KINETIKA PELARUTAN ITRIUM HIDROKSIDA DALAM HCl

dokumen-dokumen yang mirip
KINETIKA REAKSI PEMBUATAN KALSIUM KARBONAT DARI LIMBAH PUPUK ZA DENGAN PROSES SODA. Suprihatin, Ambarita R.

kimia LAJU REAKSI 1 TUJUAN PEMBELAJARAN

KAJIAN KINETIKA KIMIA MODEL MATEMATIK REDUKSI KADMIUM MELALUI LAJU REAKSI, KONSTANTE DAN ORDE REAKSI DALAM PROSES ELEKTROKIMIA ABSTRAK ABSTRACT

EKSTRAKSI Th, La, Ce DAN Nd DARI KONSENTRAT Th LOGAM TANAH JARANG HASIL OLAH PASIR MONASIT MEMAKAI TBP

Kunci jawaban dan pembahasan soal laju reaksi

KINETIKA & LAJU REAKSI

c. Suhu atau Temperatur

Kinetika Kimia. Abdul Wahid Surhim

Laporan Kimia Fisik KI-3141

FRAKSINASI DAN PENINGKATAN KADAR La SECARA PENGENDAPAN

BAB VI KINETIKA REAKSI KIMIA

Jason Mandela's Lab Report

MODUL LAJU REAKSI. Laju reaksi _ 2013 Page 1

KINETIKA REAKSI Kimia Fisik Pangan

KINETIKA & LAJU REAKSI

Termodinamika apakah suatu reaksi dapat terjadi? Kinetika Seberapa cepat suatu reaksi berlangsung?

PEMBUATAN OKSIDA LOGAM TANAH JARANG DARI UMPAN HASIL DIJESTI PASIR SENOTIM DENGAN CARA PENGENDAPAN DAN KALSINASI

KINETIKA REAKSI HIDROLISA PATI DARI KULIT NANGKA DENGAN KATALISATOR ASAM CHLORIDA MENGGUNAKAN TANGKI BERPENGADUK

LAPORAN PRAKTIKUM DINAMIKA KIMIA JUDUL PERCOBAAN : PENENTUAN LAJU REAKSI IODINASI ASETON DALAM SUASANA ASAM. Nama : SantiNurAini NRP :

Perubahan kimia secara sederhana ditulis dalam persamaan reaksi dengan kondisi kesetimbangan

Laju Reaksi KIM 2 A. KEMOLARAN B. LAJU REAKSI C. UNGKAPAN LAJU REAKSI LAJU REAKSI. materi78.co.nr

HUBUNGAN ANTARA KONSENTRASI DAN TEMPERATUR TERHADAP LAJU REAKSI DAN NILAI ENERGI AKTIFASI

PENGARUH HNO 3 DAN TINGKAT EKSTRAKSI PADA PENINGKATAN Ce DALAM KONSENTRAT CERI HIDROKSIDA MEMAKAI TBP

Bab 10 Kinetika Kimia

PENGARUH HNO 3 DAN KBrO 3 PADA PEMBUATAN KONSENTRAT Ce, La DAN Nd DARI PASIR MONASIT

tanya-tanya.com Soal No.2 Apabila anda diminta untuk mengukur laju reaksi terhadap reaksi : Zn(s) + 2HCI(aq)

A. MOLARITAS (M) B. KONSEP LAJU REAKSI C. PERSAMAAN LAJU REAKSI D. TEORI TUMBUKAN E. FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU REAKSI

SOAL LAJU REAKSI. Mol CaCO 3 = = 0.25 mol = 25. m Mr

Sulistyani, M.Si.

PEMBUATAN PUPUK KALIUM DARI EKSTRAK ABU PELEPAH BATANG PISANG, BELERANG DAN UDARA

Purwanti Widhy H, M.Pd. Laju Reaksi

wanibesak.wordpress.com

PENGARUH GARAM Al(NO 3 ) 3 TERHADAP EKSTRAKSI ITRIUM DARI KONSENTRAT LOGAM TANAH JARANG

LEMBAR KERJA SISWA 4

Faktor-faktor yang Mempengaruhi Laju Reaksi

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Perumusan Masalah

KINETIKA REAKSI PEMBENTUKAN KALIUM SULFAT DARI EKSTRAK ABU JERAMI PADI DENGAN ASAM SULFAT

KINETIKA REAKSI HIDROLISIS ENCENG GONDOK MENJADI FURFURAL DENGAN KATALISATOR HCL

Kinetika kimia. Shinta Rosalia Dewi

BY SMAN 16 SURABAYA : Sri Utami, S. P LAJU REAKSI KESIMPULAN

Laporan Praktikum Kimia Laju Reaksi

Laporan Resmi Praktikum Kimia Fisika III Inversi Gula

LAPORAN PRAKTIKUM KIMIA FISIKA PERSAMAAN ARRHENIUS DAN ENERGI AKTIVASI

KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI

PENGARUH HNO 3 DAN TINGKAT EKSTRAKSI PADA PENINGKATAN Ce DALAM KONSENTRAT CERI HIDROKSIDA MEMAKAI TBP

PERCOBAAN 3 PERSAMAAN ARRHENIUS DAN ENERGI AKTIVASI

Esterifikasi Asam Lemak Bebas Dari Minyak Goreng Bekas

KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI

LAPORAN PRAKTIKUM KIMIA DASAR

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas

Simposium Nasional Teknologi Terapan (SNTT) 2013 ISSN X PEMODELAN KINETIKA REAKSI PROSES SULFONASI LIGNIN MENJADI NATRIUM LIGNOSULFONAT

EKSTRAKSI BERTINGKAT PEMISAHAN Th DAN Nd DARI KONSENTRAT Th-LTJ OKSALAT HASIL OLAH PASIR MONASIT MENGGUNAKAN TBP

KESETIMBANGAN KIMIA A. Pendahuluan 1. Latar Belakang Keadaan setimbang adalah suatu keadaaan dimana konsentrasi seluruh zat tidak lagi mengalami

Waktu (t) Gambar 3.1 Grafik hubungan perubahan konsentrasi terhadap waktu

ADLN - PERPUSTAKAAN UNIVERSITAS AIRLANGGA

KINETIKA REAKSI ISOMERISASI EUGENOL

Gambar 2.1 Reaksi Saponifikasi tripalmitin

PETA KONSEP LAJU REAKSI. Percobaan. Waktu perubahan. Hasil reaksi. Pereaksi. Katalis. Suhu pereaksi. Konsentrasi. Luas. permukaan.

LAPORAN PERSAMAAN ARRHENIUS DAN ENERGI AKTIVASI

BAB II DASAR TEORI. FeO. CO Fe CO 2. Fe 3 O 4. Fe 2 O 3. Gambar 2.1. Skema arah pergerakan gas CO dan reduksi

PENGARUH ph DAN TEGANGAN PADA PEMBUATAN SERBUK ITRIUM DARI KONSENTRAT ITRIUM HASIL PROSES PASIR SENOTIM DENGAN ELEKTROLISIS

Lembaran Pengesahan KINETIKA ADSORBSI OLEH: KELOMPOK II. Darussalam, 03 Desember 2015 Mengetahui Asisten. (Asisten)

BAB 9. KINETIKA KIMIA

KELARUTAN SEBAGAI FUNGSI TEMPERATUR

HASIL DAN PEMBAHASAN

KINETIKA REAKSI Kimia Fisik Pangan

Bahasan: Mempelajari kecepatan/laju reaksi suatu proses/perubahan kimia. reaksi berlangsung mekanisme reaksi

II. PEMILIHAN DAN URAIAN PROSES

Laboratorium Kimia SMA... Praktikum II Kelas XI IPA Semester I Tahun Pelajaran.../...

JURNAL PRAKTIKUM KIMIA LAJU REAKSI 24 MARET 2014

LAJU REAKSI MEKANISME REAKSI

Hubungan koefisien dalam persamaan reaksi dengan hitungan

Praktikum Kimia Fisika II Hidrolisis Etil Asetat dalam Suasana Asam Lemah & Asam Kuat

LAPORAN PRAKTIKUM KIMIA FISIK KI3141 PERCOBAAN M-2 PENENTUAN ORDE REAKSI DAN TETAPAN LAJU REAKSI. : Ricky Iqbal Syahrudin.

Jason Mandela's Lab Report

DIGESTI MONASIT BANGKA DENGAN ASAM SULFAT

Laju Reaksi. Bahan Ajar Mata Pelajaran Kimia Kelas XI Semester I

LAPORAN PRAKTIKUM KIMIA ANORGANIK 1 PEMISAHAN KOMPONEN DARI CAMPURAN 11 NOVEMBER 2014 SEPTIA MARISA ABSTRAK

PENGARUH KONSENTRASI KATALIS ASAM DAN KECEPATAN PENGADUKAN PADA HIDROLISIS SELULOSA DARI AMPAS BATANG SORGUM MANIS

PENINGKATAN KADAR NEODIMIUM SECARA PROSES PENGENDAPAN BERTINGKAT MEMAKAI AMONIA

OPTIMASI PROSES PEMBUATAN OKSIDA LOGAM TANAH JARANG DARI PASIR SENOTIM DAN ANALISIS PRODUK DENGAN SPEKTROMETER PENDAR SINAR-X

Kinetika Reaksi Homogen Sistem Reaktor Alir (Kontinyu)

Pengaruh Suhu Q10. Dhadhang Wahyu Kurniawan Laboratorium Farmasetika Unsoed

BAB IV HASIL DAN PEMBAHASAN

BAB II KAJIAN PUSTAKA. kemampuan adalah karakteristik yang menonjol dari seorang individu yang

PERSAMAAN DIFERENSIAL BIASA ORDE SATU

DIJESTI TORIUM PIROFOSFAT MENJADI TORIUM HIDROKSIDA

PEMILIHAN SOLVEN UNTUK EKSTRAKSI KONSENTRAT La HASIL OLAH PASIR MONASIT

WUJUD ZAT (GAS) Gaya tarik menarik antar partikel sangat kecil

Eksplorium ISSN Volume 32 No. 2, November 2011:

MENYARING DAN MENDEKANTASI

KESETIMBANGAN. titik setimbang

MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK PANGAN

BAB 8. Jika Anda memasukkan satu sendok gula ke dalam segelas air, kemudian Anda. Kelarutan Garam Sukar Larut. Kata Kunci.

BAB I PENDAHULUAN. 1.1 Latar Belakang

MODUL I Pembuatan Larutan

B T A CH C H R EAC EA T C OR

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Paguyaman yang berhubungan dengan materi laju reaksi diberikan dalam Tabel 2 berikut.

MODUL II KESETIMBANGAN KIMIA

LAPORAN V KELARUTAN DAN KOEFISIEN AKTIVITAS ELEKTROLIT KUAT

Transkripsi:

J. Iptek Nuklir Ganendra Vol. 14 No. 1 Januari 211 (28 38) ISSN 141-6957 KINETIKA PELARUTAN ITRIUM HIDROKSIDA DALAM HCl MV Purwani, Suyanti Pusat Teknologi Akselerator dan Proses Bahan BATAN Yogyakarta Jl Babarsari Kotak Pos 611 ykbb, Yogyakarta 55281 Diterima 3 September 21, diterima dalam bentuk perbaikan 23 November 21, disetujui 3 November 21 ABSTRAK KINETIKA PELARUTAN ITRIUM HIDROKSIDA DALAM HCl. Telah dilakukan penelitian pelarutan konsentrat logam tanah jarang hidroksida dari pasir senotim dalam HCl. Kandungan Itrium hidroksida yang paling banyak dalam konsentrat logam tanah jarang hidroksida hasil olah pasir senotim. Tujuan penelitian ini untuk mengetahui konstante kecepatan reaksi pelarutan itrium hidroksida dalam HCl. Parameter yang diteliti adalah suhu reaksi dan konsentrasi Y (Y ) dalam konsentrat logam tanah jarang hidroksida sebagai umpan. Dari data hubungan waktu dengan konsentrasi Y dalam HCl (Y) pada berbagai variasi suhu dan konsentrasi dapat disimpulkan bahwa konstanta kecepatan reaksi sangat dipengaruhi suhu dan konsentrasi pereaksi. Reaksi pelarutan keseluruhan Itrium hidroksida dalam konsentrat logam tanah jarang hidroksida hasil olah pasir senotim memakai HCl merupakan reaksi orde dua. Hubungan konstanta kecepatan orde dua (k) dengan suhu (1/T) merupakan fungsi eksponensial sehingga persamaan Arhenius menjadi k =,8954e -87,7658/RT dan dapat dinyatakan juga dalam bentuk garis lurus - ln k = (155,6/T) + 2,688 dengan koefisien korelasi,8954 Dari hasi perhitungan diperoleh harga energi aktivasi sebesar 87,762584 kkal/mol. K. Hubungan konstanta kecepatan orde dua dengan konsentrasi merupakan fungsi polinomial k = -4,1-5 (Y ) 2 +,32 (Y ),194 dengan koefisien korelasi = A =,987. ABSTRACT THE KINETIC OF SOLUTION OF YTTRIUM HYDROXIDE IN HCl. The research of solution of rare earth hydroxide product of xenotime sand in HCl have been done. Yttrium hydroxide was the most content in the rare earth hydroxide product of xenotime sand The purpose of this research for determination of rate constant of solution reaction Yttrium hydroxide in HCl. The parametres was observed were temperature of reaction and consentration of Y (Y ) in the rare earth hydroxide product of xenotime sand as feed. From the data reaction of reaction time and consentration of Y in HCl (Y) at the variation temperature and (Y ) can be conclused that the rate constant of reaction was influenced by temperature of reaction and consentration of reactant. The all solution reaction of yttrium hydroxide in HCl was the second orde reaction. The relation the second rate constant with temperature (1/T) as exponential function so the Arhenius equation become k =,8954e -87,7658/RT and can be expressed as linear function. - ln k = (155.6/T) + 2.688 with the linearity factor or corelation coefficien =.8954 From the calculation was obtained the value of activation energy 87.762584 kcal/mol. K. The reaction of the second rate contant with (Y ) as polynomial function k = -4.1-5 (Y) 2 +.32 (Y).194 with correlation coefficien = A =.987. PENDAHULUAN K onsentrat logam tanah jarang hidroksida hasil olah pasir senotim mengandung Y. La. Ce. Nd. Gd dan Dy. Untuk memisahkan Y dari unsur logam tanah jarang yang lain dilakukan dengan cara pengendapan berdasarkan perbedaan harga konstante hasil kali kelarutan. Sebelum dilakukan pemisahan dengan cara pengendapan. konsentrat logam tanah jarang hidroksida dilarutkan dahulu ke dalam HCl pekat (1). Penelitian ini bertujuan menentuan konstante kecepatan reaksi dan orde reaksi pelarutan Y hidroksida dalm HCl. serta energi aktivasi. Itrium hidroksida terkandung dalam konsentrat logam tanah jarang hidroksida hasil olah pasir senotim. Reaksi yang terjadi sebagai berikut : Y(OH) 3 + 3HCl YCl 3 + 3H 2O (1) Laju reaksi pelarutan Y(OH) 3 dalam HCl adalah penambahan Y dalam larutan atau pengurangan Y dalam padatan. Reaksi kimia adalah proses berubahnya pereaksi menjadi hasil reaksi. Proses reaksi ini ada yang berlangsung sangat cepat, cepat dan ada yang berlangsung lambat maupun sangat lambat (1). Pembahasan 28

Kinetika Pelarutan Itrium Hidroksida dalam HCl (MV Purwani, Suyanti) tentang kecepatan atau laju reaksi disebut kinetika kimia. Dalam kinetika kimia ini dikemukakan cara menentukan laju reaksi dan faktor yang mempengaruhinya. Salah satu penentu laju reaksi adalah sifat pereaksinya. ada yang yang reaktif dan ada yang kurang reaktif. Pada umumnya faktor yang berpengaruh adalah sifat pereaksi. konsentrasi. suhu dan katalis (2-4). Jumlah yang terlibat dalam suatu reaksi disebut kemolekulan reaksi. Jumlahnya ada yang satu. dua dan tiga. yang berturut turut disebut unimolekuler. bimolekuler dan termolekuler. Sedangkan menurut ordenya. ada reaksi berorde satu. dua. tiga atau pecahan. (4) Laju reaksi adalah perubahan suatu zat menjadi zat lain. Pengurangan zat pereaksi pada setiap waktu akan menyebabkan penambahan zat hasil reaksi pada waktu yang bersamaan. A + B C + D (2) Untuk reaksi A + B (bimolekuler) menjadi C + D. pereaksi ( dan (B) berkurang. dan pada saat yang sama hasil reaksi (C) dan (D) bertambah. Laju reaksi rata-rata (r) dapat diungkapkan dari pengurangan pereaksi - ( dan - (B). atau penambahan konsentrasi hasil reaksi (C) dan (D) dalam selang waktu t = t 2 t 1. Laju reaksi ratarata (2.3. 4. 5) sebagai berikut: r = ( = t ( B) = t ( C) = t ( D) t Laju reaksi sesaat dapat dicari bila t dibuat kecil tak terhingga atau mendekati nol. maka r = ( limit = t t Laju reaksi semakin lama akan semakin berkurang. karena konsentrasi pereaksi semakin mengecil. Pada umumnya laju reaksi dapat juga ditulis dengan persamaan (1-5) : m m r = = k( ( B) k = konstante laju reaksi atau konstante kecepatan reaksi. m = jumlah pangkat konsentrasi masing-masing reaktan. Orde reaksi terhadap suatu komponen merupakan jumlah pangkat dari konsentrasi komponen tersebut. Nilai k tergantung pada jenis reaksi dan suhu. Dilihat dari persamaan (2) maka untuk reaksi pelarutan Y dalam HCl merupakan reaksi dengan orde 2. Cara menentukan orde dan konstante kecepatan reaksi bisa secara deferensial maupun secara integral. Konstante kecepatan reaksi ini sangat berguna untuk perancangan reaktor kimia baik untuk reaktor yang bekerja secara batch maupun yang bekerja secara kontinyu (5). Jika konsentrasi awal : (A ) dan (B ). ketika konsentrasi A menjadi ( =: (A ) y dan ketika konsentrasi B menjadi (B) =: (B ) y, dimana y adalah pengurangan konsentrasi dan A adalah konsentrasi yang tertinggal r = = = r = ( ( dy = = k( A ( B dy k( A = k( A ( B ( B (3) (4) (5) (6) (7) (8) (9) 29

J. Iptek Nuklir Ganendra Vol. 14 No. 1 Januari 211 (28 38) ISSN 141-6957 ( ( k = dy A = k( A ( B 1 B y y) 1 [ ( A ( B 1 ] y = dan r = 1 y 1 1 kt = A B ( ) ( ) ( A ) y ( B ) dy y (1) (11) (12) kt = 1 ( A ) ( B ) ln ln ( A ) ( B ) ( A ( B (13) Penyederhanaan persamaan itu dengan menggabungkan kedua logarirma dan memperhatikan ( = (A ) y dan (B) = (B ) y sehingga kt = ( A 1 ) ( B ln ) A A B B (14) 1 ( ( B ) Jika hubungan antara t dengan ln merupakan garis lurus, maka reaksi orde satu ( A ) ( B ) ( A )( B) dan harga k = harga slope. Untuk mempermudah perhitungan harga k untuk reaksi yang terdiri dari lebih dari satu reaktan, maka rumus disederhanakan dengan memasukkan harga konversi. Konversi atau x adalah perubahan konsentrasi yang terbentuk dibagi dengan konsentrasi awal = y/a, y adalah pengurangan konsentrasi dan A adalah konsentrasi yang tertinggal Menurut Levenspiel. X = konversi = adalah sebanding sehingga (A ).X = (B ).X r = dx A ) = k( A A. X )( B B. X ) ( ( A ) dan jumlah ( dan (B) yang bereaksi pada setiap waktu ( A ) ( M = (A )/(B ) (16) t =, X = dan t = t, X = X Jika harga M tidak sama dengan 1 dengan cara integrasi yang sama. diperoleh ln M X ( B A ) kt M (1 X ) = Untuk reaksi pelarutan Y hidroksida dalam HCl dimana koefisien reaksi HCl sama dengan 3 maka rumus tersebut menjadi M 3X ln ( B A ) kt M (1 X ) = untuk harga M = 3. k orde 2 = l/gmol.menit (18) Jika reaksi orde kedua keseluruhannya, tetapi orde pertama terhadap masing-masing reaktan A dan B, maka hukum lajunya adalah: (15) (17) 3

Kinetika Pelarutan Itrium Hidroksida dalam HCl (MV Purwani, Suyanti) r = = k( (19) r = = k ( ( = k ( A ( ) t ( A ) (21) ln = kt ( A ) - ln (1-X) = kt. k orde 1. 1/menit (23) Jika hubungan antara t dengan - ln (1-X) merupakan garis lurus, maka reaksi orde satu dan harga k orde 1 = harga slope. Persamaan garis untuk reaksi orde tiga adalah: 2A 2A y y 2 ( A 2 2 = kt Faktor yang berpengaruh pada laju reaksi adalah sifat pereaksi. konsentrasi pereaksi. katalis dan suhu reaksi. A o = y o = konsentrasi Y(OH) 3 awal, mol/liter. A = konsentrasi Y(Cl) 3 hasil reaksi, mol/liter Y = konsentrasi Y(OH) 3 yang bereaksi, mol/liter B o = konsentrasi HCL awal, mol/liter B = konsentrasi HCL setelah reaksi, mol/liter METODOLOGI Bahan Konsentrat logam tanah jarang hidroksida (LTJOH) hasil olah pasir senotim dengan kadar Y = 28,83 %, HCl pekat teknis, Y 2O 3 dan LTJ oksida (Gd. Dy) murni dari Merck. air suling. Alat Tata kerja Alat pengaduk pemanas. timbangan. alat gelas. spektrometer pendar sinar X 1. Variasi suhu pelarutan a. Diukur 1 ml HCL pekat (37 %) dan dimasukkan ke dalam beker gelas ukuran 2 ml. Kemudian dipanaskan dengan mengatur skala suhu sterrer magnit dan sambil diaduk, diukur suhu larutannya sampai suhu tertentu. Konsentrasi HCl awal = (B )= 24,33161111 mol/l. b. Ditimbang 46,25 gram konsentrat Y(OH) 3 kemudian dimasukkan ke dalam HCL yang telah dipanaskan dan telah diketahui suhunya. pemanasan dan pengadukan terus dilanjutkan (proses pelarutan). Konsentrasi Y awal = (A ) =,51358454 mol/l c. Setelah proses pelarutan selama 2 menit. cuplikan diambil,5 ml dan dimasukkan ked alam labu takar ukuran 5 ml dan selanjutnya volume ditepatkan sampai tanda tera dengan menambah air untuk dianalisis. Proses pelarutan tetap dilanjutkan dengan menjaga suhu pelarutan dengan interval waktu tertentu (2; 5; 1; 2 dan 25 menit) larutan diambil,5 ml untuk dipreparasi dan dianalisis memakai spektrometer pendar sinar X. d. Pekerjaan 2 a. sampai dengan 2 d. diulang dengan variasi suhu pelarutan 28; 35; 45; 6 dan 72 o C 2. Variasi konsentrasi a. Diukur 1 ml HCL pekat (37 %) dan dimasukkan ke dalam beker gelas ukuran 2 ml. Kemudian dipanaskan dengan mengatur skala suhu sterrer magnit dan sambil diaduk. diukur suhu larutan mencapai suhu 6 o C, kemudian dimasukkan konsentrat LTJ(OH) 3 beratnya divariasi 11,55 gram/1 ml (konsentrasi Y awal =,3783552 gmol/l); 23,1 gram/1 ml (konsentrasi Y awal =,75671376 mol/l); 34,65 gram/1 (2) (22) (24) 31

J. Iptek Nuklir Ganendra Vol. 14 No. 1 Januari 211 (28 38) ISSN 141-6957 ml (konsentrasi Y awal = y o = 1,1357 mol/l); 46,2 gram/1 ml (konsentrasi Y awal = 1,51342753) dan 57,75 gram/1 ml (konsentrasi Y awal = 1,8917759 gmol/l). sambil dipanaskan dan diaduk terus dengan menjaga suhu proses 6 o C (proses pelarutan). b. Selanjutnya langkah kerja seperti 1c. HASIL DAN PEMBAHASAN Variasi Suhu Pada umumnya kenaikan suhu akan mempercepat laju reaksi perubahan suhu akan mempengaruhi konstante kecepatan reaksi. Jika suhu dinaikkan. maka jumlah dan energi tumbukan antara molekul pereaksi bertambah. Disamping syarat termodinamika, reaksi dapat berlangsung bila terjadi tumbukan langsung antara molekul pereaksi. Tumbukan itu harus memenuhi dua syarat yaitu posisinya efektif dan energinya mencukupi. Pada Gambar 1 dapat dilihat hubungan suhu, waktu pelarutan dengan konsentrasi Y hasil reaksi pelarutan. Konsentrasi Y(Ct) hasil reaksi semakin besar dengan bertambahnya waktu reaksi. Pertambahan konsentrasi ini semakin berkurang dengan bertambahnya waktu reaksi dan akan mencapai konsentrasi yang tetap sampai waktu tak terhingga. Hal ini dapat membuktikan bahwa laju reaksi semakin berkurang. Konsentrasi Y(Ct) hasil reaksi pelarutan semakin besar dengan bertambahnya suhu reaksi. Pada suhu 28 C. konsentrasi Y setelah waktu reaksi 7 menit sebesar,31873 gmol/l sedang dengan waktu pelarutan yang sama, pada suhu 72 C untuk mencapai konsentrasi Y sebesar,31694 gmol/l hanya membutuhkan waktu reaksi selama 3 menit.,5 konsentrasi Y, gmo,4,3,2,1 suhu 28 suhu 35 suhu 45 suhu 6 suhu 72 1 2 3 4 5 6 7 8 waktu, m enit Gambar 1. Hubungan waktu pelarutan dengan konsentrasi Y hasil reaksi pelarutan pada berbagai suhu Pada berbagai suhu reaksi, semakin lama waktu reaksi, konversi semakin besar sampai pada waktu tak tertentu konversi hampir konstan. Hal ini disebabkan karena laju reaksi semakin lambat dengan berkurangnya konsentrasi Y dengan bertambahnya waktu reaksi. Semakin besar suhu reaksi, konversi semakin besar. Pada suhu 28 C konversi maksimum sebesar,23926 dicapai selama waktu 7 menit, pada suhu 72 C konversi maksimum mencapai,26 dengan waktu reaksi 5 menit.,3 konversi (x),2,1 suhu 28 suhu 35 suhu 45 suhu 6 suhu 72 1 2 3 4 5 6 7 8 Gambar 2. Hubungan waktu pelarutan dengan konversi (x) 32

Kinetika Pelarutan Itrium Hidroksida dalam HCl (MV Purwani, Suyanti) Gambar 3 menunjukkan hubungan antara waktu dengan ln(1-x) pada berbagai suhu. Dari grafik ini dapat diketahui harga konstante kecepatan reaksi jika reaksi orde 1. Jika hubungan antara waktu dengan ln(1- x) merupakan garis lurus sesuai dengan persamaan (23) maka reaksi berorde 1. Harga slope garis lurus tersebut adalah harga konstante kecepatan reaksi atau k (1/menit). Dari persamaan persamaan garis lurus yang diperoleh menunjukkan faktor kelurusan atau ralat berkisar antar,8,9.,4,3 suhu 28 suhu 35 suhu 45 suhu 6 suhu 72 Linear (suhu 28) Linear (suhu 35) Linear (suhu 45) Linear (suhu 6) Linear (suhu 28) Linear (suhu 72) - ln(1- x,2 y1=.362x +.492 R2 =.893 y2 =.387x +.489 R2 =.92,1 y3 =.443x +.549 R2 =.851 y4 =.459x +.756 R2 =.769 y5=.58x +.484 R2 =.8551 1 2 3 4 5 6 7 8 Gambar 3. Grafik hubungan waktu dengan -ln(1-x) pada berbagai suhu ( C) jika reaksi orde 1. Harga konstante kecepatan reaksi orde 1 berkisar antara,362,58/ menit artinya konstante kecepatan reaksi bertambah dengan bertambahnya suhu reaksi. Hukum distribusi Maxwell Boltzman menyatakan bahwa distribusi kecepatan bergantung dari suhu dan massa partikel. Reaksi bisa terjadi apabila suhunya atau energinya sama atau lebih besar dari energi pengaktifannya. Arhenius dalam penelitiannya menemukan rumus hubungan antara k dengan suhu yang disebut dengan hukum Arhenius yang dinyatakan sebagai berikut : k = A.e E/RT (23) ln k = - E/RT + ln A atau - ln k = E/RT - ln A (24) R = konstante gas ideal = 1,98 cal/mol. K, A = koefisien korelasi, E = energi aktivasi, T = K. Tabel 1. Hubungan antara suhu dengan k orde 1 Suhu C T K 1/T k lnk -lnk 28 31,332,352-3,34671 3,34671 35 38,325,387-3,25192 3,25192 45 318,315,443-3,1168 3,11677 6 333,3,459-3,813 3,813 72 345,29,58-2,84731 2,84731 Tabel 1 di atas menyajikan hubungan antara suhu ( K), 1/T dengan harga k. Gambar 4 adalah grafik hubungan antara 1/T dengan ln k yang merupakan garis lurus y = 829,62 x +,514 atau - ln k = (829,62/T) +,514 dengan faktor kelurusan atau koefisien korelasi A =,955. Dengan menggunakan grafik garis lurus antara 1/T dengan ln k dapat dihitung energi aktivasi. Slope dari garis lurus yang diperoleh = E/R. Dari hasil perhitungan diperoleh harga energi aktivasi sebesar 16,42648 kkal/mol.k. Persamaan Arhenius menjadi k =,8954e -16,42648 /RT untuk pelarutan Y(OH) 3 dalam HCl untuk reaksi orde pertama. 33

J. Iptek Nuklir Ganendra Vol. 14 No. 1 Januari 211 (28 38) ISSN 141-6957 -ln k 3,3 3,2 3,1 3 2,9 y = 829,62 x +,51 4 R 2 =,95 5 2,8,2 8, 29,3, 31, 32,33,3 4 1/T Gambar 4. Grafik hubungan 1/T dengan ln k untuk reaksi orde 1 ln[(m-3x)/m(1-x)],3,2,1 y1 =,32x +,41 R2 =,897 y2 =,317x +,571 R2 =,8258 suhu 28 suhu 35 suhu 45 suhu 6 suhu 72 Linear (suhu 28) Linear (suhu 35) Linear (suhu 45) Linear (suhu 6) Linear (suhu 72) y3 =,323x +,398 R2 =,958 y4 =,383x +,626 R2 =,7645 y5 =,484x +,399 R2 =,8582 2 4 6 8 1 Gambar 5. Grafik hubungan waktu dengan ln [(M-3X)/M(1-X)] pada berbagai suhu ( C) untuk menghitung harga k untuk reaksi orde 2 bimolekuler. Gambar 5 menunjukkan hubungan antara waktu dengan ln [(M-3X)/M(1-X)] pada berbagai suhu, dimana A = konsentrasi Y awal, B.= konsentra HCl awal. Dari grafik ini dapat diketahui harga konstante kecepatan reaksi jika reaksi orde 2. Jika hubungan antara waktu dengan ln [(M-3X)/M(1-X)] merupakan garis lurus sesuai dengan persamaan (18) maka reaksi berorde 2. Harga slope garis lurus tersebut adalah harga konstante kecepatan reaksi. Harga konstante kecepatan reaksi orde 2 berkisar antara,231,37 lt/gmol.menit. Besarnya konstante kecepatan reaksi bertambah dengan bertambahnya suhu reaksi. Dari persamaan persamaan garis lurus yang diperoleh menunjukkan faktor kelurusan atau ralat berkisar antar,8,9. Tabel 2. Hubungan antara suhu dengan k orde 2 Suhu C T K 1/T A o(m-3)k k orde 2 lnk - ln k 28 31,332,32,231-6,765 6,765 35 38,325,317,242-6,2218 6,2218 45 318,314,323,247-6,343 6,343 6 333,3,383,293-5,8334 5,8334 72 345,29,484,37-5,599 5,599 Gambar 6 menunjukkan hubungan 1/T dengan ln k merupakan garis lurus y = 155,6 x + 2,688 atau - ln k = (155,6/T) + 2,688 dengan faktor kelurusan atau koefisien korelasi,8954. Dari hasil perhitungan diperoleh harga energi aktivasi sebesar 87,762584 kkal/mol.k. 34

Kinetika Pelarutan Itrium Hidroksida dalam HCl (MV Purwani, Suyanti) ln k 6,2 6,1 6 5,9 5,8 5,7 5,6 5,5 y = 155,6x + 2,688 R 2 =,8954,28,3,32,34 1/T Gambar 6. Grafik hubungan 1/T dengan ln k untuk reaksi orde 2 Variasi Konsentrasi Dua molekul yang akan bereaksi harus bertabrakan langsung. Jika konsentrasi peraksi diperbesar, kerapatannya bertambah dan akan memperbanyak kemungkinan tabrakan. Dengan demikian akan mempercepat reaksi. Akan tetapi harus diingat bahwa tidak selalu pertambahan konsentrasi akan meningkatkan laju reaksi. Laju atau kecepatan reaksi dipengaruhi oleh konsentrasi. Dari persamaan (3) dapat dilihat bahwa laju reaksi r sangat dipengaruhi oleh konsentrasi ( dan (B). Dari persamaan laju reaksi dapat dihitung pengaruh perubahan konsentrasi pereaksi terhadap laju reaksi. Pengetahuan ini sangat penting untuk mengontrol laju reaksi seperti yang diharapkan, yaitu dengan mengatur konsentrasi pereaksi. Pada Gambar 7 dapat dilihat hubungan waktu pelarutan dengan konsentrasi Y hasil reaksi pelarutan pada berbagai konsentrasi LTJ Hidroksida. Konsentrasi Y (Ct) hasil reaksi semakin besar dengan bertambahnya waktu reaksi. Pertambahan konsentrasi ini semakin berkurang dengan bertambahnya waktu reaksi dan akan mencapai konsentrasi yang tetap sampai waktu tak terhingga. Hal ini dapat membuktikan bahwa laju reaksi semakin berkurang. Konsentrasi Y (Ct) hasil reaksi pelarutan semakin besar dengan bertambahnya kadar LTJ hidroksida dalam umpan sebagai pereaksi. Pada pemakaian kadar LTJ Hidroksida 57,75 gram/1 ml dengan konsentarsi Y awal = 1,89178 gmol/l. konsentrasi Y dalam larutan setelah waktu reaksi 6 menit mencapai,441 gmol/l. sedang dengan waktu pelarutan yang sama. Pada pemakaian kadar LTJ hidroksida 11,55 gram/ 1 ml dengan konsentrasi Y awal =,37836 gmol/l, konsentrasi Y dalam larutan sebesar,2578 gmol/l. kadar LT JOH 57,75g/1ml kadar LT JOH 34,65g/1ml kadar LT JOH 11,55g/1ml kadar LT JOH 46,2g/1ml kadar LT JOH 23,1g/1ml konsentrasi Y, gmol,5,4,3,2,1 1 2 3 4 5 6 7 Gambar 7. Hubungan waktu pelarutan dengan konsentrasi Y hasil reaksi pelarutan pada berbagai kadar LTJ hidroksida. Pada berbagai kadar LTJ hidroksida, semakin lama waktu reaksi, konversi semakin besar, sampai pada waktu tak tertentu konversi hampir konstan. Hal ini disebabkan karena laju reaksi semakin lambat dengan berkurangnya konsentrasi Y dengan bertambahnya waktu reaksi. Semakin kadar LTJ hidroksida, konversi 35

J. Iptek Nuklir Ganendra Vol. 14 No. 1 Januari 211 (28 38) ISSN 141-6957 semakin besar. tetapi pada pemakaian kadar LTJ hidroksida 57,75 gram/liter. konversi menurun. Konversi merupakan harga konsentrasi Y hasil reaksi dibagi konsentrasi Y awal dalam LTJ hidroksida. Konsentrasi Y dalam larutan HCl akan mencapai kejenuhan, sehingga jika kadar Y awal semakin besar atau faktor pembagi menjadi sangat besar, maka akan menurunkan konversi. Pada pemakaian LTJ hidroksida 11,55 gram/liter konversi maksimum dicapai pada pemakaian LTJ hidroksida 46,2 gram/liter yaitu sebesar,25898. Sedang pada pemakaian LTJ hidroksida 57,75 gram/liter konversi paling besar yang diperoleh hanya,21166. konsentrasi Y, gmol,5,4,3,2,1 kadar LT JOH 57,75g/1ml kadar LT JOH 34,65g/1ml kadar LT JOH 11,55g/1ml kadar LT JOH 46,2g/1ml kadar LT JOH 23,1g/1ml 1 2 3 4 5 6 7 Gambar 8. Hubungan waktu pelarutan dengan konversi (x) pada berbagai kadar LTJOH kons Yo = 1,8918gmol.l kons Yo= 1,5134 gmol/l kons Yo= 1,1351 gmol/l5 kons Yo=,7567 gmol/l kons Yo=,3783 gmol/l Linear (kons Yo = 1,8918gmol.l) Linear (kons Yo= 1,5134 gmol/l) Linear (kons Yo= 1,1351 gmol/l5) Linear (kons Yo=,7567 gmol/l) Linear (kons Yo=,3783 gmol/l) -ln(1-x),5,4,3,2 y1 =.32x +.79 R 2 =.729 y4 =.378x +.581 R 2 =.7913 y 2=.459x +.756 R 2 =.769 y 5=.119x +.93 R 2 =.974 y 3=.441x +.762 R 2 =.7412,1 1 2 3 4 5 6 7 Gambar 9. Grafik hubungan waktu dengan -ln(1-x) pada berbagai kadar LTJ hidroksida untuk menghitung harga k jika reaksi orde 1 Gambar 9 menunjukkan hubungan antara waktu dengan ln(1-x) pada berbagai suhu. Dari grafik ini dapat diketahui harga konstante kecepatan reaksi jika reaksi orde 1. Jika hubungan antara waktu dengan ln(1- x) merupakan garis lurus sesuai dengan persamaan (26) maka reaksi berorde 1. Harga slope garis lurus tersebut adalah harga konstante kecepatan reaksi atau k (1/menit). Dari persamaan-persamaan garis lurus yang diperoleh menunjukkan faktor kelurusan atau ralat berkisar antar,7,9. Harga konstante kecepatan reaksi orde 1 berkisar antara,119,459/ menit. Nilai konstante kecepatan reaksi dipengaruhi konversi atau x. Konversi yang diperoleh dapat dilihat pada Gambar 8. Semakin besar konversi harga k semakin besar, tetapi pada pemakaian LTJ hidroksida 57,75 gram/liter konversinya menurun maka harga menjadi lebih kecil dibanding pada pemakaian LTJ hidroksida 46,2 gram/liter. Hubungan antara konsentarsi Y dengan k dapat dilihat pada Gambar 1 yang merupakan polinomial k = -5,1-5 (Y) 2 +,29 (Y) +,32, dimana (Y) = konsentrasi Y dalam umpan dan koefisien korelasi =,9643. 36

Kinetika Pelarutan Itrium Hidroksida dalam HCl (MV Purwani, Suyanti),5 k orde 1 P oly. (k orde 1) Log. (k orde 1) k. 1/menit,4,3,2,1 ypoli = -.438x2 +.875x +.35 R2 =.9846 ylog = -.67Ln(x) +.339 R2 =.96,5 1 1,5 konsentrasi Yo, gmol/l Gambar 1. Grafik hubungan konsentrasi Y dengan k orde 1 Harga konstante kecepatan reaksi orde 2 berkisar antara,179,1263/menit. Besarnya konstante kecepatan reaksi bertambah dengan bertambahnya suhu reaksi. Dari persamaan-persaman garis lurus yang diperoleh menunjukkan faktor kelurusan atau ralat berkisar antar,7,9. k a d a r L T J O H 5 7. 7 5 g / 1 m l k a d a r L T J O H 4 6. 2 g / m l k a d a r L T J O H 3 4, 6 5 g / 1 m l k a d a r L T J O H 2 3, 1 g / 1 m l k a d a r L T J O H 1 1. 5 5 g / 1 m l L i n e a r ( k a d a r L T J O H 1 1. 5 5 g / 1 m l ) L i n e a r ( k a d a r L T J O H 2 3, 1 g / 1 m l ) L i n e a r ( k a d a r L T J O H 3 4, 6 5 g / 1 m l ) L i n e a r ( k a d a r L T J O H 4 6. 2 g / m l ) L i n e a r ( k a d a r L T J O H 5 7. 7 5 g / 1 m l ),3 y ( 1 1, 5 5 ) =. 1 1 3 x +. 8 9 R 2 =. 9 7 4 y ( 2 3, 1 ) =. 3 4 6 x +. 5 3 R 2 =. 7 9 2 8 y ( 3 4, 6 5 ) =. 3 8 7 x +. 6 6 4 ln[m-3x)/m(1-x)],2,1 R 2 =. 7 4 3 3 y ( 4 6, 2 ) =. 3 8 4 x +. 6 2 6 R 2 =. 7 6 4 5 y ( 5 7, 7 5 ) =. 2 3 8 x +. 5 5 3 R 2 =. 7 2 4 4 2 4 6 8 waktu,menit Gambar 11. Grafik hubungan waktu dengan ln(m-3x)/m(1-x) pada berbagai kadar LTJ hidroksida untuk menghitung harga k jika reaksi orde 2. Hubungan antara konsentarsi Y dengan k dapat dilihat pada Gambar 12 yang merupakan polinomial k = -4,1-5 (Y) 2 +,27 (Y),115, dimana (Y) = konsentrasi Y dalam umpan dan koefisien korelasi =,8694. 37

J. Iptek Nuklir Ganendra Vol. 14 No. 1 Januari 211 (28 38) ISSN 141-6957 k, mol/menit, l,7,6,5,4,3,2,1 k orde 2 y poly= -4E-5x2 +.27x +.115 R2 =.8694 Poly. (k orde 2),5 1 1,5 2 konsentrasi, gmol/l KESIMPULAN Gambar 12. Grafik hubungan konsentrasi Y dengan k orde 2 Dari data hubungan waktu dengan konsentrasi pada berbagai variasi suhu dan konsentrasi dapat disimpulkan bahwa konstanta kecepatan reaksi dipengaruhi suhu dan konsentrasi pereaksi. Reaksi pelarutan keseluruhan Itrium hidroksida dalam konsentrat logam tanah jarang hidroksida hasil olah pasir senotim memakai HCl merupakan reaksi orde dua. Hubungan konstanta kecepatan orde dua dengan suhu (1/T) merupakan fungsi eksponensial dan dapat dinyatakan juga dalam bentuk garis lurus - ln k = (155,6/T) + 2,688 dengan koefisien korelasi = A =,8954. Dari hasil perhitungan diperoleh harga energi aktivasi sebesar 87,76258 kkal/mol.k. Hubungan konstanta kecepatan orde dua dengan konsentrasi merupakan fungsi polinomial k = -4.1-5 (Y) 2 +,32 (Y),194 dimana (Y) = konsentrasi Y dalam umpan dan koefisien korelasi = A =,987. DAFTAR PUSTAKA 1.PRAKASH. S. Advanced Chemistry of Rare Earth. S.Chand and Co.. PVT. New Delhi. 1975 2.http://en.wikipedia.org/wiki/reaction rate 3.ATKINS. P.W. KIMIA FISIKA. jilid 2. edisi keempat. Penerbit Erlangga. Jakarta. 1999 4.SYUKRI S. KIMIA DASAR 2. Penerbit ITB. Bandung. 1999. 5.http://en.wikipedia.org/wiki/reaction rate constant 6.http://davidson.edu/Chemical Kinetics; Rate of Reaction.htm 7.LEVENSPIEL O. Chemical Reaction Engineering. 2ed. Wiley Eastern Limited. Calcutai. 1972 38