Implementasi Sistem Persamaan Linier menggunakan Metode Aturan Cramer
|
|
|
- Hendra Sutedja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Jurl Tkolo Iorms DINMIK Volum, No., Jur : 8 ISSN : 8 Implmts Sstm Prsm Lr muk Mto tur rmr R r Noor St Prorm Stu Tkk Iormtk, Uvrsts Stkuk ml: [email protected] strk Mtmtk sr rs sr k mj u, ytu mtmtk trp (ppl mtmts) mtmtk mur (pur mtmts). Mtmtk trp mmpuy prt w mtmtk uk lur mtmtk. Mtmtk trp rpr mmtu mylsk mslmsl u yt y k slsk lm sstmy mmu kutu lmulmu lm pmy. yk lmuw y mkj mtmtk utuk pt mtk lm l. Sk mtmtk mur rpr s rtu y mmprtk ry mllu rr s, torm y trstruktur sr sstmts. Tor ljr Lr mrupk r mtmtk trp. ljr Lr mmpuy prp p r lmu lm lmu sosl srt tkolo kususy tkolo Iorms komuks (okom) y st s rkm pst. Ilmu y pljr p mtr ljr Lr sl stuy ytu Sstm Prsm Lr. pu sl stu mto y pt uk utuk mr l vrl l tur rmr Kt Ku: Prsm Lr, tur rmr PENDHULUN Ilmu ptu tkolo srt s (IPTEKS) smk mkt sr prkm zm. Hsl r pkt kmju IPTEKS p st, mk tl mj y tk pt psk kutu mus tu sr. r lmu ptu trus rkm mju mk prlu k pltplt, k plt y rtuju mmuk mylsk mslmsl ru, mmk ptu y mupu muj kr sutu ptu. Sstm Prsm Lr mrupk r lmu mtmtk y mmpljr m mylsk msl tkk muk ljr lr. Mto mto y pljr lm mt kul l sutu lortm r sutu pyls r prsol y pt pruk s mto mto pt trpk lm prorm komputr. Pmrorm Vsul mrupk sl stu lt vsul lm komputr y pt uk utuk mmplk sl r mtmtk trp muk plks komputr. yk skl r mtmtk y tl plksk muk komputr. oto plks komputr ytu mtl, vsul s, lp, jv l sy. Dr ltr lk ts, plt mo mmut su plks pmrorm vsul p tor sstm prsm lr mto tur rmr. TINJUN PUSTK. Sstm Prsm Lr tuk umum sstm prsm lr (SPL) y trr r m u prsm lr u pu tulsk s rkut: Implmts Sstm Prsm Lr Mto tur rmr
2 Jurl Tkolo Iorms DINMIK Volum, No., Jur : 8 ISSN : m m... m m...(). Du Vrl D,,.., mrupk pu j R, =,,,...,m j=,,,,..., mrupk kos SPL oto: + y = y = Sstm prsm lr u vrl vrl y sr umum l : y y m,,,, m. T vrl...() Sstm prsm lr t vrl vrl, y z sr umum l : y y y z z z m p R...( )...( )... ()...( ),,,,,,,,, m, p Pyls pt prol r mruks prsm mj prsm u vrl, r mlk prsm () prsm () murk.. Mto tur rmr tur rmr l sl stu mto pr l vrl muk trm. R mrupk mtrk, kmu mtrk trsut p. Mj smtrk smtrk smtrk smtrk Smu mtrk,,, r trmy. t t S X =, Y= Z = t t t...() t. Ds Dtrm Mtrks ( ). Fus trm, otsk t(), l juml smu sl kl lmtr rt. Implmts Sstm Prsm Lr Mto tur rmr
3 Jurl Tkolo Iorms DINMIK Volum, No., Jur : 8 ISSN : 8 oto: ( ); juml smu sl kl lmtr rt l juml r smu () lm rkut : + + Fus Dtrm oto: + = Dt( ) ( ). k r prtu oorml y: = Torm: ) ) ). l ( ) mtrks st ts/w, mk Dt() l sl kl r lmlm ol utm. oto: = ukt: Sr umum: utuk () Dt() = () = ol utm ) ) ) = 8 Dt()=(+8+)(+(8)+())= HSIL DN PEMHSN. ls Prmsl Sstm uk utuk mmtu os lm morks jw sol, kr slm lum y mmut sstm plks utuk mtmtk. Kususy lm l l mtr pr sstm prsm lr utuk mptk l vrl.. ls Sstm Sstm y k kmk muk plks orl lp. D mmsukk rumusrumus tur rmr k lm plks. oto lt sstm prsm lr: X + y +z = + y z = + y z = Hsl l vrl s rkut: X =, Y =, Z = 8 Implmts Sstm Prsm Lr Mto tur rmr
4 Jurl Tkolo Iorms DINMIK Volum, No., Jur : 8 ISSN : 8. Pr Sstm + y z = = ( ) 8 = 8 Gmr. Pr Tmpl Sstm. Implmts. plks Sstm oto: r l vrl r sstm prsm lr s rkut: X + y +z = + y z = + y z = Gmr. Implmts Sstm Nl vrl y pt l: X =, Y =, Z =. Prtu sr mul X + y +z = + y z = = = ( 8) 8 8 t X = t t Y = t t Z = t KESIMPULN DN SRN Ksmpul Hsl r plt l s rkut:. w mtr y rkt mtmtk, prtuy pt ut lm tuk plks. otoy sj mtr ljr lr tu mto umrk.. plks trsut pt mmtu os lm mslk l jw, mmprpt pross prtu.. Sol uj utuk msms mssw s r, muk plks trsut sl l pt tmuk Implmts Sstm Prsm Lr Mto tur rmr
5 Jurl Tkolo Iorms DINMIK Volum, No., Jur : 8 ISSN : 8 Sr Dr sl ksmpul ts sr y s rk, w tryt mmut plks mtmtk st mmtu os y mmrk sol r utuk msms mssw, kr sy sol y sm k l mu mssw utuk krj sm tmy p st uj. I y mjk mssw tk mu ljr, kr kt tu w l mtmtk l l pst. Sr pk, supy mo mlkuk r sprt r mssw l trmotvs lm mptk l y l k. DFTR PUSTK to Howr,, ljr Lr Elmtr, Prtt Erl, Jkrt rst,, ljr Lr, Jkrt Joyto,, plks orl Dlp, Ost, Jkrt 8 Implmts Sstm Prsm Lr Mto tur rmr
Analisis Diagonalisasi Matriks untuk Menentukan Individu ke-n Berdasarkan Peluang Genotip Induk
98 BoWll Jurl Ilm Ilmu Bolo M 5 Vol. No., p 98-3 ISSN: -6 Alss Dolss Mtrks utuk Mtuk Ivu k- Brsrk Plu Gotp Iuk M. Yk Slm K, Mmk Ujt Rom, Prorm Stu Mtmtk FMIPA Urm Jl. Mjpt 6 Mtrm 835. Tlp 37-67 Eml : [email protected]
KATA PENGANTAR. Saya mahasiswa Fakultas Psikologi Universitas Kristen Maranatha sedang
T EGTR y mssw Fuls solo Uvss s s mlu yusu us mllu l y juuly j B/Iu ususy ocss us yu m y mm. Uu u sy moo s B/Iu uu mlu wu ms uso. Bcl l ulu uju s sl ssu u s B/Iu y s-y. Dlm l jw y u sl s B/Iu lu ms u uu
BAB VIII PENUTUP. 8.1 Program Transisi
A V UU R mu Jk Mh (RJM) Drh Ku k hu 20072012 mruk mruk uh kum r k mh r V, M, rrm u/wkl u Ku k uuk (lm) hu m. RJM Drh Ku k hu 20072012 m lm yuu R Sr Su Kr rk Drh (RrSKD) Ku k huy k m m yuu R Kr mrh Drh
CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2)
TTN KULH ertemu V: Moel-moel ler lr Mtrks (). Mer Mtrks vers Sutu mtrks () mempuy vers l terpt sutu mtrks B, seh B B. Mtrks B seut vers mtrks, tuls -, y merupk mtrks uur skr ermes. Syrt keer r Mtrks vers
7. APLIKASI INTEGRAL. 7.1 Menghitung Luas Daerah. a.misalkan daerah D = {( x, Luas D =? f(x) Langkah : Contoh : Hitung luas daerah yang dibatasi oleh
7. APLIKASI INTEGRAL MA KALKULUS I 7. Menghtung Lus erh.mslkn erh {(,, f ( ) Lus? f() Lngkh :. Irs menj n gn n lus stu uh rsn hmpr oleh lus perseg pnjng engn tngg f() ls(ler) A f ( ). Lus hmpr oleh jumlh
9.1 Representasi Aritmetika Dengan Tree
Tlh t thu rsm hw pnrpn rph mupun ju tr lm n omputr snt ny. Bn n mmhs mn mto untu mlun pnlusurn unsurunsur (vrt-vrt) r rph tu tr trsut. Ju mn mmut jlur r stu vrt vrt ln yn pln optmun. Brp lortm yn n hs
SOAL-SOAL OLIMPIADE MATEMATIKA DAN PENYELESAIANNYA
SOL-SOL OLIMPIDE MTEMTIK DN PENYELESINNY. ui uu sip ilg rl, rlu! ui :. ui uu sip ilg rl, g rlu ui :! : u il sgi M GM im M g rihmi M sg GM g Gomri M.. ui uu sip ilg posii,, rlu ui :!. ui uu sip ilg rl,
um Y Gmu ol P Mu 6 3 mo ol mu m o l mo P l yu c u lm y c c y K 0 l lm y c - 4 c y /m l - 8 /m l 00 u K ) m ol l P j mu o oul w o o - m l ol mu u u m u
J ST J ul Toolo 1) 01 : 35 S SN : 087 548 P ol Mu o T Gmu Y um T Toolo Jul lm S Lm Pl Uv Ru mw B N oz L ooum T R Km Juu T K m Uv Ru Pu Kmu Bwy Jl HR Su Km15 Pu 893 E- ml: y u@uc F c P w w wc v ow colo
PELAKSANAAN ADMINISTRASI KREDIT PEMILIKAN RUMAH PADA PT. BANK TABUNGAN NEGARA CABANG JEMBER
PELAKSANAAN ADMINISTRASI KREDIT PEMILIKAN RUMAH PADA PT BANK TABUNGAN NEGARA CABANG JEMBER LAPORAN PRAKTEK KERJA NYATA k s s s syr k mmro r A My ( Am ) rorm s Dom III Amsrs K Fks Ekoom Uvrss mr O Mr Y
LAMPIRAN PERATURAN BUPATI CIAMIS NOMOR : 52 Tahun 2015 TANGGAL : 2 Desember f e. I. Model PDH Linmas A. PNS Pria
LAMPIRAN PERATURAN BUPATI CIAMIS NOMOR : 52 Tun 2015 TANGGAL : 2 Dsmr 2015 I. Mol PDH Lnms A. PNS Pr m j k l n o p. kmj lnn pnk. lmn LINMAS. tulsn Provns Jw Brt. ppn nm. l u. kr rr n truk. monorm LINMAS.
UNISNUJEPARA FAKULTAS DAKIIIAII DAI{ KOTilINTII{ASI Terakreditasi " B " SK BAN-PT Nomor /SK/BAN-PT/AkredlSNll2Ol 5
Unvrss slm lul Ulm USUJPARA AKULAS AKA A KOlAS rkrs " " SK A-P mr 1 1 /SK/A-P/AkrlSll2Ol Jln. mn Ssw. 09 unn Jpr 9427 l^/x. 0291 912 +Ml :k@unsnu.. Wbs : www.kw.unsnu.. - PUUSA KA AULAS AWA A KOMUUKAS
USAHA KONVEKSI PAKAIAN JADI
P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) U S A H A K O N V E K S I P A K A I A N J A D I P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H (
II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat
3 II. TINJUN PUSTK. Sistm ilnn Komplks Sistm ilnn komplks dpt dinytkn scr orml dnn mnunkn konsp psnn trurut ordrd pir ilnn riil,. Himpunn smu psnn itu dnn oprsi-oprsi trtntu yn ssui pdny dpt didinisikn
INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI
VeryPDF. Persamaan Magnel 4/21/20144
04 VryPDF VryPDFcom nc Prsmn gnl 4//044 DSR PERENCNN r H rmyn, T nntukn Bsrn Krn ts, Krn wh Prncnn Pnmpng yng mmkul n lntur Jrk Krn ts k cgc = kt tu k Jrk Krn wh k cgc = k Jrk cgc k srt ts = Yt tu Jrk
INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :
INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI
3 Berapa jumlah maksimum dan jumlah minimum simpul pada graf sederhana yang mempunyai 12 buah sisi dan tiap simpul berderajat 3?
GRF No Sol Untuk stip sol i wh, sutkn pkh gr srhn ngn lim simpul (vrtx) yng mmiliki rjt untuk msing-msing simpul sgi rikut? Jik, gmr grny! ),,,, ),,,, ),,,, ),,,, Mungkinkh iut gr-srhn simpul ngn rjt msing-msing
GUBERNUR RIAU PERAAURAN GUBERNUR RIAU NOMOR: TAHUN 2016 TENTANG GUBERNUR RIAU,
GUBNU AU AAUAN GUBNU AU NOMO AHUN 01 NANG NAAN NDKAO KNJA OGAM MBAGUNAX OVNS AU DNCAN AHMAUHAN YANC MAHA SA GUBNU AU, bw lm rk mkk lrb mr okum pr oml' lukur k. pmbu rov u r uuk muku rk mk Sm Akubl K. l
METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA. FakultasMatematikadanIlmuPengetahuanAlamUniversitas Riau KampusBinawidyaPekanbaru, 28293, Indonesia
METDE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA V Sitompul * Smsudhuh TP Nbb Mhsisw JurusMtmtik Dos JurusMtmtik FkultsMtmtikdIlmuPthuAlmUivrsits Riu KmpusBiwidPkbru 89 Idosi *vroik@hoooid ABSTRACT This ppr
4. INTEGRAL FUNGSI KOMPLEKS
Intgrl Fungs Komplks 4 INTEGRAL FUNGSI KOMPLEKS Sprt hlny dlm fungs rl, dlm fungs komplks jug dknl stlh ntgrl fungs komplks srt sft-sftny Sft knltkn sutu fungs dlm sutu lntsn trtutup pntng dlm prhtungn
Bentuk Umum Perluasan Teorema Pythagoras
Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem
INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser
k<: a. bahwa dalarn rangka menentukan besaran uaig kuliah 1. Undang Undang Nomor 12 Tahun 2012 tentallg Pendidikan
KPUUS RKR UVRSS GH M MR s0lu1.p/sk/hukr/0 1 k< G PP UG KULH UGGL PRGRM SR LGKUG UVRSS GH M RKR UVRSS GH M, lvlmbr tr'lt X{ tpkl RSU. bhw lr rk mtuk bsr u kulh tul pr smstr p prrm Srjl lkul Uvrsts Gjl M,
PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss
Prktkum 8 Peyeles Persm Ler Smult Metoe Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metoe Elms Guss Tuju : smult Mempeljr metoe Elms Guss utuk peyeles persm ler Dsr Teor : Metoe Elms Guss merupk metoe
x 1 M = x 1 m 1 + x 2 m x n m n = x i
Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl
Pohon. Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit. pohon pohon bukan pohon bukan pohon
Poon Poon l r tk-rr truun yn tik mnnun sirkuit poon poon ukn poon ukn poon Hutn (orst) l - kumpuln poon yn slin lps, tu - r tik truun yn tik mnnun sirkuit. Stip komponn i lm r truun trsut l poon. Hutn
2 lh uu lh g lol u ool lm u l m mu gcu g - g, u g lu h mu lu oom mj lh cug lm mg g g j uug olh h j Bh h h of Cofc Wol Y Wom ol I mu) Thu Iol (Kof 1975
1 EN ENALAN UU G m Rum : 2012 7 ggl: T Bogo m: T K g 0 197 hu j mul lh mu - mug mgu mol h lh g jl hl Ah mu mu hw om uh D oom mgu gf m mmcl mmu hu h mu mmh hw m Dg u hl mm j, mllu mmu mml mu g g, g lm g
6 S u k u B u n g a 1 5 % 16,57 % 4,84 tahun PENGOLAHAN IKAN BERBASIS FISH JELLY PRODUCT
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) P E N G O L A H A N I K A N B E R B A S I S F I S H J E L L Y P R O D U C T ( O T A K -O T A K d a n K A K I N A G A ) P O L A P E M B I A Y
STUDI PEMODELAN ARUS LALU LINTAS DI RUAS JALAN RUNGKUT LOR KOTA MADYA SURABAYA DENGAN METODE GREENSHIELD DAN METODE GREENSBERG
STUDI PEMODELA ARUS LALU LITAS DI RUAS JALA RUGKUT LOR KOTA MADYA SURABAYA DEGA METODE GREESHIELD DA METODE GREESBERG Hdrt Ws Jurus Tkk Spl FTSP Uvrsts Pmgu sol Vtr Jtm Eml: [email protected] ABSTRAK Krktrstk
s\ fr Eni fzto v3z t ei* Et\^ fr 6 6-E iep EI :EeBEs eee **c 1Eg r: HH* E3s , E eeee =*s ehe *ts *EE9E5 d. xo 9<E =E tr6 2<fi {vr :..
P b Q b 0 4. u 1.. xe 9< B r ee ** ( uy 3 H A3 HH* 3 P 3 r; 3 / * r.9< ^O ; u; 9 Oru B: ; :. T ' ' ^\n \^ r \ r. (. (5? n _$ 9 y.,. u,. r :.. 9 x p O (5..., e Q *95 0 ^ { u 1 1e. x 9< r eh * U, \ {R e*
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
KEMENTERIAhI PENDIDIKAN DAN KEBT]DAYAAN UNTYERSITAS HALU OLEO Alamat : Karyus Brrmi rridharma Anduonohu Telp. (0401) , Fax (0401)
KMRh K K]Y UYRSS HU OO lm Ky m hm h l. (41) 91 x (41) 19 KUUS ROR UVRSS HU OO OMOR U b l29ll2 K SRUKUR K H ROS URU () H ROMM SRS URU.M HU 21 RYO 12 UVRSS HU OO RKOR UVRSS HU OO Mm. hw lm k lk U-U m 14
JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1
JURNAL MATEMATIKA DAN PEMBELAJARANNYA 6 VOLUME, NO.. ISSN -99 PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN! = Amr Hs Dos STKIP Pmg Idosi Mkssr 85 557 6956, E-mil: [email protected] ABSTRAK Pmkti! = dt dilkk dri
KUMPULAN RUMUS MATEMATIKA SMA BERSAMA Q&A CERDASKAN BANGSA! A D E M A U L A N A Y. A K U B E L A J A R B U K A N.
D E L N Y. KPLN RS TETIK S ERS Q& CERDSKN NGS! E s P t K E L J R K N N T K K S E N D I R I, E L I N K N N T K E R S 7 : @th : [email protected] : uslo RS-RS TETIK Olh ul Yusu th Q&. EKSPONEN. l.,. 4. 5. 6. 7.
MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.
MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
KETIADAAN RUANG FOCK BAGI NEUTRINO FLAVOR
Jrl ro Vol. o. Arl 00 9 KTIADAA RAG FOCK BAGI TRIO FAVOR r R Asr : Tl w mg mmg rg Foc g flor. S rg Foc rgg r ro flor rgg rmr mss yg fss. I m osrs mms yg crs rls fss. K Kc : Rg Foc K Flor PDAHA ro mr sl
Lampiran 1 LEMBAR PENJELASAN KEPADA CALON SUBYEK PENELITIAN
Lampiran 1 LEMBAR PENJELASAN KEPADA CALON SUBYEK PENELITIAN Bapak/Ibu/Sdr/i Yth. Saya sedang meneliti tentang Gambaran simtom depresif pada pasien pasca stroke dengan menggunakan skala penilaian beck depression
BAB VI ANALISIS REGRESI
BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet
Revisi JAWABAN Persiapan TO - 3
Revisi JAWAAN Persi TO - Mt IPS l l l l l l l Cr li: l l l U ulu sis lrit- eji sis k iseut u kli sl itu sis l l l l l l l l l l l Ar rl eiliki ili ksiu st = k = Mksiu & iiu rl (usi kurt) sti terji i suu
BAB II LANDASAN TEORI
BAB II LANDASAN TEI Lds ori dlm skripsi ii risik ori-ori mdk dlh rd kovrsi dr Tlor mod Nwo d rd kovrsi mod srowski d rd kovrsi d irpolsi kdrik.. rd Kovrsi rd kovrsi mrpk s ik prp dlm plsi Prsm olir 0.
PENERAPAN PERSAMAAN SCHRODINGER PADA PERMASALAHAN PARTIKEL DALAM KEADAAN TERIKAT (BOUND STATES) UNTUK TIGA DIMENSI
ENEAAN ESAMAAN SHODINGE ADA EMASAAHAN ATIKE DAAM KEADAAN TEIKAT (BOUND STATES) UNTUK TIGA DIMENSI A. At Hg (Mslh Gy Stl). Hlt Nl Eg ^ H ^ p ^ z. (7.) s Schg yg bt g sst bup hg t tu lh: ^ p ^ z E (7.) tu
PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang
PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule
7. APLIKASI INTEGRAL
7. APLIKASI INTEGRAL 7. Menghitung Lus Derh.Mislkn derh D (, ), f ( ) D f() Lus D =? Lngkh :. Iris D menjdi n gin dn lus stu uh irisn dihmpiri oleh lus persegi pnjng dengn tinggi f() ls(ler) A f ( ). Lus
MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.
MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn
PENGADILAN TINGGI BALI JLTantular Barat No. 1 Denpasar * , ^ ,
PENGADILAN TINGGI BALI JLTtulr Brt N Depsr * 6 95, 6 56, website wwwpt-blgid, e-il :ptdpsbli5vh Depsr 8 Nr Lpir l // Stu gbug ggil sert Shrt urse IP Deseber Yth Ketu Kr bi hkh Agug Rl di- Jkrt eeuhi surt
A s p e k P a s a r P e r m i n t a a n... 9
P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) U S A H A K E R U P U K I K A N P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R
5 S u k u B u n g a 1 5 %
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) U S A H A A B O N I K A N P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) U S A H A A B O N I K A N B A N K I N D O N E S I A K A
FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK
M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo
CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)
CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :
SATUAN POLISI PAMONG PRAJA PROVINSI DKI JAKARTA NOTA DINAS
SU PLS PMG PRJ PRVS DK JKR Kp Yh D Sf Lp H DS : Gubu Pv DK Jk : Kp Su P P Pj pv DK Jk :0.01. 1009 : S Lp Pk Su Wyh B k pk k kj j wyh DK Jk p h S, 1 M 009 14) b bku:. Kj Kbk 1. P puku 0.0. 08. WB kbk J
24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.
// Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE
Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS
Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl
PRILAKU PENYELESAIAN PERSAMAAN LOTKA-VOLTERRA AKIBAT WAKTU TUNDA (TIME DELAY)
PRILKU PENYELESIN PERSMN LOTK-VOLTERR KIBT WKTU TUND (TIME DELY) L G Jrs M FMIP Uvrss Hlolo Kps B Trdhr dooh Kdr 933 El: [email protected] sr Modl pry-prdor Lo-Volrr d w d rp odl rs s pry d s prdor. Modl l prs
LEMBAR PERMOHONAN KESEDIAAN MENJADI RESPONDEN
Lampiran 1. LEMBAR PERMOHONAN KESEDIAAN MENJADI RESPONDEN Dalam rangka menyelesaikan studi S1 Gizi di universitas Muhammadiyah Surakarta, saya, Rizqia Nuranitha (J310080019) mengadakan penelitian yang
@Mukhlas Ansori. tsl 1E l. Dirjen Sumber Daya lptek dan Dikti (sebagai laporan)
RSTKDKT KMTRA RST, TKOLOG DA DDKA TGG DRKTORAT DRAL SUMBR DAYA TK DA DKT l Ry rl Sur, tu Sy, krt 17 Tlp. (1) s7941 UTG) / (x) ts794s l : sublpkkt.. Hp : http://kt.. r Lpr rhl tsl 14.417 uu r Bssw k Mstr
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6
home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk
Parabola adalah tempat kedudukan titik-titik yang jaraknya ke satu titik tertentu sama dengan jaraknya ke sebuah garis tertentu (direktriks).
Prol dlh tempt kedudukn titik-titik ng jrkn ke stu titik tertentu sm dengn jrkn ke seuh gris tertentu (direktriks). Persmn Prol 1. Persmn Prol dengn Punck O(,) Perhtikn gmr erikut ini! PARABOLA g A P(,
INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar
INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung
8 adalah... A. 3 3 (kunci) C. 3 D. 3 E. 6 Pembahasan: Kedua ruas diakarkan: = = 8 = 3 3. adalah Jika 2 dan. , maka nilai. log w.
http://www.syiknybeljr.wordpress.co PEMBAHASAN SOAL SELEKSI BERSAMA MASUK PERGURUAN TINGGI NEGERI (SBMPTN) TAHUN 0. Jik, k nili A. (kunci) B. C. D. E... ( ) ( ) Kedu rus dikrkn: 8 = ( ) = = ( ) ( ) 8 =
PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss
Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk
Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd
1 Hip s o is 1 L k o s a i d n c ai n
ur l bu Lh, rlo kry, Drh uk olo G 1 A I ENDAHULUAN 1 1 lk r L A u rj k l kurkulu k wjb kulh ruk khr kolo Ilu Fkul Golo, kk u ror 1) ( Iu bu, lkuk l l bru yu Akhr u uk u kolo klulu yr b ky khr hw kry, rlo
f g DEKODER Gambar 2.1. Pemecah sandi (Dekoder)BCD ke seven segment
PERCOBAAN DIGITAL 02 PEMECAH SANDI (DECODER) 2.1. TUJUAN 1. Mnnl, mmpljri n mmhmi oprsi rnkin loik untuk mmh sni ilnn siml. 2. Mmhmi r mnmpilkn t mnunkn pr svn smnt (7 rus). 3. Mnnl n mmhmi r krj sutu
m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d )
I. OPERSI ILNGN REL. Pgt (Esoe. +. RNGKMN MTEMTIK. (.. ( 5. 6. 7. 8.. etu... ( ± ( + ± 5. ( Mesol Peeut etu Peh. (. + + C. Logt. log. log. log log. log log...( log log... log log... ( log... ( log. log+
Soal Latihan dan Pembahasan Fungsi kuadrat
Sol Ltihn dn Pemhsn Fungsi kudrt Di susun Oleh : uun Somntri htt://imingneljr.net/ Di dukung oleh : Portl eduksi Grtis Indonesi Oen Knowledge nd Edution htt://oke.or.id Tutoril ini dierolehkn untuk di
MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH
MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup
ANALISIS REGRESI UNTUK MELIHAT HUBUNGAN TEGANGAN REGANGAN PADA BAJA MENGGUNAKAN LEAST SQUARE METHOD
Jurl SANTIKA : Jurl Ilh Ss d Tolog-ISSN88-547 Volu 6 No Dsr 6 ANALISIS REGRESI UNTUK MELIHAT HUBUNGAN TEGANGAN REGANGAN PADA BAJA MENGGUNAKAN LEAST SQUARE METHOD St Muwh Rol Progr Stud T Spl Uvrsts Muhdyh
Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS
Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl
USAHA PEMBUATAN GULA AREN
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) G U L A A R E N ( G u l a S e m u t d a n C e t a k ) P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) G U L A A R E N ( G u l a S
Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah
VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B
PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.
PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn
Efek Pemberian Ekstrak Etanol Akar Kolesom (Talinum triangulare Willd) terhadap Spermatogenesis Tikus Putih
Nkh Al Efk Pm Ekk El Ak Klm (Tlum gul Wll) h Smg Tku Puh Yu Au Nugh1, L Rhyu2, R Ih Su2 1 Pu Bm Tklg D Kh B Lgk Kmk RI 2 Fkul Fm. Uv Pcl. Jk ml: [email protected] Ac I I fly ll lm f m cul, cu 10-15% f m cul
Dr.Eng. Agus S. Muntohar Department of Civil Engineering
Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg
INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.
MATEMATIKA. Sesi INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR B. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR TERHADAP SUMBU-X
MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 6 Sesi N INTEGRAL VOLUME A. BENDA-BENDA YANG MEMILIKI SUMBU PUTAR Apliksi integrl erikutn dlh menentukn volume end ng memiliki sumu putr. Contoh endn dlh tung,
Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT
Kometensi (Bgin PERSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Menentukn Jenis Akr-Akr Persmn Kudrt Menggunkn Diskriminn (D Bentuk Umum: D = - 4c + x + c ; 0 Pengertin: x = α dlh kr-kr ersmn + x + c α
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi
Rangkuman Materi dan Soal-soal
Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy
Rangkuman Materi dan Soal-soal
Rgkum Mteri d Sol-sol Dirgkum Oleh: Ag Wiowo, SPd mtikzoe@gmilcom / wwwmtikzoewordpresscom Rigks Mteri d Cotoh Sol Pegerti Limit k d it kiri * f L, rtiy ilm medekti dri k, mk ili f ( medekti L * f L, rtiy
PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN
PREDIKSI UJIAN NASIONAL TAHUN PELAJARAN - Mt Peljrn Progrm : Mtemtik (MA) : IPA Petunjuk : Pilihlh slh stu jwn yng pling tept!. Dikethui: 5. Dikethui log = dn log = y. Nili log P : Hri tidk hujn tu Rudi
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006
www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk
PRINSIP DASAR SURVEYING
POKOK HSN : PRINSIP DSR SURVEYING Metri system, Dsr Mtemtik, Prinsip pengkurn : pengkurn jrk, pengkurn sudut dn pengukurn jrk dn sudut,.. Sistem Ukurn Jrk Unit pling dsr dlm sistem metrik dlh meter, dimn
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
LEMBARAN PENJELASAN KEPADA CALON SUBJEK PENELITIAN. Selamat pagi Bapak/Ibu Yth, Universitas Sumatera Utara
LEMBARAN PENJELASAN KEPADA CALON SUBJEK PENELITIAN Selamat pagi Bapak/Ibu Yth, 92 Saya dr. Nova Lolika Silitonga,saat ini menjalani pendidikan spesialis saraf di FK USU dan sedang melakukan penelitian
SISTEM PERSAMAAN LINEAR. Nurdinintya Athari (NDT)
SISTEM PERSAMAAN LINEAR Nurdiity Athri (NDT) Sistem Persm Lier (SPL) Sub Pokok Bhs Pedhulu Solusi SPL deg OBE Solusi SPL deg Ivers mtriks d Atur Crmmer SPL Homoge Beberp Apliksi Sistem Persm Lier Rgki
E-LEARNING MATEMATIKA
MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli
PERLUASAN HARNACK DAN SIFAT CAUCHY INTEGRAL HENSTOCK-DUNFORD PADA RUANG EUCLIDE
PRLUSN HRNCK DN SIFT CUCHY INTRL HNSTOCK-DUNFORD PD RUN UCLID Solkh Jurus Mtmtk FMIP UNDIP Jl. Prof. H. Sodrto, S. H, Tmblg, Smrg -ml : [email protected] bstrct. I ths r w study Hstock-Duford tgrl o th ucld
y'rt l. Undang-undang Nomor 8 tahun 1974 dan Nomor 43 tahun 1999 tentang Pokok-pokok Kepegawaian.
KBPTS DK KTS TK, PRT VRSTS DS PDC Tg Pk/Pggk D Pmbmbg lhw gk 014 Pgm S Tkk P kl Tklg P DK KTS TK PRT VRSTS DS Mmbc Mmbg Mgg Mpk Pm K Kg S K Pgm S Tkk Pl m 084/.1.1llKPlTpl01 ggl l5 Spmb 01 g Pk D Pmbmbg
ELIPS. A. Pengertian Elips
ELIPS A. Pengertin Elips Elips dlh tempt kedudukn titik-titik yng jumlh jrkny terhdp du titik tertentu mempunyi nili yng tetp. Kedu titik terseut dlh titik focus / titik pi. Elips jug didefinisikn segi
Penerimaan Peserta Didik Baru Tahun Pelajaran 2013/2014. Dinas Pendidikan Provinsi DKI Jakarta
m st Ddk Bu Thu lj 3/4 Ds ddk ovs DKI Jkt 3 . ASAS. Objktf;. Tsp; 3. Akutbl; 4. dskmtf; d 5. Kompttf. 3. lks. Uggul (SMANU MHT);. Iklus; 3. sts; 4. Rgul; 5. SM/SMA Rgu 5. ENGERTIAN. Jlu Umum : Utuk smu
Modul 9. (Pertemuan 19 s/d 26) INTEGRAL FOURIER
Mol 9. Prtmn 9 s/ 6 INTEGRAL OURIER 73 9. DEINISI INTEGRAL OURIER Mr t mngsmsn ons yng brt :. lm ons stbl Drhlt t-t ntrvl trbts -LL.. M Torm Intgrl orr : onvrgn j ntgrs bsolt lm -LL. { A os B } sn A mn
SEMI KUASA TITIK TERHADAP ELIPS
RISMTI - ISSN : - 66 THUN VOL NO. GUSTUS 5 SEMI US TITI TERHD ELIS rnidsri Mshdi rtini Mhsisw rogrm Studi Mgister Mtemtik Universits Riu Jl. HR Soernts M 5 mpus in Wid Simpng ru eknru Riu 89 Emil: [email protected]
Matematika Dasar VOLUME BENDA PUTAR
OLUME BENDA PUTAR Ben putr yng seerhn pt kit mil ontoh lh tung engn esr volume lh hsilkli lus ls ( lus lingkrn ) n tinggi tung. olume ri en putr ser umum pt ihitung ri hsilkli ntr lus ls n tinggi. Bil
IRISAN KERUCUT: PERSAMAAN ELIPS. Tujuan Pembelajaran
K-13 mtemtik K e l s I IRISAN KERUCUT: PERSAMAAN ELIPS Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut. 1. Memhmi definisi elips.. Memhmi unsur-unsur elips. 3. Memhmi eksentrisits
ESTIMASI PARAMETER MODEL COX INGERSOLL ROSS MENGGUNAKAN METODE MAXIMUM LIKELIHOOD ESTIMATION
ESTIMASI PARAMETER MODEL COX INGERSOLL ROSS MENGGUNAKAN METODE MAXIMUM LIKELIHOOD ESTIMATION Fy Syhftr B, Nv Styhdw, Muhlsh Novtsr Mr 3,,3 Uvrsts Tjugpur, Potk Eml korspods : [email protected] Kutug yg
