SYRINGE PUMP ABSTRAKSI
|
|
|
- Veronika Atmadjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 SYRINGE PUMP STRKSI lm ui koktr pu ius suh mji hl y is utuk ilkuk. Nmu pil si psi mmutuhk pot y kstr, mk iutuhk jis ot tu ir ot y lih tii osisy trk hrus ilkuk sr rkljut sprti pu ius.pulis mo mmut sutu Syri Pump y mmpuyi r rkisr tr /jm smpi 0 /jm, mmiliki tu jrum sutik ssr 0. I PENHULUN. LTR ELKNG Tlh yk prlt koktr y mrpk rki lktroik utuk oprsioly, Slh stu prlt koktr y sistm krjy sr lktroik lh syri pump. Pswt syri pump ii usiy utuk mmrik ir ot pkt k lm tuuh psi lm jumlh trttu lm wktu trttu pul tikt ktliti y tii. Pmri ir zt mk tu ir ot hruslh tpt kost tu kt li jumlh ir y irik ssui y iutuhk olh psi, trutm utuk psi y lm k kritis shi tik trji ktikstim ir p tuuh psi y pt mmhyk i psi y s mjli prwt itsi tu y s mjli oprsi.. UJUN PENULISN lm pr pyusu kry tulis ii prlu y sutu pmts mslh y mykut p rki r u pswt syri pump:. Mmut lt pmomp rki ptur kpt lir (ml/hr).. Mmtu pkrj t mis lm mmrik ply y optiml kp psi.. Mlkuk puji pkh lt y iut tlh krj ik mthui kkursi ri lt y iut.
2 II TEORI SR. Gr NN Gr NN mrupk u r, yitu r N y iu r NOT. Kmui i NOT N tu isikt NN (sikt lm hs si). Gr NN lh klik ri r N tu klur r N y isi (ilik). Y Gmr. Gr NN Tl. Tl Kr Gr NN Y Gr NN si stl Multivirtor ( Shmitt Trir ) Rki stl Multivirtor r NN isut ju Shmitt Trir. Gmr. NN Shmitt Trir Misl, p r NN. Sklr p iput tik i tk mk kki k rloik 0 kr slh stu iput r NN rloik 0 mk output p r NN trsut lh rloik kmui output trsut k i ump lik k iput kki mu slumy rus k mlkuk pisi klm kpsitor hi puh. pimput p kki trsut tik k mruh koisi output p r NN trsut y ttp rili. P st k sklr iput itk mk k rili stu koisi output r NN k ruh kr iput p msi msi kki mji rili. Nili output p r NN k rili 0 kmui kmli iump likk k
3 trji poso. kr iput mji rloik 0 mk koisi p msi msi imput mji rloik 0.. Jrk wktu tr output r NN ri rloik mji 0 strusy lh trtu ri rki R y i ps mtuk slh stu sr trlih hulu.. Ph Nik Turu (outr) outr mrupk jis khusus ri ristr, y ir u mh/mhitu jumlh puls-puls lok y msuk mllui iput-iput-y. outr ru utuk mhsilk vril wktu lm purut pli oprsi-oprsi p sistm iitl. lm pr lt Tus khir ii, pulis muk I LS si outr. I LS mrupk ph (iry o iml) y pt iolk-lik, ilkpi prst lr. Ph ik lh rki y mhitu puls msuk muli ri il y kil k il y lih sr, Sk ph turu lh rki y mhitu puls msuk ri il y sr k il y lih kil. Sk ph turu lh rki y mhitu puls msuk ri il y sr k il y lih kil. Gmr. Koiursi pymt I LS III PERNNGN N RELISSI P ii pulis mr sutu lt pmomp syri muk ptur tts ir pkt sr lktroik. lt pmomp syri ii triri ri sumr t, rki ptur tts, tmpil ptur tts, pli rkusi, pmi rkusi, pli motor stpp motor stppr.
4 JP R0 0 JP R 00F,K F R U 0 R 0 S S M0L VR 00 K R 00F,K R 00F,K JP uf uf U M0L U M0L 0 U 0 R 0 LK ST S ENIN S R 0 0 ML U R0() R0() K K SNN V EO "" Q Q Q Q 0 0 U U JP L UP WN SNHN L UP WN SNHN + O RW Q Q Q Q O RW U Q Q Q Q 0 0 M0L U0 U R0() R0() K K LK ST S ENIN S ML SNN V Q Q Q Q EO "" + I/RO RI LT JP JP U SNLSN U I/RO RI LT SNLSN U U M0L M0L U 0 0 Q Q Q Q SNH0N 0 S? SW-SPT 0 0 U? RST LK KEN 0MJ P P U R 0 R 0 V O 0 Q Q Q Q SNH0N 0 0 JP Q Q Q Q JP MHRX? MOTOR STEPPER JP M Motor Stp Powr Supply : ( + V, + V ) R ki P tur Tts R ki P li Frku si Tmp il P tur Tts R ki Pm i Frku si Rki P li Motor stppr Mot or Stp pr Rki pmi rkusi isii lh utuk mmh rkusi y krj lm lok pr tik, r mmpu krj lm lok pr jm rki pli motor stppr k mrkk motor stppr shi Motor stppr k moro lt sutik ssui jumlh tts y iiik. Limit Swith Gmr. irm lok Sistm +, G N, + +, G N, + Sumr t mmrik t k sluruh lok rki, lm lok rki ptur tts mtuk /jm y iiik. Ptur tts y iiik k itmpilk p lok tmpil svsmt ptur tts. Rki pli rkusi rusi utuk mlik rkusi y klur ri rki osiltor Shmitt Trir r rkusi y klur ssui jumlh y iiik olh rki ptur tts. Gmr. Powr suply Tro. Skmtik Rki ri Gmr. irm lok Rki Sumr T IN IN LM0 LM +, G N, + V V Grou
5 k rki isply k rki isply iitl otrol Gmr. isut ju si rki ri powr supply tu pyrh jmt, kr rki trsut muk io y iut mji stu pkt tu isut ju io ri. Rki ri trsut rusi si pyrh ri msuk t p trsormtor puru t. Rki Ptur Tts Rki iit otrol triri ts rki multivirtor stl y muk I MOS 0, rki outr y muk I LS, rki or y muk I. Rki iit otrol ii rusi utuk mmrik msuk rup puls ik tu puls turu p rki multiplr, kmui pulspuls trsut k itmpilk i pmpil sv- smt lm tuk ko siml. +, G N, + JP JP R 0 R 0 S S R 00F,K R 00F,K uf uf U M0L U M0L R 0 R 0 0 U L UP WN Q 0 Q Q Q U L UP WN Q Q 0 Q Q SNHN + SNHN O RW O RW U JP JP U U M0L M0L 0. Rki Pmpil svsmt Rki Pmpil sv-smt rusi utuk mmpilk ili volum y iiik (lm ) tmpil iitl. Nili volum trsut mrupk puls-puls y irik olh rki iit otrol y kmui iuh ri ko ir mji ko siml olh or. R volum y itmpilk lh tr 0 smpi 0. U I/RO RI LT 0 SNLSN 0 P Gmr. Rki pmpil s smt. Rki Pli Frkusi R0 0 R 00F,K F U M0L Rs j 0K VR 00K JP 0 U LK ST S ENIN S ML Gmr. Rki pli Frkusi V EO "" JP 0 U LK ST S ENIN S ML V EO "" + R 0 Output M0P
6 Gmr. Rki iit otrol Rki pli rkusi rusi utuk mlik rkusi klur ri I 0 si osiltor, pmi rkusi trsut imil rsrk msuk siyl ri I ssui jumlh /jm y iiik r pt mji msuk ristr sr utuk mrkk motor stppr shi mhsilk jumlh tts y iiik. P lok rki ii triri ri I 0 I. I mrupk I Rt Multiplir, kr msuky rup rkusi y ihsilk olh osiltor rup lok mk pt irtik I itu si pmi rkusi rsrk msuk. Klur ri I rup rkusi y tlh ii rsrk msuk. Frkusi klur k ruh sr liir pil msuk trsut iuh sr rthp, sk lok y ihsilk olh osiltor ttp tik pt iuh.. Rki Pmi rkusi Rki syri pump ii mmpuyi u jis pmi wktu, yitu pmi m pmi spuluh. irik k rki pli motor stppr. Hsil Frkusi ri prhitu i pt Fout 00 Hz, rtiy trji tr ssr 00 lm stu tik. Shi utuk mmprlmt tr trsut lm tmpo jm k iutuhk jis jis I outr khusus utuk mmi lok trsut IV PENGUJIN N NLIS. Puji Tmpil Ptur Tts P puji i ii rtuju utuk mthui pkh rki tlh krj ik, ssui p y pulis hrpk. P st kit mhiupk lt ii, tmpil p sv smt itu hrus mujukk k 00. Utuk pujiy prtm kit tk tomol up k p tmpil k mujuk k rtmh trus jik kit mk tomol up smpi mujuk k 0 kik klipt stlh mpi k 0 kmli k 00.
7 Fusi ri msi msi pmi 0, t Jumlh y iiik trsut lh utuk mmprlmt lok y k Tl. Puji Lju lir mliht hsil puji i ts, pt kit kthui ili rt-rt lh: Jumlh y ihsilk Lmy wktu y iutuhk... Lmy wktu y iutuhk (t) 0 0 mit mit tik mit 0 tik mit tik mit tik mit tok mit tik mit tik mit 0 tik pyimp trhp ili rt-rt: 0-0, = -, - 0, = -, 0-0, = -, - 0, = -, - 0, = -, 0-0, = -, - 0, =, - 0, =, 0-0, =, Mlis Kslh muk visi Str jumlh pmt y trts : mk :,,,,...,,,, t, im = ili rt-rt,, = pm y ilkuk = jumlh Pm mk: ,,t Prhitu muk visi str mmiliki kutu kr mmpuyi stu y sm vril,
8 shi muh mmuty utuk mmik sr-sr. Kr pmil t mrujuk kp lmy lir syri pump mlkuk pmomp lm jumlh y ittuk mk pt iut sutu prsts kslh rt-rt si rikut:, 00 00% 0,%
DT-51 Application Note
DT- Applition Not AN Eltroni Puzzl Olh: Tim IE & Gtut Eko Dryni (Univrsits Ktholik Wiy Mnl) Apliksi ini irnn si prminn puzzl lktronik x. Sistm ini mnunkn moul DT MinSys Vr.., Pushutton n Svn Smnt. Mto
3 Berapa jumlah maksimum dan jumlah minimum simpul pada graf sederhana yang mempunyai 12 buah sisi dan tiap simpul berderajat 3?
GRF No Sol Untuk stip sol i wh, sutkn pkh gr srhn ngn lim simpul (vrtx) yng mmiliki rjt untuk msing-msing simpul sgi rikut? Jik, gmr grny! ),,,, ),,,, ),,,, ),,,, Mungkinkh iut gr-srhn simpul ngn rjt msing-msing
f g DEKODER Gambar 2.1. Pemecah sandi (Dekoder)BCD ke seven segment
PERCOBAAN DIGITAL 02 PEMECAH SANDI (DECODER) 2.1. TUJUAN 1. Mnnl, mmpljri n mmhmi oprsi rnkin loik untuk mmh sni ilnn siml. 2. Mmhmi r mnmpilkn t mnunkn pr svn smnt (7 rus). 3. Mnnl n mmhmi r krj sutu
SOAL-SOAL OLIMPIADE MATEMATIKA DAN PENYELESAIANNYA
SOL-SOL OLIMPIDE MTEMTIK DN PENYELESINNY. ui uu sip ilg rl, rlu! ui :. ui uu sip ilg rl, g rlu ui :! : u il sgi M GM im M g rihmi M sg GM g Gomri M.. ui uu sip ilg posii,, rlu ui :!. ui uu sip ilg rl,
BAB II LANDASAN TEORI
BAB II LANDASAN TEI Lds ori dlm skripsi ii risik ori-ori mdk dlh rd kovrsi dr Tlor mod Nwo d rd kovrsi mod srowski d rd kovrsi d irpolsi kdrik.. rd Kovrsi rd kovrsi mrpk s ik prp dlm plsi Prsm olir 0.
METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA. FakultasMatematikadanIlmuPengetahuanAlamUniversitas Riau KampusBinawidyaPekanbaru, 28293, Indonesia
METDE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA V Sitompul * Smsudhuh TP Nbb Mhsisw JurusMtmtik Dos JurusMtmtik FkultsMtmtikdIlmuPthuAlmUivrsits Riu KmpusBiwidPkbru 89 Idosi *vroik@hoooid ABSTRACT This ppr
BAB VI. FUNGSI TRANSENDEN
BAB VI. FUNGSI TRANSENDEN 6.. FUNGSI LOGARITMA NATURAL ASLI) 6.. FUNGSI INVERS DAN TURUNANNYA 6.3. FUNGSI EKSPONEN NATURAL 6.4. FUNGSI EKSPONEN DAN LOGARITMA UMUM 6.5. PENGGUNAAN FUNGSI LOGARITMA DAN EKSPONEN
Implementasi Sistem Persamaan Linier menggunakan Metode Aturan Cramer
Jurl Tkolo Iorms DINMIK Volum, No., Jur : 8 ISSN : 8 Implmts Sstm Prsm Lr muk Mto tur rmr R r Noor St Prorm Stu Tkk Iormtk, Uvrsts Stkuk ml: [email protected] strk Mtmtk sr rs sr k mj u, ytu mtmtk trp (ppl
Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com
Riks Limit Fusi Kels XI IPS NAMA : KELAS : theresivei.wordpress.com Riks Limit Fusi Kels XI IPS LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Medekti hmpir, sedikit li, tu hr bts, sesutu y dekt tetpi tidk dpt
II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat
3 II. TINJUN PUSTK. Sistm ilnn Komplks Sistm ilnn komplks dpt dinytkn scr orml dnn mnunkn konsp psnn trurut ordrd pir ilnn riil,. Himpunn smu psnn itu dnn oprsi-oprsi trtntu yn ssui pdny dpt didinisikn
CATATAN KULIAH Pertemuan XIV: Analisis Dinamik dan Integral (2) Oleh karena bukan angka, maka integral di atas didefinisikan sebagai:
CATATAN KULIAH Prtmun XIV: Anlisis Dinmik dn Intgrl (2) A. Intgrl Tk Wjr (Impropr Intgrl) Intgrsi dngn Limit Tk Hingg Bntuk intgrl tk wjr jnis ini s: f ) ( d dn f ( ) Olh krn ukn ngk, mk intgrl di ts didfinisikn
BAB VI RANDOM VARIATE DISTRIBUSI KONTINU
BAB VI ANDOM VAIATE DISTIBUSI KONTINU Dlm mlkukn simulsi komputr, hrus dpt dilkukn pnrikn rndom numr dri dn mllui progrm komputr. Pnrikn rndom numr mllui komputr ini sngt rgntung pd fungsi tu distriusi
Pohon. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon
Poon Poon l r tk-rr truun yn tik mnnun sirkuit poon poon ukn poon ukn poon Hutn (orst) l - kumpuln poon yn slin lps, tu - r tik truun yn tik mnnun sirkuit. Stip komponn i lm r truun trsut l poon. Hutn
Hendra Gunawan. 19 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/0 9 Februri 0 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kk kekoverge
PENDAHULUAN. X dikatakan peubah acak kontinu, jika ada sebuah fungsi non negatif f, yang didefinisikan pada semua bilangan real, x (,
EUBAH ACAK KONTINU ENDAHULUAN diktkn puh ck kontinu, jik d suh ungsi non ngti, yng didinisikn pd smu ilngn rl,,, Mmpunyi sit hw untuk smrng himpunn ilngn rl B B d B Fungsi disut sgi ungsi kpktn plung Brp
DETERMINAN dan INVERS MATRIKS
// DETERMINN n INVERS MTRIKS Trnspose Mtriks () Jik mtriks mxn, mk trnspose ri mtriks ( t ) lh mtriks erukurn nxm yng iperoleh ri mtriks engn menukr ris engn kolom. Ex: t // SIFT Trnspose Mtriks () Sift:.
FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK
M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo
DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI
DERET FOURIER MATEMATIKA FISIKA II JURUSAN PENDIDIKAN FISIKA FPMIPA UPI PENDAHUUAN Dlm ii k dihs uri drt dri sutu ugsi priodik. Jis ugsi ii mrik kr srig mucul dlm rgi prsol isik, sprti gtr mkik, rus listrik
Definisi 1: Sebuah fungsi f(x) dikatakan periodic dengan periode T > 0, jika berlaku: f(x + T) = f(x) untuk samua x.
DERE FOURIER PENDAHUUAN Dlm ii k dihs pryt drt dri sutu ugsi priodik. Jis ugsi ii mrik kr srig mucul dlm rgi prsol isik, sprti gtr mkik, rus listrik olk-lik AC, glomg uyi, glomg Elktromgt, htr ps, ds.
F E A S I B I L I T Y F A T T E N I N G B E E F C A T T L E W I T H D I F F E R E N T F E E D
F E A S I B I L I T Y F A T T E N I N G B E E F C A T T L E W I T H D I F F E R E N T F E E D IN C I B E U R E U M D I S T R I C T K U N I N G A N R E G E N C Y B y : T a t a n g R u s t e n d i T e d
USAHA KONVEKSI PAKAIAN JADI
P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) U S A H A K O N V E K S I P A K A I A N J A D I P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H (
Revisi JAWABAN Persiapan TO - 3
Revisi JAWAAN Persi TO - Mt IPS l l l l l l l Cr li: l l l U ulu sis lrit- eji sis k iseut u kli sl itu sis l l l l l l l l l l l Ar rl eiliki ili ksiu st = k = Mksiu & iiu rl (usi kurt) sti terji i suu
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)
ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
MA1201 MATEMATIKA 2A Hendra Gunawan
MA0 MATEMATIKA A Hedr Guw Semester II, 06/07 0 Februri 07 9. Deret Tk Terhigg Kulih yg Llu Memeriks kekoverge sutu deret d, bil mugki, meghitug jumlhy 9.3 Deret Positif: Uji Itegrl Memeriks kekoverge deret
SOLUSI SOAL ESSAY. No. 1 s.d 15. Jadi, uang tabungan Laila akan menjadi $6 kurang dari pada tabungan Tina setelah 13 minggu.
SOUSI SO ESSY No. s.. Solusi: Misly umur yh sy, iu sy, ik lki-lki sy sekrg lh x, y, z, mk x : y : z : 9 : x : z : x z. ( x 4 x 4 Jik : c :, mk c c x 36. ( ri ( (, kit memperoleh: x 36 x 36 z 3 Ji, ik lki-lki
Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan
Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript
BAB III LIMIT FUNGSI DAN KEKONTINUAN
BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk
P U T U S A N. N o m o r / P d t. G / / P A. P a s B I S M I L L A H I R R A H M A N I R R A H I M
P U T U S A N N o m o r 1 7 0 6 / P d t. G / 2 0 1 5 / P A. P a s B I S M I L L A H I R R A H M A N I R R A H I M D E M I K E A D I L A N B E R D A S A R K A N K E T U H A N A N Y A N G M A H A E S A P
DAFTAR USUL PENETAPAN ANGKA KREDIT JABATAN PRANATA KOMPUTER PERTAMA
CONTOH : LAMPIRAN II : KEPUTUSAN BERSAMA DAFTAR USUL PENETAPAN ANGKA KREDIT KEPALA BADAN PUSAT STATISTIK DAN JABATAN PRANATA KOMPUTER PERTAMA KEPALA BADAN KEPEGAWAIAN NEGARA NOMOR : 002/BPS-SKB/II/2004
Analisis Diagonalisasi Matriks untuk Menentukan Individu ke-n Berdasarkan Peluang Genotip Induk
98 BoWll Jurl Ilm Ilmu Bolo M 5 Vol. No., p 98-3 ISSN: -6 Alss Dolss Mtrks utuk Mtuk Ivu k- Brsrk Plu Gotp Iuk M. Yk Slm K, Mmk Ujt Rom, Prorm Stu Mtmtk FMIPA Urm Jl. Mjpt 6 Mtrm 835. Tlp 37-67 Eml : [email protected]
Trihastuti Agustinah
TE 967 Tekik Numerik Sistem Lier Trihstuti gustih Big Stui Tekik Sistem Pegtur Jurus Tekik Elektro - FTI Istitut Tekologi Sepuluh Nopember O U T L I N E OBJEKTIF CONTOH SIMPULN 5 LTIHN OBJEKTIF Teori Cotoh
BAB VIII INTEGRAL LIPAT DUA DENGAN MAPLE. integral lipat satu merupakan materi pendukung untuk pembahasan dalam materi
BAB VIII INTEGRAL LIPAT DUA DENGAN MAPLE A. Pengntr Konsep integrl tentu untuk fungsi engn stu peuh pt iperlus menji untuk fungsi engn nyk peuh.integrl fungsi stu peuh selnjutny kn inmkn integrl lipt stu,
APLIKASI POHON MERENTANG MINIMUM UNTUK MENENTUKAN JARINGAN DISTRIBUSI LISTRIK
APLIKASI POHON MERENTANG MINIMUM UNTUK MENENTUKAN JARINGAN DISTRIBUSI LISTRIK Siik Solmn (81) Prorm Stui Tknik Inormtik, STEI ITB Jln Gns Bnun -mil: [email protected] ABSTRAK Mkl ini kn mms mnni poon
Eliminasi Gauss Gauss Jordan
Persm Liier Simult Elimisi Guss Guss Jor Persm Liier Simult Persm liier simult lh sutu betuk persm-persm p yg secr bersm-sm meyjik byk vribel bebs. Betuk persm liier simult eg m persm vribel bebs pt itulisk
P U T U S A N. N o m o r / P d t. G / / P A. P a s B I S M I L L A H I R R A H M A N I R R A H I M
P U T U S A N N o m o r 1 7 1 1 / P d t. G / 2 0 1 5 / P A. P a s B I S M I L L A H I R R A H M A N I R R A H I M D E M I K E A D I L A N B E R D A S A R K A N K E T U H A N A N Y A N G M A H A E S A P
Two-Stage Nested Design
Mteri #13 TIN309 DESAIN EKSPERIMEN Two-Stge Nested Design Nested design dlh slh stu ksus dri desin multi fktor dimn level dri slh stu fktor (misl: fktor B) serup tpi tidk identik untuk setip level yng
ALAT SCORING BOARD PERTANDINGAN BOLA BASKET BERBASIS MIKROKONTROLER AT89S51
SORIN OR PRTNINN OL SKT RSIS MIKROKONTROR TS R Mulii Jurusn Tknik lktro, kults Tknoloi Inustri, Univrsits unrm, Mron Ry 00 pok tlp (0), strksi : Tlh iut lt Sorin or yn runsi untuk mntt n mnmpilkn sutu
9.1 Representasi Aritmetika Dengan Tree
Tlh t thu rsm hw pnrpn rph mupun ju tr lm n omputr snt ny. Bn n mmhs mn mto untu mlun pnlusurn unsurunsur (vrt-vrt) r rph tu tr trsut. Ju mn mmut jlur r stu vrt vrt ln yn pln optmun. Brp lortm yn n hs
Materi IX A. Pendahuluan
Mteri IX Tujun :. Mhsisw dpt memhmi vektor. Mhsisw mmpu mengunkn vektor dlm persoln sederhn 3. Mhsisw mengimplementsikn konsep vektor pd rngkin listrik. Pendhulun Sudh menjdi kesepktn umum hw untuk menentukn
III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL
III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
BAB III. Perancangan dan Realisasi
BB III Prnnn n Rlissi.. Prnnn Prnkt Krs P skripsi ini kn irnn sutu lt yn pt runsi untuk mnukur intnsits hy n sur. lt yn irlissikn triri ri lt ukur intnsits hy n sur nn TM yn trhuun nn snsor LDR n mikroon.
BARISAN DAN DERET. Jawaban : D a = 3, b = 2, U 10 = (a + 9b) U 10 = = 21. Jawaban : E a = 2,5 S ~ =
pge of SOAL Jumlh ke-0 dri bris :,, 7, 9,.dlh.. d. e. 7 9 Ebts 99 Sebuh bol jtuh dri ketiggi, meter d memtul deg ketiggi kli tiggi semul. D setip kli memtul berikuty, mecpi ketiggi kli tiggi ptul sebelumy.
Matematika Dasar VOLUME BENDA PUTAR
OLUME BENDA PUTAR Ben putr yng seerhn pt kit mil ontoh lh tung engn esr volume lh hsilkli lus ls ( lus lingkrn ) n tinggi tung. olume ri en putr ser umum pt ihitung ri hsilkli ntr lus ls n tinggi. Bil
Beberapa Aplikasi Graf
B 6 Grf 139 Beerp Apliksi Grf. Lintsn Terpenek (Shortest Pth) grf eroot (weighte grph), lintsn terpenek: lintsn yng memiliki totl oot minimum. Contoh pliksi: 1. Menentukn jrk terpenek/wktu tempuh tersingkt/ongkos
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)
MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
m 2 BUDIDAYA PEMBESARAN IKAN LELE
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) B U D I D A Y A P E M B E S A R A N I K A N L E L E P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) B U D I D A Y A P E M B E S A
5 S u k u B u n g a 1 5 %
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) U S A H A A B O N I K A N P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) U S A H A A B O N I K A N B A N K I N D O N E S I A K A
BAB III MODEL MATEMATIKA KEPENDUDUKAN
5 A III MODEL MATEMATIKA KEENDUDUKAN 3.1 Uu Filis Filis mup pfom podusi ul di sog i u slompo idividu yg pd umumy di pd sog i u slompo i. iu p uu filis yg dil olh o 1997 diy dlh Cud ih R CR u g lhi s, mup
Kalkulus 2. Deret Pangkat dan Uji Konvergensi. Department of Chemical Engineering Semarang State University. Dhoni Hartanto S.T., M.T., M.Sc.
Klkulus Deret Pgkt d Uji Kovergesi Dhoi Hrtto S.T., M.T., M.S. Deprtmet o Chemil Egieerig Semrg Stte Uiversity Eperimetl Deret Pgkt Urut d deret sequees d series). Urut gk merupk rgki gk tk terbts jumlh
GRAPH. b Gambar 1. Graph
GRAPH m GRAPH merupkn sutu koleksi ri himpunn V G n E G. Notsi : G = { VG, EG } G = Grph VG = Himpunn titik EG = HImpunn gris Titik : Noe / Vertex Gris : Ar / Ege Contoh : Grph G teriri ri : G = { VG,
Hendra Gunawan. 30 Oktober 2013
MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr
Prestasi itu diraih bukan didapat!!!
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA 00 TIM OLIMPIADE MATEMATIKA INDONESIA 00 Prestsi itu dirih ukn didpt!!! SOLUSI SOAL Bidng Mtemtik Disusun oleh : Olimpide Mtemtik Tk Kupten/Kot 00 BAGIAN PERTAMA.
BAB IV PEMBAHASAN Variasi JG terhadap JL 6 m/s pada waktu 0,1 detik
BAB IV PEMBAHASAN 4.1. Hsil n Anlis P ini memhs hsil ri penelitin yng telh ilkukn yitu pol lirn ule ir-ur p pip horizontl. Pol lirn ule memiliki iri yitu erentuk gelemung ult yng ergerk ilm lirn. Simulsi
Bab 3 SISTEM PERSAMAAN LINIER
Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm
PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN
PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi
SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)
SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki
Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah
VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B
VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang
VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung
UJIAN BERSAMA SMA KABUPATEN TANAH DATAR SEMESTER 1 TAHUN PELAJARAN 2008/2009. Mata Pelajaran : MATEMATIKA Kelas/jurusan : XII/IPS Hari/Tanggal :
UJIN ERSM SM KUPTEN TNH DTR SEMESTER THUN PELJRN / Mt Peljrn : MTEMTIK Kels/jurusn : XII/IPS Hri/Tnggl : Wktu : menit Pilihlh slh stu jwn ng dinggp pling enr dn tept!. d c c c c. Jik F '( ) dn F () mk
BAB 7. LIMIT DAN LAJU PERUBAHAN
BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
MODEL SIR (SUSCEPTIBLES, INFECTION, RECOVERY) UNTUK PENYEBARAN WABAH PENYAKIT PADA SUATU POPULASI TERTUTUP
MODEL IR (UCEPTIBLE, INFECTION, RECOVERY) UNTUK PENYEBARAN WABAH PENYAKIT PADA UATU POPULAI TERTUTUP Dosen Pengmpu : Dr Lin Aryti DIUUN OLEH: Nm : Muh Zki Riynto Nim : 2/56792/PA/8944 Progrm tudi : Mtemtik
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
BAB 2 SISTEM BILANGAN DAN KESALAHAN
Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg
E-LEARNING MATEMATIKA
MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli
LIMIT FUNGSI. Tapi jika x hanya mendekati 1, f(x) mendekati nilai berapa..? x 0,9 0,99 0,999 0, ,0001 1,001 1,01 1,1
Rinksn Limit Funsi Kels XI IPS SMA Trknit Jkrt LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Mendekti hmpir, sedikit li, tu hr bts, sesutu yn dekt tetpi tidk dpt dicpi. Ilustrsi it = = Funsi ini tk mempunyi
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu
MEMB EK ALI DIR I S EJAK DINI DENG AN K EWIR AUS AHAAN Disampaikan dalam pelatihan Kewirausahaan Akademi Komunikasi Radio dan Televisi (AKOMRTV)
MEMB EK ALI DIR I S EJAK DINI DENG AN K EWIR AUS AHAAN Disampaikan dalam pelatihan Kewirausahaan Akademi Komunikasi Radio dan Televisi (AKOMRTV) O le h : A r is B. S e t y a w a n P r o g r a m D I II
INTEGRASI NUMERIS Numerical Differentiation and Integration
http://istirto.st.ugm..ci INTEGRASI NUMERIS Numericl Dieretitio Itegrtio Itegrsi Numeris http://istirto.st.ugm.c.i q Acu q Chpr, S.C., Cle R.P., 99, Numericl Methos or Egieers, E., McGrw-Hill Book Co.,
1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:
) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut
Isi Pembahasan Week 5: Antena Aperture. Mudrik Alaydrus, Univ. Mercu Buana, 2008 Presentasi 5 1
Isi Pmhsn Wk 5: Antn Aptu Mudik Alydus, Univ. Mcu Bun, 008 Psntsi 5 1 Antn Aptu/ Antn Bidng wvguid ptu Jnis lin: ntn clh (slt ntnn) clh clh Mudik Alydus, Univ. Mcu Bun, 008 Psntsi 5 Mudik Alydus, Univ.
MODEL MATEMATIKA SIR
MODEL MATEMATKA R (UCEPTBLE, NFECTON, RECOVERY UNTUK PENYEBARAN WABAH PENYAKT PADA UATU POPULA TERTUTUP Muhmd Zki Riynto NM: 2/56792/PA/8944 E-mil: zki@milugmcid http://zkimthwebid Dosen Pembimbing: Dr
8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w.
http://www.syiknybeljr.wordpress.co PEMBAHASAN SOAL SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI (SBMPTN) TAHUN 0. Jik, k nili A. (kunci) B. C. D. E... ( ) ( ) Kedu rus dikrkn: 8 = ( ) = = ( ) ( ) 8 =
Analisis Rangkaian Listrik Jilid 2
Sudry Sudirhm Alisis Rgki Lisrik Jilid Drpulic Hk cip pd pulis, SUDIRHAM, SUDARYANO Alisis Rgki Lisrik Drpulic, Bdug r-7 disi Juli hp:-cf.rg Alm ps: Kyk D-3, Bdug, 435. Fx: 6 5347 Sudry Sudirhm, Alisis
METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.
1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng
K A B U P A T E N B A D U N G
L A P O R A N K I N E R J A I N S T A N S I P E M E R I N T A H ( L K j I P ) D I N A S P A R I W I S A T A K A B U P A T E N B A D U N G 2 0 1 4 K A T A P E N G A N T A R O m S w a s t y a s t u P u j
Beberapa hal yang diperlu diperhatikan oleh Bapak/Ibu PNS:
Brp hl yng iprlu iprhtikn olh Bpk/u PNS: 1. Pstikn Bpk/u trt i Kmnristkikti ; 2. Pstikn p mnu t posisi Bpk/u mmilih vrifiktor lvl 1 : Univrsits Lmung Mngkurt 3. P mnu isin riwyt golongn trpt kolom Nomor
4. SISTEM PERSAMAAN LINEAR
Persipn UN / Beh SKL http://vigt.worpress.om SMA Negeri Mlng Pge. SISTEM PERSAMAAN LINEAR A. Sistem Persmn Liner Du Vriel (SPLDV). Bentuk umum :. Dpt iselesikn engn metoe grfik, sustitusi, eliminsi, n
1 0 0 m 2 BUDIDAYA PEMBESARAN IKAN NILA
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) B U D I D A Y A P E M B E S A R A N I K A N N I L A P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) B U D I D A Y A P E M B E S A
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
METODE NUMERIK. Sistem Persamaan Linier (SPL) (1) Pertemuan ke 5. Rinci Kembang Hapsari, S.Si, M.Kom
METODE NUMERIK Pertemu ke 5 Sistem Persm Liier (SPL) () Rici Kemg Hpsri, S.Si, M.Kom www.rkhcdemy.com/wp Represetsi SPL Betuk umum persm lier deg peuh Dim :,, : koefisie dri persm, d,,..., merupk peuh.
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
Penerapan Pohon dan Algoritma Heuristic dalam Menyelesaikan Sliding Puzzle
Pnrpn Pohon n Algoritm Huristic lm Mnylsikn Sliing Puzzl Rzn Achm (13508104) Progrm Stui Inormtik Institut Tknologi Bnung Jln Gnsh 10 Bnung mil : [email protected]; [email protected] ABSTRAK Sliing
Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)
Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny
BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN
DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom
Erna Sri Hartatik. Aljabar Linear. Pertemuan 3 Aljabar Vektor (Perkalian vektor-lanjutan)
Ern Sri Hrttik Aljr Liner Pertemun Aljr Vektor (Perklin vektor-lnjutn) Pemhsn Perklin Cross (Cross Product) - Model cross product - Sift cross product Pendhulun Selin dot product d fungsi perklin product
Integral Tak Tentu dan Integral Tertentu
Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi
Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006
www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk
IRISAN KERUCUT. 1. Persamaan lingkaran dengan pusat (0,0) dan jari-jari r. Persamaan = TK titik T = =
IRISAN KERUCUT Bb 9 A. LINGKARAN. Persmn lingkrn dengn pust (0,0) dn jri-jri r 0 r T(x,y) X Persmn = TK titik T = { T / OT r } = = {( x, y) / r } {( x, y) / r }. Persmn lingkrn dengn pust (,b) dengn jri-jri
um Y Gmu ol P Mu 6 3 mo ol mu m o l mo P l yu c u lm y c c y K 0 l lm y c - 4 c y /m l - 8 /m l 00 u K ) m ol l P j mu o oul w o o - m l ol mu u u m u
J ST J ul Toolo 1) 01 : 35 S SN : 087 548 P ol Mu o T Gmu Y um T Toolo Jul lm S Lm Pl Uv Ru mw B N oz L ooum T R Km Juu T K m Uv Ru Pu Kmu Bwy Jl HR Su Km15 Pu 893 E- ml: y u@uc F c P w w wc v ow colo
Bila kita mempunyai suatu sistem persamaan linier 2x + 3y + 3z = 0 x + y + 3z = 0 x + 2y z = 0
LJBR MTRIKS Bil kit mempui sutu sistem persm liier + + z = + + z = + z = Mk koefisie tersebut di ts disebut MTRIKS, d secr umum dpt ditulisk sbb : Jjr bilg tersebut di ts disebut MTRIKS, d secr umum dpt
matematika K-13 IRISAN KERUCUT: PERSAMAAN HIPERBOLA K e l a s A. Definisi Hiperbola Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN HIPERBLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi dn unsur-unsur hiperol.. Dpt menentukn persmn
