BAB I PENDAHULUAN Latar Belakang
|
|
|
- Widyawati Wibowo
- 8 tahun lalu
- Tontonan:
Transkripsi
1 BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini banyak masyarakat di Indonesia yang sudah menyadari pentingnya asuransi, meskipun jika dibandingkan dengan negara lain, Indonesia masih kalah jauh. Kebanyakan masyarakat mengikuti asuransi jiwa karena mereka ingin mengurangi resiko kerugian finansial ketika mereka atau salah satu anggota keluarga yang menjadi tulang punggung meninggal dunia. Jika tulang punggung keluarga meninggal, maka keluarga tersebut akan mengalami kesulitan finansial. Dengan membeli produk asuransi jiwa, kesulitan finansial tersebut dapat berkurang karena keluarga pemegang polis akan menerima manfaat atau santunan dari perusahaan asuransi yang produknya dibeli. Dilain pihak, ketika ada salah satu pemegang polis asuransi jiwa yang meninggal, perusahaan asuransi harus mengeluarkan sejumlah uang untuk membayar manfaat atau santunan yang telaah dijanjikan. Pada dasarnya kematian tidak dapat diketahui datangnya. Dalam dunia asuransi jiwa kematian seseorang merupakan suatu variable random. Kematian seseorang bisa dating sewaktu-waktu begitu juga dengan kematian seorang pemegang polis. Dengan begitu perusahaan asuransi juga dapat mengeluarkan sejumlah uang sewaktu waktu jika ada salah satu pemegang polis asuransinya yang meninggal. Perusahaan asuransi bisa saja mengalami kerugian kettika ada pemegang polis yang meninggal, sementara perusahaan asuransi tidak mempunyai dana, padahal harus mengeluarkan sejumlah dana untuk manfaat. Salah satu penyebab kerugian adalah karena para pemegang polis membeli produk asuransi jiwa dengan premi yang dibayarkan tiap periode waktu. Jika pemegang polis membayar dengan premi sekali bayar atau sebesar nilai sekarang ( present value ) dari manfaat yang telah diperjanjikan, perusahaan asuransi akan 1
2 2 mempunyai dana yang sama besarnya dengan manfaat pada saat jatuh tempo. Jika pemegang polis asuransi jiwa membeli produk dengan cara membayar premi disetiap periode, maka kerugian perusahaan asuransi adalah selisih dari nilai sekarang ( present value ) manfaat dengan akumulasi premi yang pada waktu tertentu. Dibanyak bidang usaha lain, cadangan diartikan kelebihan sejumlah dana yang sebenarnya tidak terpakai tetapi dapat dipakai sewaktu waktu jika terjadi suatu kendala. Misalnya, suatu restoran mempunyai sejumlah dana cadangan, dan tiba-tiba restoran tersebut kebakaran, cadangan dana tersebut bisa digunakan untuk membangun kembali bangunan restoranya. Lain halnya dengan didunia asuransi, cadangan diartikan sejumlah dana yang harus ada pada waktu tertentu agar perusahaan asuransi dapat memenuhi kewajiban sejumlah santunan yang telah diperjanjikan pada saat kontrak polis berakhir. Bisa juga dikatakan, cadangan merupakan dana yang harus ada supaya terjadi keseimbangan antara nilai sekarang ( present value ) manfaat dengan akumulasi premi yang pada waktu tertentu. Hal ini sering disebut prinsip ekuivalensi. Prinsip inilah yang akan menjadi dasar perhitungan cadangan premi di bahasan selanjutnya. Cadangan premi merupakan salah satu bentuk pertanggung jawaban departemen aktuaria dalam perusahaan asuransi. Cadangan premi juga bisa menggambarkan keadaan keuangan dari perusahaan asuransi, sesuai dengan Peraturan Menteri Keuangan Nomor 53/PMK.010/2012 yang menyatakan bahwa cadangan premi bisa disebut juga dengan kesehatan keuangan perusahaan asuransi. Seorang aktuaris atau departemen aktuaria harus dapat menghitung besarnya cadangan yang tepat sehingga perusahaan tidak salah tafsir tentang berapa dana yang dibutuhkan. Banyak metode yang dapat digunakan untuk menghitung cadangan premi, ada metode cadangan premi bersih yang menghitung tanpa mengikutsertakan beban atau biaya biaya perusahaan asuransi. Ada juga cadangan premi kotor yang perhitunganya memasukan unsur biaya kedalamnya, serta cadangan biaya yang hanya menghitung unsur biaya saja, yang mana biaya tersebut dibagi menjadi dua yaitu biaya awal tahun dan biaya tiap tahun. Namun,
3 3 cadangan biaya akan bernilai negatif karena premi biaya mengandung unsur biaya awal tahun sementara biaya awal tahun sudah harus dibayar diawal kontrak polis. Besarnya biaya awal tahun lebih besar daripada premi biaya, sehingga diawal tahun perusahaan asuransi perlu tambahan dana yang bukan berasal dari premi yang dibayar pemegang polis atau dengan kata lain membutuhkan dana pinjaman untuk membayar biaya awal tahun. Pinjaman tersebut akan dilunasi oleh kelebihan dana yang diperoleh dari premi biaya yang terkumpul. Cadangan premi kotor nilainya akan sama dengan cadangan premi bersih ditambah cadangan biaya. Dengan nilai cadangan biaya yang bernilai negatif, maka cadangan premi kotor akan lebih kecil dari cadangan premi bersih. Hal tersebut mengakibatkan kerancuan dalam menentukan dana yang sebenarnya dibutuhkan oleh perusahaan asuransi. Terdapat metode peritungan cadangan lain yang bisa lebih pasti dalam menentukan besarnya dana yang sebenarnya dibutuhkan oleh perusahaan asuransi, yaitu metode perhitungan cadangan full preliminary term atau bisa disebut cadangan awal penuh. Dengan perhitungan cadangan full preliminary term perusahaan asuransi tidak membutuhkan dana pinjaman yang digunakan untuk membayar biaya awal tahun. Karena cadangan biaya pada metode full preliminary term akan bernilai nol sehingga cadangan premi bersih nilainya sama dengan cadangan premi kotor. Jadi perusahaan asuransi mendapatkan nilai besaran dana yang pasti agar perusahaan asuransi dapat memenuhi kewajibanya diakhir kontrak polis Batasan Masalah Cakupan ilmu aktuaria sangat luas, jika penulis memasukan semuanya, maka tulisan ini akan menjadi panjang sekali. Untuk itu penulis sengaja membuat batasan batasan masalah agar penulisan ini lebih terarah dan tepat sasaran. Batasan batasan masalah yang penulis buat sebagai berikut: 1. Modifikasi cadangan premi dengan metode full preliminary term pada asuransi jiwa dwiguna untuk manfaat yang tetap diakhir tahun polis.
4 4 2. Manfaat dibayarkan diakhir tahun kematian, sehingga yang digunakan ialah asumsi model diskrit. 3. Peluang hidup dan kematian seseorang berdasar pada tabel mortalita Indonesia Dasar perhitungan cadangan premi menggunakan metode prespektif Tujuan Penulisan Setiap yang dilakukan harus mempunyai tujuan, begitu juga yang penulis lakukan. Termasuk tujuan penulisan ini dan tujuan perhitungan modifikasi cadangan premi dengan metode full preliminary term. Tujuan yang penulis buat antara lain : 1. Memenuhi syarat kelulusan derajat sarjana sains proram studi statistika di Fakultas MIPA Universitas Gadjah Mada 2. Mengetahui dan memahami cara perhitungan modifikasi cadangan premi dengan metode full preliminary term 3. Mengetahui dan memahami perbedaan perhitungan cadangan metode prosperktif dengan perhitungan cadangan premi metode full preliminary term 4. Mengetahui dan memahami manfaat dari perhitungan modifikasi cadangan premi dengan metode full preliminary term 1.4. Tinjauan Pustaka Konsep tentang asuransi dan pembayaranya dijelaskan oleh Bowers, dkk dalam bukunya Actuarial Mathematics(1997). Dalam buku Actuarial Mathematics dijelaskan bagaimana menghitung premi tunggal bersih, anuitas, premi serta cadangan preminya. Perhitungan cadangan premi kotor dan modifikasi perhitungan cadangan premi metode full preliminary term juga dijelaskan dalam buku tersebut. Penulis menggunakan jurnal dari komite pendidikan Society of Actuaries yang berjudul Suplementary Notes For Actuarial Mathematics For Life
5 5 Contingent Risk oleh Hardy dkk. (2011) sebagai tembahan referensi untuk perhitungan cadangan premi kotor dan perhitungan cadangan dengan metode full preliminary term Metode Penulisan Metode yang digunakan dalam skripsi ini lebih kepada studi literature secara sistematis yang dipelajari dari buku-buku di perpustakaan, catatan-catatan selama perkuliahan, maupun media lain seperti internet serta jurnal-jurnal yang penulis gunakan sebagai referensi penulisan skripsi ini SISTEMATIKA PENULISAN Skripsi ini disusun dengan sistematika sebagai berikut : BAB I PENDAHULUAN Sebagai pendahuluan yang menggambarkan keseluruhan bahasan bahasan yang ada pada bab selanjutnya, bab ini terdiri dari latar belakang, batasan masalah, tujuan penelitian, manfaat penelitian, metode penelitian, tinjauan pustaka dan sistematika penulisan. BAB II DASAR TEORI Berisi tentang dasar dasar yang digunakan untuk menghitung cadangan premi bersih metode prospektif dan yang digunakan dalam menghitung cadangan premi metode full preliminary term, seperti tingkat suku bunga, nilai sekarang dan anuitas. BAB III MODIFIKASI CADANGAN PREMI METODE FULL PRELIMINARY TERM PADA ASRANSI JIWA DWIGUNA MODEL DISKRIT
6 6 Berisi tentang perhitungan cadangan premi biaya dan cadangan premi kotor serta perhitungan modifikasi premi dan cadangan premi dengan metode metode full preliminary term. BAB IV STUDI KASUS Pada bab ini, membahas sebuah studi kasus berupa asuransi jiwa dwiguna yang akan dihitung cadangan premi bersih, cadangan premi kotor dan cadangan premi menggunakan metode full preliminary term. BAB V KESIMPULAN Bab ini berisi tentang kesimpulan dari perhitungan cadangan dengan metode full preliminary term berupa kelebihan dan manfaat menggunakan metode tersebut. Pada bab ini juga berisi saran-saran yang berisi hal yang belum dibahas ada penulisan skripsi ini. DAFTAR PUSTAKA LAMPIRAN
BAB I PENDAHULUAN. dapat dilakukan baik untuk melindungi diri, keluarga dan harta benda. Pada
BAB I PENDAHULUAN 1.1 Latar Belakang Perlindungan tentu dibutuhkan oleh setiap orang, banyak cara yang dapat dilakukan baik untuk melindungi diri, keluarga dan harta benda. Pada zaman yang serba modern
BAB I PENDAHULUAN Latar Belakang Permasalahan
BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Saat ini dunia asuransi berkembang sangat pesat sama halnya dengan lembaga-lembaga keuangan lainnya seperti perbankan dan pasar modal. Hal ini karena
CADANGAN PROSPEKTIF ASURANSI JIWA DWIGUNA DENGAN ASUMSI SERAGAM
CADANGAN PROSPEKTIF ASURANSI JIWA DWIGUNA DENGAN ASUMSI SERAGAM Rosalina Margaretta 1*, Hasriati 2, Harison 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori dasar yang digunakan untuk menetapkan harga premi pada polis partisipasi asuransi jiwa endowmen yang terdapat opsi surrender dalam kontraknya,
METODE PREMIUM SUFFICIENCY UNTUK CADANGAN ASURANSI JIWA BERJANGKA PADA STATUS HIDUP GABUNGAN
METODE PREMIUM SUFFICIENCY UNTUK CADANGAN ASURANSI JIWA BERJANGKA PADA STATUS HIDUP GABUNGAN Silda Riyana 1 Hasriati 2 Aziskhan 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika
BAB I PENDAHULUAN. untuk melindungi dirinya sendiri maupun keluarga dari kemungkinan kejadian
BAB I PENDAHULUAN 1.1 Latar Belakang Masyarakat saat ini semakin menyadari pentingnya mempersiapkan diri untuk melindungi dirinya sendiri maupun keluarga dari kemungkinan kejadian yang tidak pasti, baik
PREMI ASURANSI JIWA LAST SURVIVOR DWIGUNA DENGAN MENGGUNAKAN ASUMSI CONSTANT FORCE
PREMI ASURANSI JIWA LAST SURVIVOR DWIGUNA DENGAN MENGGUNAKAN ASUMSI CONSTANT FORCE Dian Fauzia Rahmi 1, Hasriati 2, Aziskhan 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika
PENENTUAN NILAI CADANGAN PROSPEKTIF PADA ASURANSI JIWA SEUMUR HIDUP MENGGUNAKAN METODE NEW JERSEY
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 1(2014), hal 7 12. PENENTUAN NILAI CAANGAN PROSPEKTIF PAA ASURANSI IWA SEUMUR HIUP MENGGUNAKAN METOE NEW ERSEY estriani, Neva Satyahadewi,
PREMI TUNGGAL BERSIH UNTUK KONTRAK ASURANSI JIWA SEUMUR HIDUP
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No.1 (2014), hal 13-18. PREMI TUNGGAL BERSIH UNTUK KONTRAK ASURANSI JIWA SEUMUR HIDUP Winda Sri Wulandari, Neva Satyahadewi, Evy Sulistianingsih
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Asuransi Asuransi atau Pertanggungan menurut Kitab Undang-undang Hukum Dagang (K.U.H.D) Republik Indonesia pasal 246 adalah Suatu perjanjian dengan mana seorang penanggung mengikatkan
BAB II TINJAUAN PUSTAKA. Joint life adalah suatu keadaan yang aturan hidup dan matinya merupakan
BAB II TINJAUAN PUSTAKA 2.1 Asuransi Joint Life Joint life adalah suatu keadaan yang aturan hidup dan matinya merupakan gabungan dari dua faktor atau lebih, misalnya suami-istri, orang tua-anak dan lain
II. TINJAUAN PUSTAKA. 2.1 Fungsi Keberlangsungan Hidup (Survival Function) Misalkan adalah usia seseorang saat menutup polis asuransi, sehingga adalah
II. TINJAUAN PUSTAKA 2.1 Fungsi Keberlangsungan Hidup (Survival Function) Misalkan adalah usia seseorang saat menutup polis asuransi, sehingga adalah peubah acak waktu meninggal. Fungsi distribusi dinyatakan
Model Perhitungan Premi Asuransi Jiwa Berjangka Secara Diskrit dan Kontinu
Prosiding Matematika ISSN: 2460-6464 Model Perhitungan Premi Asuransi Jiwa Berjangka Secara Diskrit dan Kontinu 1 Nyayu Dita Khairunnisa, 2 Onoy Rohaeni, 3 Yurika Permanasari 1,2,3 Prodi Matematika, Fakultas
CADANGAN ASURANSI DWIGUNA LAST SURVIVOR DENGAN METODE PREMIUM SUFFICIENCY
CADANGAN ASURANSI DWIGUNA LAST SURVIVOR DENGAN METODE PREMIUM SUFFICIENCY Margaretta Tiolina Siregar 1 *, Hasriati 2, Aziskhan 2 1 Mahasiswa Program S1 Matematika 2 Dosen JurusanMatematika Fakultas Matematika
BAB I PENDAHULUAN. 1.2 Rumusan Masalah Bagaimana peranan statistika matematika dalam menentukan anuitas premi asuransi jiwa?
BAB I PENDAHULUAN 1.1 Latar Belakang Asuransi Jiwa adalah asuransi yang memberikan pembayaran sejumlah uang tertentu atas kematian tertanggung kepada anggota keluarga atau orang yang berhak menerimanya
III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada semester genap tahun ajaran 2014/2015 di Jurusan
III METODOLOGI PENELITIAN 31 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun ajaran 2014/2015 di Jurusan Matematika dan Ilmu Pengetahuan Alam Universitas Lampung 32 Metode
BAB III PENETAPAN HARGA PREMI PADA KONTRAK PARTISIPASI ASURANSI JIWA ENDOWMEN DENGAN OPSI SURRENDER
BAB III PENETAPAN HARGA PREMI PADA KONTRAK PARTISIPASI ASURANSI JIWA ENDOWMEN DENGAN OPSI SURRENDER Pada bab ini akan ditentukan harga premi pada polis partisipasi yang terdapat opsi surrender pada kontraknya.
BAB II TINJAUAN PUSTAKA. karena kerugian, kerusakan atau kehilangan keuntungan yang diharapkan, atau
BAB II TINJAUAN PUSTAKA 2.1. Asuransi Asuransi menurut Undang Undang Indonesia nomor 2 tahun 1992 tentang Usaha Perasuransian pada Bab I Ketentuan Umum Pasal 1 angka 1 menyatakan bahwa Asuransi atau pertanggungan
Didownload dari ririez.blog.uns.ac.id
0. Konsep Dasar Kematian merupakan kejadian random yang mengandung dampak finansial. Prinsip fundamental yang mendasari dapat diilustrasikan dengan contoh berikut. Misalkan seorang laki laki ingin mengambil
BAB I PENDAHULUAN. suatu peristiwa yang tak tentu. ( Hasyim Ali, 1993:3) Asuransi terbagi menjadi dua, yaitu life insurance dan non life insurance.
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kehidupan seseorang selalu berhadapan dengan resiko baik bagi kejiwaan, kesehatan maupun finansial. Salah satu usaha untuk mengatasinya ialah dengan mengalihkan
Prosiding Matematika ISSN:
Prosiding Matematika ISSN: 2460-6464 Perhitungan Cadangan Premi Asuransi Joint Life Dengan Menggunakan Metode Retrospektif Calculation of Premium Reserve Joint Life Insurance Using By Retrospective Method
PERBANDINGAN NILAI TEBUS DAN CADANGAN PREMI PADA ASURANSI JIWA KONTINU. Jl. Prof. Soedarto, S.H, Semarang, 50275
PERBANDINGAN NILAI TEBUS DAN CADANGAN PREMI PADA ASURANSI JIWA KONTINU Asri Nurul Fajriani 1, Djuwandi 2, Yuciana Wilandari 3 1,2,3 Program Studi Matematika Jl. Prof. Soedarto, S.H, Semarang, 50275 ABSTRAK
PREMI ASURANSI JIWA GABUNGAN BERJANGKA DENGAN ASUMSI GOMPERTZ
PREMI ASURANSI JIWA GABUNGAN BERJANGKA DENGAN ASUMSI GOMPERTZ Danu Aditya 1, Johannes Kho 2, T. P. Nababan 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu
PREMI TUNGGAL BERSIH ASURANSI JIWA BERJANGKA DENGAN FAKTOR PENEBUSAN
PROSIDING ISBN : 978 979 16353 9 4 PREMI TUNGGAL BERSIH ASURANSI JIWA BERJANGKA DENGAN FAKTOR PENEBUSAN T - 10 Endang Sri Kresnawati Jurusan Matematika FMIPA Universitas Sriwijaya [email protected]
MENENTUKAN NILAI CADANGAN YANG DISESUAIKAN PADA ASURANSI JIWA BERJANGKA BERPASANGAN DENGAN METODE ILLINOIS
MENENTUKAN NILAI CADANGAN YANG DISESUAIKAN PADA ASURANSI JIWA BERJANGKA BERPASANGAN DENGAN METODE ILLINOIS Jefrianda 1*, Hasriati 2, Aziskhan 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika
Bab 2. Teori Pendukung. 2.1 Pendahuluan. 2.2 Future Life Time
Bab 2 Teori Pendukung 2.1 Pendahuluan Untuk mengekspresikan perhitungan tentang nilai tunai (cash value) yang dipengaruhi oleh prospektif mortality diperlukan teori-teori pendukung sehingga dalam perhitungannya
MODEL SELEKSI PADA ASURANSI JIWA DWIGUNA DENGAN UANG PERTANGGUNGAN MENINGKAT
MODEL SELEKSI PADA ASURANSI JIWA DWIGUNA DENGAN UANG PERTANGGUNGAN MENINGKAT Dila T. Julianty *, Johannes Kho 2, Aziskhan 2 Mahasiswa Program S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika
ANUITAS LAST SURVIVOR
Jurnal MIPA 39 (1) (2016): 70-77 Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm ANUITAS LAST SURVIVOR UNTUK KASUS TIGA ORANG TERTANGGUNG D P Sari, Jazwinarti Jurusan Matematika, Universitas Negeri
MODEL SELEKSI PREMI ASURANSI JIWA DWIGUNA UNTUK KASUS MULTIPLE DECREMENT. Mahasiswa Program S1 Matematika
MODEL SELEKSI PREMI ASURANSI JIWA DWIGUNA UNTUK KASUS MULTIPLE DECREMENT Devi Ramana Cita*, Rolan Pane2, Harison2 Mahasiswa Program S Matematika 2 Dosen JurusanMatematika Fakultas Matematika dan Ilmu Pengetahuan
BAB III MODIFIKASI CADANGAN ASURANSI JIWA DENGAN METODE ZILLMER DAN ILLINOIS. Perusahaan asuransi memerlukan biaya dalam melaksanakan tugasnya.
42 BAB III MODIFIKASI CADANGAN ASURANSI JIWA DENGAN METODE ZILLMER DAN ILLINOIS Perusahaan asuransi memerlukan biaya dalam melaksanakan tugasnya. Oleh karena itu, premi yang disajikan oleh perusahaan asuransi
BAB I PENDAHULUAN. berbagai alat analisis. Hal itu pula yang dapat terjadi pada perusahaan
BAB I PENDAHULUAN 1.1 Latar Belakang Di masa kehidupan, manusia tidak dapat meramalkan apa yang akan terjadi di waktu yang akan datang secara sempurna, meskipun dengan menggunakan berbagai alat analisis.
PREMI ASURANSI JIWA PADA AKHIR TAHUN KEMATIAN DAN PADA SAAT KEMATIAN TERJADI
Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 79 84 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PREMI ASURANSI JIWA PADA AKHIR TAHUN KEMATIAN DAN PADA SAAT KEMATIAN TERJADI NOVA NOFRIDAWATI Program Studi
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan
BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Perkembangan bisnis asuransi semakin hari semakin menjanjikan, hal ini dikarenakan hampir semua bidang kehidupan mempunyai resiko, antara lain, kematian,
KAJIAN METODE ZILLMER, FULL PRELIMINARY TERM, DAN PREMIUM SUFFICIENCY DALAM MENENTUKAN CADANGAN PREMI PADA ASURANSI JIWA DWIGUNA
Jurnal Mateatika UNAND Vol. 3 No. 4 Hal. 160 167 ISSN : 2303 2910 c Jurusan Mateatika FMIPA UNAND KAJIAN METODE ZILLMER, FULL PRELIMINARY TERM, DAN PREMIUM SUFFICIENCY DALAM MENENTUKAN CADANGAN PREMI PADA
Premi Tahunan Asuransi Jiwa Berjangka Dengan Asumsi Seragam Untuk Status Gabungan
Jurnal Sains Matematika dan Statistika, Vol. 1, No. 2, Juli 2015 Premi Tahunan Asuransi Jiwa Berjangka Dengan Asumsi Seragam Untuk Status Gabungan Nilwan Andiraja 1, Desta Wahyuni 2 Jurusan Matematika,
PENENTUAN PREMI TAHUNAN UNTUK POLIS ASURANSI JIWA BERSAMA LAST SURVIVOR
Jurnal Matematika UNAND Vol. 3 No. 2 Hal. 62 71 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN PREMI TAHUNAN UNTUK POLIS ASURANSI JIWA BERSAMA LAST SURVIVOR KHAIRANI Program Studi Matematika,
PREMI ASURANSI JIWA BERJANGKA MENGGUNAKAN MODEL TINGKAT BUNGA VASICEK
PREMI ASURANSI JIWA BERJANGKA MENGGUNAKAN MODEL TINGKAT BUNGA VASICEK Muslim 1*, Hasriati 2, Asli Sirait 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
PENENTUAN PREMI TAHUNAN PADA ASURANSI JOINT LIFE DENGAN MENGGUNAKAN ANUITAS REVERSIONARY
Jurnal Matematika UNAND Vol. 3 No. 4 Hal. 112 120 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN PREMI TAHUNAN PADA ASURANSI JOINT LIFE DENGAN MENGGUNAKAN ANUITAS REVERSIONARY IHSAN KAMAL
MENENTUKAN FORMULA PREMI TAHUNAN TIDAK KONSTAN PADA ASURANSI JOINT LIFE
E-Jurnal Matematika Vol. 4 (4), November 2015, pp. 152-157 ISSN: 2303-1751 MENENTUKAN FORMULA PREMI TAHUNAN TIDAK KONSTAN PADA ASURANSI JOINT LIFE I Gede Bagus Pasek Subadra 1, I Nyoman Widana 2, Desak
Prosiding Matematika ISSN:
Prosiding Matematika ISSN: 2460-6464 Menentukan Nilai Premi Tunggal Bersih Asuransi Jiwa Seumur Hidup dengan Pembayaran Tertunda Menggunakan Mortality Table CSO 1941 dan Mortality Table CSO 1958 1 Fini
PREMI TUNGGAL ASURANSI JIWA SEUMUR HIDUP UNIT LINK DENGAN GARANSI MINIMUM DAN NILAI CAP MENGGUNAKAN METODE POINT TO POINT
PREMI TUNGGAL ASURANSI JIWA SEUMUR HIDUP UNIT LINK DENGAN GARANSI MINIMUM DAN NILAI CAP MENGGUNAKAN METODE POINT TO POINT Ni Luh Juliantari 1, I Wayan Sumarjaya 2, I Nyoman Widana 3 1 Jurusan Matematika,
PERBANDINGAN HASIL PERHITUNGAN PREMI ASURANSI JIWA ENDOWMENT SUKU BUNGA VASICEK DENGAN DAN TANPA SIMULASI MONTE CARLO
E-Jurnal Matematika Vol. 6 (1), Januari 2017, pp. 74-82 ISSN: 2303-1751 PERBANDINGAN HASIL PERHITUNGAN PREMI ASURANSI JIWA ENDOWMENT SUKU BUNGA VASICEK DENGAN DAN TANPA SIMULASI MONTE CARLO Desi Kurnia
PREMI ASURANSI KESEHATAN DALAM STATUS HIDUP GABUNGAN. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Bina Widya Indonesia
PREMI ASURANSI KESEHATAN DALAM STATUS HIDUP GABUNGAN Putri Jumaniaty 1*, Hasriati 2, Musraini 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam
PENENTUAN PREMI UNTUK POLIS ASURANSI BERSAMA
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 115 122 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN PREMI UNTUK POLIS ASURANSI BERSAMA LUCKY EKA PUTRA Program Studi Matematika Fakultas Matematika
BAB II LANDASAN TEORI
15 BAB II LANDASAN TEORI Pada bab ini diberikan tinjauan pustaka, teori penunjang dan kerangka pemikiran. Tinjauan pustaka terdiri dari penelitian-penelitian sebelumnya yang mendasari skripsi ini, teori
Nilai Akumulasi Anuitas Berjangka Dengan Distribusi Makeham Pada Status Hidup Gabungan
Nilai Akumulasi Anuitas Berjangka Dengan Distribusi Makeham Pada Status Hidup Gabungan Nilwan Andiraja 1, Azhar Fadli 2 1,2 Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau
PERSATUAN AKTUARIS INDONESIA
PERSATUAN AKTUARIS INDONESIA Komisi Penguji PERSATUAN AKTUARIS INDONESIA UJIAN PROFESI AKTUARIS MATA UJIAN : A60 Matematika Aktuaria TANGGAL : 25 Juni 204 JAM : 09.00-2.00 WIB LAMA UJIAN : 80 Menit SIFAT
BAB II TINJAUAN PUSTAKA. pada AJB Bumi Putera 1912 Rayon Madya Pandaan oleh Ariyani (2001). Bumi Putera Rayon pandaan adalah belum tepat.
BAB II TINJAUAN PUSTAKA A. Tinjauan Peneliti Terdahulu Tinjauan penelitian terdahulu yang digunakan oleh para pengurus adalah penelitian yang berjudul Evaluasi Perhitungan Tarif Premi anuitas Asuransi
PENENTUAN CADANGAN PREMI DENGAN PERHITUNGAN PROSPEKTIF UNTUK ASURANSI PENDIDIKAN
E-Jurnal Matematika Vol. 7 (2), Mei 2018, pp. 122-128 ISSN: 2303-1751 PENENTUAN CADANGAN PREMI DENGAN PERHITUNGAN PROSPEKTIF UNTUK ASURANSI PENDIDIKAN Anggie Ezra Julianda Hutapea 1, I Nyoman Widana 2,
CADANGAN PREMI TAHUNAN ASURANSI KESEHATAN MENGGUNAKAN DISTRIBUSI BURR. Hendri Arriko 1, Hasriati 2 ABSTRACT
CADANGAN PREMI TAHUNAN ASURANSI KESEHATAN MENGGUNAKAN DISTRIBUSI BURR Hendri Arriko 1, Hasriati 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Jurusan Matematika Fakultas Matematika
CADANGAN ASURANSI PENDIDIKAN MENGGUNAKAN DISTRIBUSI PARETO DENGAN TINGKAT BUNGA VASICEK. Reinhard Sianipar 1, Hasriati 2 ABSTRACT
CADANGAN ASURANSI PENDIDIKAN MENGGUNAKAN DISTRIBUSI PARETO DENGAN TINGKAT BUNGA VASICEK Reinhard Sianipar, Hasriati 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Jurusan Matematika
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Penghitungan Manfaat dan Iuran Peserta Program Dana Pensiun dengan Metode Projected Unit Credit dan Individual Level Premium pada PT Taspen
Asuransi Jiwa
Bab 8: Cadangan Statistika FMIPA Universitas Islam Indonesia Cadangan Jika seorang pria berusia 20 tahun, misalnya, ingin mengasuransikan dirinya seumur hidup dengan santunan Rp 1000, maka dia dapat membeli
PREMI ASURANSI NAIK PADA STATUS HIDUP GABUNGAN Gita Anugrah 1*, Hasriati 2, Aziskhan 2
PREMI ASURANSI NAIK PADA STATUS HIDUP GABUNGAN Gita Anugrah 1*, Hasriati 2, Aziskhan 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Perusahaan asuransi dirasa perlu oleh masyarakat yang memiliki kecenderungan untuk menghindari atau mengalihkan risiko. Menurut Undang- Undang No.2 Tahun 1992 tentang
Penerapan Metode Projected Unit Credit dan Entry Age Normal pada Asuransi Dana Pensiun (Studi Kasus : PT. Inhutani I Cabang Kabupaten Berau)
Penerapan Metode Projected Unit Credit dan Entry Age Normal pada Asuransi Dana Pensiun (Studi Kasus : PT. Inhutani I Cabang Kabupaten Berau) Application of Projected Unit Credit Method And The Entry Age
PENENTUAN TINGKAT PARTISIPASI PADA ASURANSI JIWA ENDOWMEN UNIT LINK DENGAN METODE POINT TO POINT
Jurnal Ilmu Sosial dan Humaniora Vol 3 No 2 September 2015 1 PENENTUAN TINGKAT PARTISIPASI PADA ASURANSI JIWA ENDOWMEN UNIT LINK DENGAN METODE POINT TO POINT Erna Hayati *) *) Dosen Fakultas Ekonomi Universitas
PENENTUAN PREMI ASURANSI JIWA SEUMUR HIDUP MENGGUNAKAN SUKU BUNGA VASICEK
PENENTUAN PREMI ASURANSI JIWA SEUMUR HIDUP MENGGUNAKAN SUKU BUNGA VASICEK SKRIPSI Sebagai Salah Satu Syarat untuk Mencapai Gelar Sarjana Strata Satu pada Jurusan Matematika Fakultas Matematika dan Ilmu
PENENTUAN CADANGAN PREMI DENGAN METODE PREMIUM SUFFICIENCY PADA ASURANSI JIWA SEUMUR HIDUP JOINT LIFE
E-Jurnal Matematika Vol. 5 3), Agustus 2016, pp. 98-102 ISSN: 2303-1751 PENENTUAN CADANGAN PREMI DENGAN METODE PREMIUM SUFFICIENCY PADA ASURANSI JIWA SEUMUR HIDUP JOINT LIFE Ni Putu Mirah Permatasari 1,
PENENTUAN PREMI TAHUNAN KONSTAN DAN CADANGAN BENEFIT PADA ASURANSI JOINT LIFE BELLA YOSIA
PENENTUAN PREMI TAHUNAN KONSTAN DAN CADANGAN BENEFIT PADA ASURANSI JOINT LIFE BELLA YOSIA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 206 PERNYATAAN
BAB II KAJIAN PUSTAKA. yang bertujuan untuk mendapatkan dana pensiun. Menurut Undang-undang
BAB II KAJIAN PUSTAKA A. Tabungan dan Asuransi Pensiun Tabungan dan asuransi pensiun merupakan tabungan jangka panjang yang bertujuan untuk mendapatkan dana pensiun. Menurut Undang-undang Nomor 11 Tahun
PAID UP INSURANCE DAN EXTENDED INSURANCE PADA ASURANSI JIWA BERJANGKA UNTUK STATUS HIDUP GABUNGAN
PAID UP INSURANCE DAN EXTENDED INSURANCE PADA ASURANSI JIWA BERJANGKA UNTUK STATUS HIDUP GABUNGAN Risma Rio Pratiwi 1*, Rolan Pane 2, Musraini 2 1 Mahasiswa Program S1 Matematika 2 Dosen Jurusan Matematika
PERBANDINGAN ASURANSI LAST SURVIVOR DENGAN PENGEMBALIAN PREMI MENGGUNAKAN METODE COPULA FRANK, COPULA CLAYTON, DAN COPULA GUMBEL
E-Jurnal Matematika Vol. 6 (3), Agustus 2017, pp. 205-213 ISSN: 2303-1751 PERBANDINGAN ASURANSI LAST SURVIVOR DENGAN PENGEMBALIAN PREMI MENGGUNAKAN METODE COPULA FRANK, COPULA CLAYTON, DAN COPULA GUMBEL
PERHITUNGAN BIAYA PENSIUN MENGGUNAKAN METODE ATTAINED AGE NORMAL PADA DANA PENSIUN
PERHITUNGAN BIAYA PENSIUN MENGGUNAKAN METODE ATTAINED AGE NORMAL PADA DANA PENSIUN Chrisna Sandy 1, Sudarwanto 2, Ibnu Hadi 3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
PENENTUAN CADANGAN PREMI UNTUK ASURANSI JOINT LIFE
E-Jurnal Matematika Vol. 5 (1), Januari 2016, pp. 32-37 ISSN: 2303-1751 PENENTUAN CADANGAN PREMI UNTUK ASURANSI JOINT LIFE Ni Luh Putu Ratna Dewi 1, I Nyoman Widana 2, Desak Putu Eka Nilakusmawati 3 1
Analisis Komponen Biaya Asuransi Jiwa Dwiguna (Endowment)
Jurnal Matematika Vol. 4 No. 1, Juni 2014. ISSN: 1693-1394 Analisis Komponen Biaya Asuransi Jiwa Dwiguna (Endowment) Desak Nyoman Trisnawati Jurusan Matematika FMIPA Universitas Udayana e-mail: [email protected]
PENENTUAN PREMI BULANAN ASURANSI KESEHATAN BERJANGKA PERAWATAN RUMAH SAKIT UNTUK PERORANGAN
Jurnal Matematika UNAND Vol. 5 No. 4 Hal. 30 35 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN PREMI BULANAN ASURANSI KESEHATAN BERJANGKA PERAWATAN RUMAH SAKIT UNTUK PERORANGAN EHA ESPINOZA
Seri Pendidikan Aktuaris Indonesia Ruhiyat
Seri Pendidikan Aktuaris Indonesia Ruhiyat 5+ Soal & Matematika Aktuaria DRAF JAWABAN UJIAN PAI A6 - MATEMATIKA AKTUARIA 26 NOVEMBER 24 Ruhiyat Departemen Matematika FMIPA IPB Bogor, 25 . Sebuah variable
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Aktuaria adalah suatu disiplin ilmu yang menerapkan matematika dan metode statistika dalam memperkirakan dan menentukan baik secara kualitatif maupun kuantitatif
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kita pasti sudah tidak asing lagi dengan asuransi. Dewasa ini, bisnis asuransi mulai berkembang dengan pesat di Indonesia. Tidak sedikit lagi orang yang berpikir
PENETAPAN HARGA JAMINAN POLIS ASURANSI JIWA DENGAN PREMI TAHUNAN DAN OPSI SURRENDER WELLI SYAHRIZA
PENETAPAN HARGA JAMINAN POLIS ASURANSI JIWA DENGAN PREMI TAHUNAN DAN OPSI SURRENDER WELLI SYAHRIZA SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2009 PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI
PERBANDINGAN ASURANSI DAN TABUNGAN PENDIDIKAN
PERBANDINGAN ASURANSI DAN TABUNGAN PENDIDIKAN Pricilla Natalia Budiman; Farah Kristiani Jurusan Matematika, Fakultas Teknologi Informasi dan Sains, Universitas Katolik Parahyangan Jln. Ciumbuleuit 94,
Aktuariaa. Dosen : SS. Semester : V No.Revisi : 00. Hal: 1 dari 5. tim. 1).Konsep. dimodifikasi). Kemampuan. Deskripsi. asuransi jiwa
Kode/SKS: SS141427 / (2/1/0) Hal: 1 dari 5 A. CAPAIAN PEMBELAJARAN : CP 2.4 : Mampu memahami dan menerapkann konsep konsep matematika keuangan dan peluang untuk menganalisa masalah dalam asuransi jiwa
BAB II LANDASAN TEORI. Untuk menghitung nilai cadangan asuransi secara umum, maka dibutuhkan
5 BAB II LANDASAN TEORI Untuk menghitung nilai cadangan asuransi secara umum, maka dibutuhkan beberapa teori dasar yang dapat menyederhanakan permasalahan dan mempermudah proses perhitungan dan analisis
LIFE ANNUITIES. Di Susun Oleh: Kelompok 1 1. ANGGUN SARLINA SAILAN H RAHMADANA H
Tugas Mid Kelompok Matematika Asuransi LIFE ANNUITIES Di Susun Oleh: Kelompok 1 1. ANGGUN SARLINA SAILAN H 121 12 017 2. RAHMADANA H 121 12 255 PRODI STATISTIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN
PENENTUAN PREMI DAN CADANGAN MANFAAT PADA BEBERAPA JENIS ASURANSI JIWA DENGAN MEMPERHITUNGKAN BIAYA SITI RAHMATUL THAIBAH
PENENTUAN PREMI DAN CADANGAN MANFAAT PADA BEBERAPA JENIS ASURANSI JIWA DENGAN MEMPERHITUNGKAN BIAYA SITI RAHMATUL THAIBAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN
BAB II KAJIAN TEORI. hasil percobaan yang berbeda dan masing-masing mempunyai. itu menyusun kejadian, maka probabilitas kejadian
BAB II KAJIAN TEORI A. Probabilitas Teorema 2.1 (Walpole, 1992) Probabilitas menunjukan suatu percobaan mempunyai hasil percobaan yang berbeda dan masing-masing mempunyai kemungkinan yang sama untuk terjadi,
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) Mata Kuliah : Matematika Aktuaria ( 2 SKS) Kode : SIT 2401 Prasyarat : Metode Statistika II ( SIP 1303 ; 3 SKS) Program studi : Statistika (program S1) Semester : V
PENENTUAN BESARNYA ANUITAS HIDUP DENGAN MENGGUNAKAN NILAI ASUMSI PADA DISTRIBUSI SISA USIA
PENENTUAN BESARNYA ANUITAS HIDUP DENGAN MENGGUNAKAN NILAI ASUMSI PADA DISTRIBUSI SISA USIA Farah Kristiani ([email protected]) Jurusan Matematika FTIS Universitas Katolik Parahyangan ABSTRACT There
BAB I PENDAHULUAN. pembangunan dalam sektor riil saja seperti pertanian, industri, dan agrobisnis,
1 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada negara yang sedang berkembang, merupakan tugas utama pemerintah untuk senantiasa meningkatkan pertumbuhan ekonomi dan pembangunan negara. Pemerintah
Bab 3. Cash Values. 3.1 Pendahuluan. 3.2 Nilai Tunai (Cash Value)
Bab 3 Cash Values 3.1 Pendahuluan Salah satu tur penting dalam kebijakan asuransi jiwa adalah syarat-syarat yang diperuntukkan bagi nonforfeiture di dalam kasus default dari pembayaran premi.pemegang polis
Asuransi Jiwa
Bab 3: Bunga dan Anuitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Bunga Bunga Bunga Macam-macam Bunga Bunga Bunga 1. Bunga Tunggal (Bunga Tidak Mendapat Bunga) Misalkan P menyatakan
RINGKASAN INFORMASI PRODUK DAN/ATAU LAYANAN ASURANSI LIFE PLAN 100
Life Plan 100 merupakan produk asuransi Whole Life yang diterbitkan oleh PT. Jiwa Sequis Life (selanjutnya Penanggung ) dan Produk ini sudah dicatatkan pada Otoritas Jasa Keuangan. Berikut ini adalah ringkasan
: Premi Tunggal Bersih Asuransi Jiwa Seumur Hidup Unit Link. : 1. I Wayan Sumarjaya, S.Si, M.Stats. 2. Drs. I Nyoman Widana, M.
Judul : Premi Tunggal Bersih Asuransi Jiwa Seumur Hidup Unit Link dengan Garansi Minimum dan Nilai Cap Menggunakan Metode Point To Point Nama : Ni Luh Juliantari Pembimbing : 1. I Wayan Sumarjaya, S.Si,
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Kesehatan merupakan anugerah Allah SWT yang tidak bisa dinilai harganya yang harus kita syukuri. Meskipun sudah berhati-hati, orang tidak bisa menghindari
Hadiahkan pemberian yang senantiasa penuh manfaat dan tak terhenti, dari satu generasi ke generasi berikutnya.
Hadiahkan pemberian yang senantiasa penuh manfaat dan tak terhenti, dari satu generasi ke generasi berikutnya. Hidup, tertawa, mencintai. HADIAHKAN WARISAN. - Stephen Covey Warisan berupa kekayaan yang
PERHITUNGAN NILAI-NILAI AKTUARIA DENGAN ASUMSI TINGKAT SUKU BUNGA BERUBAH SECARA STOKASTIK
PERHITUNGAN NILAI-NILAI AKTUARIA DENGAN ASUMSI TINGKAT SUKU BUNGA BERUBAH SECARA STOKASTIK Kumala Dewi S.; Ferry Jaya Permana; Farah Kristiani Jurusan Matematika, Fakultas Teknologi dan Ilmu Sains, Universitas
SURAT EDARAN OTORITAS JASA KEUANGAN TENTANG PEDOMAN PEMBENTUKAN CADANGAN TEKNIS BAGI PERUSAHAAN ASURANSI DAN PERUSAHAAN REASURANSI
Yth. 1. Direksi Perusahaan Asuransi; dan 2. Direksi Perusahaan Reasuransi, di tempat. SURAT EDARAN OTORITAS JASA KEUANGAN NOMOR /SEOJK.05/2016 TENTANG PEDOMAN PEMBENTUKAN CADANGAN TEKNIS BAGI PERUSAHAAN
BAB II TINJAUAN PUSTAKA. Program dana pensiun merupakan bentuk balas jasa pemerintah terhadap
BAB II TINJAUAN PUSTAKA 2.1 Program Dana Pensiun Program dana pensiun merupakan bentuk balas jasa pemerintah terhadap pegawai yang telah bertahun-tahun mengabdikan dirinya kepada Negara. Di sisi lain,
BAB I PENDAHULUAN 1.1 Latar Belakang
1 BAB I PENDAHULUAN 1.1 Latar Belakang Pada saat ini bahaya, kerusakan, dan kerugian merupakan suatu ketidakpastian yang pasti akan dialami siapapun. Sehingga kemungkinan terjadi resiko dalam kehidupan
BAB 4 PEMBAHASAN. Konsep pengenaan pajak atas penghasilan berdasarkan Undang-undang Pajak
BAB 4 PEMBAHASAN Konsep pengenaan pajak atas penghasilan berdasarkan Undang-undang Pajak Penghasilan (UU PPh) Pasal 4 ayat (1) yang saat ini berlaku di Indonesia mengandung pengertian bahwa, yang menjadi
ASURANSI JIWA. 12/11/2012 MK. Aktuaria Darmanto, S.Si.
ASURANSI JIWA 1 PENGANTAR Asuransi Jiwa adl Usaha kerja sama dari sejumlah orang yang sepakat memikul kesulitan keuangan bila terjadi musibah kepada salah satu anggotanya. Setiap orang yang mengasuransikan
Mengenal Hukum Asuransi di Indonesia. Oleh: Mustari Soleman Masiswa Fakultas Hukum Univ.Nasional
Mengenal Hukum Asuransi di Indonesia Oleh: Mustari Soleman Masiswa Fakultas Hukum Univ.Nasional Sejarah Singkat Asuransi Asuransi berasal dari masyarakat Babilonia 4000-3000 SM yang dikenal dengan perjanjian
BAB III PEMBAHASAN. A. Penentuan nilai suku bunga menggunakan metode Cox Ingersoll Ross
BAB III PEMBAHASAN A. Penentuan nilai suku bunga menggunakan metode Cox Ingersoll Ross Dalam perkembangan ekonomi, suku bunga konstan dianggap kurang efektif, maka diperlukannya model yang bisa memprediksi
PENENTUAN CADANGAN PREMI MENGGUNAKAN METODE FACKLER PADA ASURANSI JIWA DWI GUNA
Buetin Imiah Mat. Stat. dan Terapannya (Bimaster) Voume 02, No. 2 (203), ha 5 20. PENENTUAN CAANGAN PREMI MENGGUNAKAN METOE FACKLER PAA ASURANSI JIWA WI GUNA Indri Mashitah, Neva Satyahadewi, Muhasah Novitasari
