILITAS

ALJABAR SET & AKSIOMA PROBABILITAS

Eksperimen Hasil Kejadian KONSEP PROBABILITAS

Bab 5 Distribusi Sampling

Metode Statistika STK211/ 3(2-3)

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 1. PELUANG

STATISTIKA MATEMATIKA

KONSEP DASAR PROBABILITAS

Distribusi Probabilitas Diskrit: Binomial & Multinomial

Sekoin uang logam mempunyai dua permukaan H dan T dilemparkan berkali kali. Hasil yg diperoleh pada setiap pelemparan apakah H atau T di catat Hasil

Probabilitas dan Statistika Ruang Sampel. Adam Hendra Brata

Bab 3 Pengantar teori Peluang

Probabilitas. Tujuan Pembelajaran

MODUL PELUANG MATEMATIKA SMA KELAS XI

Perumusan Probabilitas Kejadian Majemuk S S A B A B Maka banyak anggota himpunan gabungan A dan B adalah : n(a n(a B) = n(a) + n(b) n(a n(a B) Kejadia

MATERI KULIAH STATISTIKA I PROBABLITAS. (Nuryanto, ST., MT)

Distribusi Peluang. Maka peubah acak X dinyatakan dengan banyaknya kemunculan angka. angka sama sekali. angka.

Peubah Acak. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Pembahasan Contoh Soal PELUANG

peluang Contoh 6.1 Ali mempunyai 2 celana dan 3 baju yang berbeda. Berapa stelan celana dan baju berbeda yang dipunyai Ali? Matematika Dasar Page 46

WORKSHOP PEMBIMBINGAN OLIMPIADE MATEMATIKA & SAINS BIDANG MATEMATIKA SMP

BIMBINGAN BELAJAR GEMILANG

Statistika & Probabilitas. Sumber: Materi Kuliah Statistika Dr. Ir. Rinaldi Munir, M.T

Probabilitas dan Proses Stokastik

Probabilitas. Oleh Azimmatul Ihwah

PELUANG. Standar kompetensi : Menggunakan aturan statistika, kaidah, pencacahan, dan sifatsifat peluang dalam pemecahan masalah

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252.

LEMBAR AKTIVITAS SISWA PELUANG

Unit 5 PELUANG. Clara Ika Sari Budhayanti. Pendahuluan

, n(a) banyaknya kejadian A dan n(s) banyaknya ruang sampel

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

LAMPIRAN X BAHAN AJAR

Konsep Dasar Peluang. Modul 1

RUANG SAMPEL DAN KEJADIAN TI2131 TEORI PROBABILITAS MINGGU KE-2

Probabilitas metode ilmiah yang dikembangkan untuk menyelesaikan persoalan yang berhubungan dengan ketidakpastian (uncertaint).

Probabilitas dan Statistika Variabel Acak dan Fungsi Distribusi Peluang Diskrit. Adam Hendra Brata

PROBABILITAS BERSYARAT

Probabilitas & Teorema Bayes

Pendekatan Terhadap Probabilitas

Kompetens n i s : Mahasiswa mam a pu p menjel enj a el s a ka k n gejala ekonomi dengan meng guna k n a konsep probabil i i l t i as

Pengantar Proses Stokastik

Pembahasan OSN SMP Tingkat Nasional Tahun 2012 Bidang Matematika

PROBABILITAS (2) Bernardus Budi Hartono. Teknik Informatika [Gasal ] FTI - Universitas Stikubank Semarang

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan

Pengantar Proses Stokastik

INF-104 Matematika Diskrit

PENCACAHAN RUANG SAMPEL

AMIYELLA ENDISTA. Website : BioStatistik

Transkripsi:

1 PROBABILITAS BERSYARAT Dr. Julan Hernadi 1 Pendahuluan Tujuan utama dari pemodelan probabilitas adalah untuk menentukan bagaimana kecenderungan suatu kejadian A muncul bila kita melakukan percobaan. Dalam banyak kasus, probabilitas terjadinya kejadian A dipengaruhi oleh terjadi atau takterjadinya kejadian B. Keadaaan seperti ini memunculkan istilah probabilitas bersyarat A yang diberikan oleh B. Untuk lebih jelasnya, kita perhatikan contoh berikut : Contoh 1 Misalkan suatu kotak memuat 100 bola lampu, sebagian berasal dari pabrik I dan sebagian lainnya berasal dari pabrik II. Bola pada kotak ini sebagian rusak dan sebagian lainnya bagus. Misalkan isi kotak tersebut disajikan dalam tabel berikut : Pabrik I (B) Pabrik II (B ) Total Rusak (A) 15 5 20 Bagus (A ) 45 35 80 Total 60 40 100 Misalkan kita ambil satu bola lampu secara acak dari kotak, berapa probabilitas bahwa bola tersebut rusak dengan syarat ia berasal dari Pabrik I. Misalkan A kejadian terambil bola lampu yang rusak, dan B kejadian mengambil bola lampu dari pabrik I. Karena bola lampu yang rusak diberikan oleh pabrik I maka cukup diperhatikan kolom kedua, yaitu probabilitas bersyarat kejadian A yang diberikan oleh B adalah : P (A B) = n(a B) n(b) = 15 60 = 0.25. Jurusan Matematika FMIPA UAD, Yogyakarta, e-mail : julan hernadi@yahoo.com

2 Bila penyebut dan pembilang pecahan ini semuanya dibagi total bola lampu n(s) maka probabilitas bersayarat ini menjadi P (A B) = n(a B)/n(S) n(b)/n(s) = P (A B). P (B) Definisi 1.1. Probabilitas bersyarat suatu kejadian A yang diberikan oleh kejadian B didefinisikan sebagai P (A B) P (A B) = (1.1) P (B) asalkan P (B) 0. Sifat-sifat probabilitas bersyarat 1. Bila A 1 dan A 2 dua kejadian yang saling asing maka P (A 1 A 2 B) = P (A 1 B) + P (A 2 B). 2. Bila A menyatakan kejadian bukan A maka P (A B) = 1 P (A B). 3. Bila A 1 dan A 2 dua kejadian sebarang maka P (A 1 A 2 B) = P (A 1 B) + P (A 2 B) P (A 1 A 2 B). 4. Untuk dua kejadian A dan B berlaku P (A B) = P (B)P (A B) = P (A)P (B A). Latihan 1: Sifat 4 ini disebut Teorema perkalian probabilitas. Tunjukkan kebenaran sifat ini untuk diterapkan pada contoh 1 di atas. Contoh 2 Dua kartu diambil berturut-turut dari tumpukan kartu bricks tanpa pengembalian. Misalkan A 1 menyatakan kejadian mendapatkan As pada pengambilan pertama, dan A 2 menyatakan kejadian mendapatkan As pada pengambilan kedua. Berapakah probabilitas bahwa mendapatkan As pada pengambilan kedua dengan syarat As sudah diperoleh pada pengambilan pertama. Dengan menggunakan prinsip perkalian pada banyak cara pengambilan kartu tanpa pengulangan maka diperoleh : P (A 2 A 1 ) = P (A 1 A 2 ) P (A 1 ) = (4 3)/(52 51) (4 51)/(52 51) = 3 51.

3 2 Total probabilitas dan aturan Bayes Kejadian B 1, B 2,, B n dikatakan saling asing dan lengkap (exclusive and exhaustive) jika 1. B j B k = 2. B 1 B 2 B n = S, dengan S adalah semesta himpunan. Bila kita mempunyai sederetan kejadian yang saling asing dan lengkap maka sebarang kejadian A dapat dipartisi sebagai berikut A = (A B 1 ) (A B 2 ) (A B n ). Karena itulah tercipta teorema probabilitas total berikut. Teorema 2.1 (Hukum probabilitas total). Jika B 1, B 2,, B n kumpulan kejadian yang saling asing dan lengkap maka untuk sebarang kejadian A, berlaku P (A) = n P (B k )P (A B k ). k=1 Contoh 3: Kembali ke contoh 1, misalkan pabrik I mempunyai dua shift operasi dan bola lampu yang dihasilkan dapat dikategorikan berdasarkan shift yang memproduksinya. Misalkan B 1 : kejadian bahwa bola lampu diproduksi oleh pabrik I pada shift pertama. B 2 : kejadian bahwa bola lampu diproduksi oleh pabrik I pada shift kedua. B 3 : kejadian bahwa bola lampu diproduksi oleh pabrik II. Seperti biasa, A adalah kejadian mendapatkan bola lampu yang rusak. Data yang diketahui terdapat pada tabel berikut B 1 B 2 B 3 Total Rusak (A) 5 10 5 20 Bagus (A ) 20 25 35 80 Total 25 35 40 100 Hitunglah P (A) dengan menggunakan hukum probabilitas total.

4 Berdasarkan tabel ini banyak probabilitas yang dapat dihitung, diantaranya P (B 1 ) = 25/100, P (B 2 ) = 35/100, P (B 3 ) = 40/100, P (A B 1 ) = 5/25, P (A B 2 ) = 10/35, P (A B 3 ) = 5/40. Jelaslah bahwa B 1, B 2 dan B 3 adalah tiga kejadian yang saling asing dan lengkap. Dengan teorema diatas maka diperoleh : P (A) = P (B 1 )P (A B 1 ) + P (B 2 )P (A B 2 ) + P (B 3 )P (A B 3 ) ( ) ( ) ( ) ( ) ( ) ( ) 25 5 35 10 40 5 = + + 100 25 100 35 100 40 = 0.05 + 0.10 + 0.05 = 0.20 Latihan 2: Misalkan bola lampu seperti pada contoh diatas terdapat dalam 3 buah kotak terpisah. Kotak 1 memuat 25 bola dari shift pertama, kotak 2 memuat 35 bola lampu dari shift kedua dan kotak 3 memuat sisanya yaitu 40 bola dari pabrik II. Kotak 1, 2 dan 3 masing-masing memuat 5, 10 dan 5 bola lampu yang rusak. Eksperimennya adalah memilih kotak secara random, kemudian mengambil 1 bola lampu. Hitunglah probabilitas bahwa lampu yang terambil rusak. Teorema 2.2 (Aturan Bayes). Jika B 1, B 2,, B n kumpulan kejadian yang saling asing dan lengkap maka untuk tiap j = 1, 2,, n berlaku P (B j A) = P (B j )P (A B j ) n k=1 P (B k)p (A B k ) Contoh 4 Kembali ke contoh sebelumnya, bila bola yang terambil ternyata rusak, berapa probabilitasnya bahwa ia berasal dari kotak 1. Disini kita perlu mendefinisikan kejadian B 1, B 2 dan B 3 sebagai kejadian terambil dari kotak 1, kotak 2 dan kotak 3. Jadi P (B 1 ) = P (B 2 ) = P (B 3 ) = 1/3. Selanjutnya, ini adalah masalah probabilitas bersyarat, tepatnya kita diminta untuk menghitung P (B 1 A). Dengan menggunakan aturan Bayes diatas maka diperoleh P (B 1 A) = P (B 1 )P (A B 1 ) P (B 1 )P (A B 1 ) + P (B 2 )P (A B 2 ) + P (B 3 )P (A B 3 ) = (1/3)(5/25) (1/3)(5/25) + (1/3)(10/35) + (1/3)(5/40) = 56 171 = 0.327.

5 Latihan 3: Melanjutkan contoh yang baru saja dibahas, Hitunglah probabilitas bahwa ia berasal dari kotak 2, kotak 3. Latihan 4: Misalkan seseorang berjalan berangkat dari titik O memilih secara random tiga lintasan B 1, B 2 dan B 3. Dari titik itu ia melanjutkan perjalanan dengan memilih cabang lintasan yang baru. Lintasan B 1 mempunyai 4 cabang A 1, A 2, A 3 dan A 4. Lintasan B 2 mempunyai 2 cabang A 4 dan A 5. Lintasan B 3 mempunyai cabang A 6 dan A 7. Pertanyaannya : 1. Beberapa probabilitas bahwa orang tersebut akan sampai di A 4. 2. Beberapa probabilitas bahwa orang tersebut akan sampai di A 4 berasal dari lintasan B 1. 3 Kejadian Independen Terjadinya kejadian A tidak mempengaruhi probabilitas kejadian B, dapat ditulis sebagai P (B A) = P (B). Dengan keadaan ini maka berdasarkan sifat probabiltas bersayat (sifat 4) diatas berlaku P (A B) = P (A)P (B A) = P (A)P (B). Keadaan seperti ini mengahsilkan definisi berikut. Definisi 3.1. Dua kejadian A dan B dikatakan saling bebas (independent) jika P (A B) = P (A)P (B). Bila keadaan ini tidak dipenuhi maka A dan B disebut saling bergantung. Dari definisi dua kejadian independen ini, kita peroleh syarat perlu dan cukup agar dua kejadian A dan B dengan P (A) > 0 dan P (B) > 0 saling bebas, yaitu cukup salah satu relasi berikut dipenuhi P (A B) = P (A) atau P (B A) = P (B). Biasanya ada kebingungan dalam membedakan dua kejadian saling asing dan dua kejadian saling bebas. Keduanya istilah ini sesungguhnya sangat berbeda. Bila A dan B saling asing (mutually exclusive) selalu memenuhi : P (A B) = 0 dan P (B A) = 0 walaupun P (A) > 0 dan P (B) > 0. Tentunya sangat berbeda dengan dua kejadian saling bebas (independent).

Contoh 5 Suatu sistem terdiri dari beberapa komponen yang dipadukan satu sama lainnya secara seri. Bila diasumsikan kerusakan komponen yang satu tidak berpengaruh terhadap kerusakan komponen lainnya maka dikatakan kerusakan komponen yang satu indpenden terhadap kerusakan komponen lainnya. Lebih spesifik, misalkan suatu sistem terdiri dari dua komponen dipasang seri, C 1 dan C 2 bayangkan dua buah bateri yang digunakan untuk menyalakan bolam. Jika A 1 kejadian C 1 rusak, dan A 2 kejadian C 2 rusak. Selanjutnya, suatu sistem dikatakan rusak jika A 1 A 2. Bila diasumsikan P (A 1 ) = 0.1 dan P (A 2 ) = 0.2, berapakah probabilitas bahwa sistem akan bekerja normal. P (A 1 A 2 ) = P (A 1 ) + P (A 2 ) P (A 1 A 2 ) = P (A 1 ) + P (A 2 ) P (A 1 )P (A 2 ) = 0.1 + 0.2 (0.1)(0.2) = 0.28. Jadi probabilitas sistem berjalan normal adalah 1 0.28 = 0.72. Latihan 5 : Kembali ke contoh sebelumnya, sistem yang dipasang paralel dikatakan rusak jika A 1 dan A 2 terjadi bersamaan. Berapa probabilitas bahwa sistem tersebut akan berjalan normal. Sifat kejadian independen 1. Bila A dan B dua kejadian yang independen maka bengitu juga dengan A dan B, A dan B, A dan B. 2. Definisi kejadian independen dapat diperluas untuk sebanyak berhingga kejadian yang disebut mutually independent. Khususnya, untuk tiga kejadian A, B dan C dikatakan independen jika dipenuhi P (A B) = P (A)P (B), P (A C) = P (A)P (C), P (B C) = P (B)P (C), P (A B C) = P (A)P (B)P (C). Contoh 6: Suatu kotak memuat 8 tiket, masing-masing diberi label bilangan binair. Dua tiket diberi label 111, dua tiket diberi label 100, dua 010 dan dua lagi 001. Suatu eksperimen dilakukan dengan menarik 1 tiket dari kotak secara acak. Didefinsikan kejadian berikut : A : digit pertama adalah 1 6

7 B : digit kedua adalah 1 C : digit ketiga adalah 1 Dari ketiga kejadian ini, kejadian mana saja yang saling independen. Apakah ketiganya mutually independent. Kita tampilkan kartu-kartu tersebut : Diperoleh, 111 100 010 001 111 100 010 001 P (A) = P (B) = P (C) = 4/8 = 1/2. P (A B) = P (A C) = P (B C) = 2/8 = 1/4. Jadi A, B dan C merupakan pasangan-pasangan yang saling independen. Tetapi dikarenakan P (A B C) = 2 8 = 1 4 1 8 = P (A)P (B)P (C) maka ketiganya tidak mutually independent. 4 SOAL-SOAL LATIHAN 1. Dua kartu diambil dari tumpukan kartu tanpa pengembalian. Berapa probabilitas bahwa kartu kedua jantung, diberikan oleh kartu pertama jantung. 2. Suatu kotak memuat 5 bola hijau, 3 bola hitam dan 7 bola merah. Dua bola diambil secara random tanpa pengembalian. Berapa probabilitas bahwa kedua bola mempunyai warna yang sama. 3. Sebuah kantong memuat 3 koin, salah satunya mempunyai dua muka pada kedua sisinya, sedangkan yang lainnya normal. Sebuah koin dipilih secara random dan dilempar sebanyak 3 kali. a. Hitunglah probabilitas memperoleh 3 muka. b. Jika muka muncul terus pada semua lemparan, berapa probabilitasnya bahwa koin ini adalah koin dua muka. 4. Pada pabrik pembuatan baut, mesin 1, mesin 2 dan mesin 3 masingmasing memproduksi 20%, 30% dan 50% dari total produksi. Dari total produksi tersebut, baut yang rusak dari ketiga mesin tersebut adalah 5%, 3% dan 2%. Sebuah baut dipilih secara acak,

8 a. Berapa probalitas bahwa baut itu rusak. b. Diberikan bahwa baut tersebut rusak, berapa probabilitasnya bahwa ia berasal dari mesin 1 5. Diketahui P (A) = 0.4 dan P (A B) = 0.6. Berapakah nilai P (B) agar a. Keduanya saling asing (mutually exclusive). b. Keduanya saling asing (independent). 6. Tiga komponen yang independen dipadukan dalam sebuah rangkaian paralel. Tiap-tiap komponen mempunyai probabilitas rusak p. Berapa probabilitas bahwa sistem tersebut berjalan normal. 7. Suatu sistem terdiri dari 5 komponen yang dibagi dalam dua blok. Blok pertama memuat dua komponen paralel dengan probabilitas rusak 0.1 dan 0.2. Blok kedua terdiri dari tiga komponen paralel dengan probabilitas rusak 0.1, 0.2 dan 0.3. Kedua blok ini dihubungkan secara seri. Berapa probabilitas sistem ini bekerja normal.