BAB II LANDASAN TEORI
|
|
|
- Hamdani Hadi Setiawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB II LANDASAN TEI Lds ori dlm skripsi ii risik ori-ori mdk dlh rd kovrsi dr Tlor mod Nwo d rd kovrsi mod srowski d rd kovrsi d irpolsi kdrik.. rd Kovrsi rd kovrsi mrpk s ik prp dlm plsi Prsm olir 0. Diisi mrk ord kovrsi dlh si rik: Diisi. : Joh H Mhws 99. Mislk rdp sh il kos { } 0 dlh ris kovr k d dirik k 0. Jik rdp 0 d p 0 sdmiki hi p. Jik p p mk mod hmpir mmiliki ord kovrsi kdrik kik d srs. Apil osi mrpk osi k ili ik kslh pd irsi k- pd s mod mhsilk s ris mk s prsm p p. dis si prsm ik kslh sdk ili p pd Prsm. mjkk ord kovrsi. Slj k msk ik ord kovrsi s mod irsi is dislsik mk CC
2 Diisi. Compio rd o Covr Wrkoo 000. Mislk dlh kr k si d dik rr-r dlh irsi dk d shi CC Compio rd o Covr dp dihmpiri mk rms : l l / / l l Brik ii mrpk rp ooh dlm mk ili CC: Cooh.: Dirik si d mk mod Nwo. Tk irsi k mhmpiri kr l d mmil d kovrsi d ili wl 0 d olrsi kslh 0 Plsi: dikhi: 0 Di : Irsi d kovrsi d mk mod Nwo Jw : Uk irsi wl 0 / / Mri CC rms dlh l l l l / / / / 0 l / l / II-
3 Jdi hsil CC k irsi prm dlh Bi pl k mri irsi slj. Tl. Kovrsi Kdrik Mod Nwo pd Akr Tl K CC TTd TTd Tl. mjkk hw mod Nwo d kr l mmiliki kovrsi kdrik d Cooh.: Dirik si d mk rms mod Nwo k irsi k mk kr d α = sr kovrsi si rs d ili wl χ 0 = d olrsi δ= 0 - Plsi: Tl. Hsil Irsi d CC Mod Nwo d Akr Gd K CC Tidk Trdiiisi Tidk Trdiiisi II-
4 Tl. mjkk hw Mod Nwo d kr l mmiliki kovrsi kdrik d Diisi. Eii Id Shrm j Jk 0 Idks isisi mrpk prmr k mhi isi sh mod. ms k mri idks isisi dlh: E P. D P dlh k ord dri sh mod sdk mrpk jmlh dri vlsi si dri mod rs rmsk j si r. Smki sr ili idks mk mod i smki ki dlm mlsik Prsm oliir. Cooh. Tklh Nili Idks dri mod Nwo d mod srowski Plsi: lh kr mod Nwo h mmpi d si d sdk ord kovrsi d i mk ili idks dlh: E P Sdk Mod srowski mmpi i si i mk ili id dlh: E P 87 lh kr ili idks Mod srowski lih sr didik d mod Nwo mk Mod srowski lih ki dlm mlsik Prsm olir. II-
5 . Dr Tlor Dr Tlor mrpk dr rk Poliomil. Pd mm sisi k komplks dp disdrhk mjdi si hmpir dlm k si Poliomil lih sdrh. lh kr i dr lor sri dik dlm mkspsi si-si Prsm olir rmi. Brik ii dirik orm Dr Tlor. Torm. : Edwi J. Prll 00 Dirik si d r k- - d k sip pd sl rk I mm. Jdi k sip di dlm I d sis kslh dik d rms. dlh sk sis dlm rms Tlor d dlh iik di r d.. Prsm. mrpk l dri prsm Tlor. lh kr i jik P dlh prsm Tlor mk P d Prsm. dp dilis li dlm k P.6.7 Bki: Mislk sh poliomil rdrj d si pd sl rk I. Mk k sip I rlk 0 II-
6 II-6.8 Jik Prsm.8 dirk sr rr mli dri smpi mk Sisik k Prsm di s mk 0.. Shi.9 lh kr i jik Prsm.9 disisik k dlm Prsm.8 mk 0
7 II-7 Slj dp diri mjdi Prsm.6 dis d Dr Tlor. Kmdi k mmkik l diisik si dihimp rk I d Kmdi mislk d kos d diisik si r pd himp rk I d Jik disisik jlslh hw 0 d 0 Kr d dlh iik pd himp rk I mk 0 mk ki dp mrpk Torm Nili -r k Tr. Uk i rdp sh il rl di r d sdmiki rp shi 0. Slj d mrpk r prkli d rl kli diprolh r d k: [ ] " [ 0 ] [ ]
8 II-8 ] [.0 Jdi rdsrk orm ili r-r k r rdp s ili di r d sdmiki shi ] [ 0 Kmdi diprolh ] [ Shi Prsm. rki.. Mod Nwo d rd Kovrsi Mod Nwo rsl dri r dr Tlor rd. Mod ii mrpk slh s mod klsik sri dik k mri krkr Prsm Noliir. Mislk si dp dikspsi di skir mk dr Tlor d pdk 0 jik dikspsi di skir smpi ord prm mk diprolh. Kr 0 slj disrisik k Prsm. d mmil shi
9 Prsm. mrpk Prsm mod Nwo d k mk ord kovrsi dijkk olh orm rik Torm. : Wrko 000 Mislk dlh si rili riil mmpi r prm kd d ki pd irvl. Jik mmpi kr pd irvl d 0 dlh ili k wl mdki kr mk Prsm. mmiliki ord kovrsi ik d d Prsm rror: d j j j j Bki: Mislk dlh kr dri mk 0. Asmsik 0 d. Slj d mk rms kspsi Tlor k mproksimsi si di skir diprolh lh kr mk diprolh. Kr 0 mk d mlkk miplsi ljr pd Prsm. diprolh ". Jik k dilkk kspsi Tlor di skir mk lh kr mk diprolh II-9
10 II-0 " C C. Slj dilkk pmi Prsm. olh Prsm Kmdi d msisik Prsm.6 k Prsm Nwo lh kr mk shi diprolh.7 Brdsrk Torm. mod Nwo mmiliki ord kovrsi kdrik.. Mod srowski d rd Kovrsi Dirik Prsm mod srowski si rik:
11 II- Mislk 0 d dlh kr dri si rs mk 0 d smsik hw 0. D mk kspsi lor k di skir diprolh: ".9 Kr 0 mk d mlkk miplsi ljr pd Prsm.9 diprolh ".0 Sdk k dp diprolh d mkspsi di skir mk ". Mk. Kr... Mk Prsm. dp dik mjdi
12 II shi. Uk i 7. Kmdi 7 ] [ 8.6 kmdi ki mmik Prsm.0 d Prsm.6 mjdi.7 mislk mk Prsm. 7 dp ki kspsi d mk dr... shi
13 II Sdk k mislk mk Prsm.9 dp ki kspsi d mk dr... shi slj rdsrk Prsm.7 d Prsm.0 mk kmdi Prsm. d Prsm. ssisik k Prsm.8 d diprolh
14 II- Dri Prsm. Shi diprolh ord kovrsi Prsm. 8 dlh. Shi Mod srowski mmiliki kovrsi ord mp.. Irpolsi Irpolsi dlh pross vlsi d p si m krv rik diprolh dri skmpl iik. Irpolsi si dik k mlsik prsol dri ori hmpir.irpolsi k dik dlm plii ii dlh si rik:.. Irpolsi Liir Mislk dirik d iik d kmdi mislk poliom mirpolsi kd iik i dlh Prsm ris lrs rk P. Koisi d diri d pross mlihk d k dlm Prsm. diprolh d Prsm liir d d mlimisi kd Prsm rs diprolh.
15 II- d.6 Ssisik Prsm. d.6 k dlm Prsm. mk diprolh : P.7 Bk rkhir dp dih mjdi P.8.. Irpolsi Kdrik Mislk dirik d iik d kmdi mislk Poliom mirpolsi kd iik i dlh Prsm kdrik rk h.9 Koisi d diri d pross mlihk d k dlm Prsm.9 diprolh d prsm kdrik
16 II-6 D mlimisi kd prsm rs diprolh d d k.0. Ssisik Prsm.0 d. k dlm Prsm.9 mk diprolh : h. Slj k rkhir dp dih mjdi h Shi.
BAB II LANDASAN TEORI
BAB II ANDASAN TERI Tori dsr g diguk pd ugs khir ii, iu: ord kovrgsi, dr Tlor, mod Nwo d ord kovrgsi, mod hbshv- Hll d ord kovrgsi, vri mod hbshv-hll d ord kovrgsi, d ugsi kudrik.. rd Kovrgsi rd kovrgsi
METODE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA. FakultasMatematikadanIlmuPengetahuanAlamUniversitas Riau KampusBinawidyaPekanbaru, 28293, Indonesia
METDE CHEBYSHEV-HALLEY BEBAS TURUNAN KEDUA V Sitompul * Smsudhuh TP Nbb Mhsisw JurusMtmtik Dos JurusMtmtik FkultsMtmtikdIlmuPthuAlmUivrsits Riu KmpusBiwidPkbru 89 Idosi *vroik@hoooid ABSTRACT This ppr
Modifikasi Metode Newton-Steffensen Tiga Langkah Menggunakan Interpolasi Kuadratik
Smir Nsiol Tkologi Iormsi, Komuiksi d Idusri SNTIKI ISSN : 08-990 Pkbru, Novmbr 0 Modiiksi Mod Nwo-Ss Tig Lgkh Mgguk Irpolsi Kudrik Wroo, Ek Jumii, Progrm Sudi Mmik, UIN Sul Sri Ksim Riu Jl. Subrs km,
POKOK BAHASAN : BUKU PEGANGAN : KOMPONEN PENILAIAN
MATA KULIAH : MATEMATIKA POKOK BAHASAN : PENDAHULUAN : PERTIDAKSAMAAN NILAI MUTLAK SISTEM KOORDINAT FUNGSI DAN GRAFIK FUNGSI LIMIT DAN KONTINUITAS DERIVATIF APLIKASI DERIVATIF 6 DERET TAYLOR DAN DERET
JURNAL MATEMATIKA DAN PEMBELAJARANNYA 2016 VOLUME 2, NO. 1. ISSN PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN 0! = 1
JURNAL MATEMATIKA DAN PEMBELAJARANNYA 6 VOLUME, NO.. ISSN -99 PENERAPAN FUNGSI GAMMA DALAM PEMBUKTIAN! = Amr Hs Dos STKIP Pmg Idosi Mkssr 85 557 6956, E-mil: [email protected] ABSTRAK Pmkti! = dt dilkk dri
BAB VIII FUNGSI GAMMA DAN FUNGSI BETA
BAB VIII FUNGSI GAA DAN FUNGSI BETA Tj Pbljr Fgsi g d b rp fgsi-fgsi isiw g srig cl dl pch prs diffrsil, pross fisi, prpidh ps, gs sbr bi, rb globg, posil g, prs globg, i d li Fgsi g d b rp fgsi dl b pr
Ringkasan Materi Kuliah PERSAMAAN DIFERENSIAL LINEAR. 1. Pendahuluan Bentuk umum persamaan diferensial linear orde n adalah
Rigks Mtri Klih PERSAMAAN DIFERENSIAL LINEAR Pdhl Btk mm rsm dirsil lir ord dlh () dg koisi-koisi d () mrk gsigsi g koti d slg I d tk sti I Slg I disbt slg diisi (slg sl) dri rsm dirsil it Jik gsi () =
KONVERGENSI MODIFIKASI VARIAN METODE CHEBYSHEV-HALLEY MENGGUNAKAN INTERPOLASI KUADRATIK TUGAS AKHIR
KNVERGENSI MDIFIKASI VARIAN METDE HEBYSHEV-HALLEY MENGGUNAKAN INTERPLASI KUADRATIK TUGAS AKHIR Dijuk sbgi Slh Stu Srt utuk Mmprolh Glr Srj Sis pd Jurus Mtmtik lh: SILVIA YUTIKA 000 FAKULTAS SAINS DAN TEKNLGI
SOAL-SOAL OLIMPIADE MATEMATIKA DAN PENYELESAIANNYA
SOL-SOL OLIMPIDE MTEMTIK DN PENYELESINNY. ui uu sip ilg rl, rlu! ui :. ui uu sip ilg rl, g rlu ui :! : u il sgi M GM im M g rihmi M sg GM g Gomri M.. ui uu sip ilg posii,, rlu ui :!. ui uu sip ilg rl,
SISTEM PENGOLAHAN ISYARAT. Kuliah 3 Deret Fourier
TKE 43 SSTEM PENGOLAHAN SYARAT Kulih 3 Dr Fourir dh Susilwi, S.T., M.Eg. Progr Sudi Tkik Elkro Fkuls Tkik d lu Kopur Uivrsis Mrcu Bu Yogykr 9 KULAH 3 SSTEM PENGOLAHAN SYARAT DERET FOURER Pd pbhs ii k dijlsk
FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK
M AT E M AT I K A E K O N O M I FUNGSI EKSPONENSIAL DAN FUNGSI LOGARITMIK TO N I BAKHTIAR I N S TITUT P ERTA N I A N BOGOR 2 0 2 Pgkt Jik sutu bilg diklik diri sdiri sbk kli mk ditulis Bilg disbut kspo
5. Persamaan Diferensial (2) (Orde Dua) Sudaryatno Sudirham
Drulic www.drulic.com 5. Prmn Difrnil Ord Du Sudrno Sudirhm 5.. Prmn Difrnil Linir Ord Du Scr umum rmn difrnil linir ord du rnuk d d c f 5. d d Pd rmn difrnil ord u ki lh mlih hw olui ol rdiri dri du komonn
ESTIMASI PARAMETER MODEL COX INGERSOLL ROSS PADA TINGKAT BUNGA BANK INDONESIA MENGGUNAKAN METODE MAXIMUM LIKELIHOOD ESTIMATION
Buli Ilmih M. S. d Trpy (Bimsr Volum 04, No. 3 (05, hl 6. ESTIMASI PARAMETER MODEL COX INGERSOLL ROSS PADA TINGKAT BUNGA BANK INDONESIA MENGGUNAKAN METODE MAXIMUM LIKELIHOOD ESTIMATION Fy Syhfiri Budim,
6. Hitunglah. 7. Hitunglah. 8. Jika x. 9. Kurva 3
JWN Persi U Mth IP JWN Persi U Mth IP tl U t Mret Hitlh l i ljtk i l Fktrk I Tr Hitlh l i i l Hitlh l i ljtk i l Fktrk i l ljtk l i sekw Kli Hitlh ) ( li li ) ( li Hitlh li li li li Hitlh li li li li li
SISTEM PENGOLAHAN ISYARAT. Kuliah 4 Transformasi Fourier
TKE 403 SISTEM PENGOLAHAN ISYARAT Kulih 4 Trsformsi Fourir Bgi I Idh Susilwi, S.T., M.Eg. Progrm Sudi Tkik Elkro Fkuls Tkik d Ilmu Kompur Uivrsis Mrcu Bu Yogykr 009 KULIAH 4 SISTEM PENGOLAHAN ISYARAT TRANSFORMASI
KONVERGENSI MODIFIKASI METODE NEWTON GANDA DENGAN MENGGUNAKAN KELENGKUNGAN KURVA TUGAS AKHIR
KNVERGENSI MDIFIKASI METDE NEWTN GANDA DENGAN MENGGUNAKAN KELENGKUNGAN KURVA TUGAS AKHIR Dijuk sbgi Slh Stu Srt utuk Mmprolh Glr Srj Sis pd Jurus Mtmtik lh: NFI MAULANA FAKULTAS SAINS DAN TEKNLGI UNIVERSITAS
VEKTOR. Bab 20. a. Penjumlahan dan Pengurangan Vektor. ; OB b. maka OA AB OB. dan. maka. Contoh : Tentukan nilai x dan y dari Jawab :
VEKTOR B Penjmlhn dn Pengrngn Vektor. OA ; OB mk OA AB OB AB OB OA AB dn v c d mk v c c d d Contoh : Tentkn nili x dn y dri Jw : Jdi nili x - 8 dn y - ½ Pnjng Vektor Misl, mk pnjng (esr/nili) vector ditentkn
BAB III MODEL MATEMATIKA KEPENDUDUKAN
5 A III MODEL MATEMATIKA KEENDUDUKAN 3.1 Uu Filis Filis mup pfom podusi ul di sog i u slompo idividu yg pd umumy di pd sog i u slompo i. iu p uu filis yg dil olh o 1997 diy dlh Cud ih R CR u g lhi s, mup
Nuryanto,ST.,MT. Integral merupakan operasi invers dari turunan. Jika turunan dari F(x) adalah F (x) = f(x), maka F(x) = f(x) dx.
Nuryto,ST.,MT d c. INTEGRAL TAK TENTU KONSEP DASAR INTGRAL f. ALJABAR INTEGRAL f. TRIGONO CONTOH SOAL SOAL LATIHAN UJI KOMPETENSI Itegrl merupk opersi ivers dri turu. Jik turu dri F dlh F = f, mk F = f
SISTEM KENDALI OTOMATIS Transformasi Laplace
SISTEM KENDALI OTOMATIS Trormi Lplc Op Loop/Clod Loop Sym Ipu/ Dird oupu Corollr Corol igl Acuor Acuig igl Pl Pl oupu Ipu/ Dird oupu + - Error igl Corollr Corol igl Acuor Acuig igl Pl Pl oupu Sor Iilh-iilh
MODIFIKASI METODE KING DENGAN MENGGUNAKAN INTERPOLASI KUADRATIK
PRSIDING ISBN : 9-99--- MDIFIKASI METDE KING DENGAN MENGGUNAKAN INTERPLASI KUADRATIK Wrtoo, Fitrih Rit, Jurus Mtmtik, Fkults Sis d Tkologi, UIN Sult Sri Ksim Riu [email protected] T- Abstrk Mtod Kig mrupk
KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET. Lasker P. Sinaga. Abstract. terdapat y0
99 KONVERGENSI DAN STABILITAS SOLUSI PERSAMAAN LAPLACE PADA BATAS DIRICHLET Lskr P. Sig Abstrct Prsm lplc dlh slh stu btuk prsm diffrsil tip liptik yg dpt dislsik dg mtod pmish ribl. Mtod pmish ribl mmbut
Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com
Riks Limit Fusi Kels XI IPS NAMA : KELAS : theresivei.wordpress.com Riks Limit Fusi Kels XI IPS LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Medekti hmpir, sedikit li, tu hr bts, sesutu y dekt tetpi tidk dpt
Aljabar Linear Elementer
Aljr Lier Elemeter MA SKS Silus : B I Mtriks d Opersiy B II Determi Mtriks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige
4.1 Distribusi Bernoulli...Belum ada...
H. M Suhr,Drs.,M.Si BAB IV BEBERAPA MODEL DISTRIBUSI PELUANG PEUBAH ACAK DISKRIT 4. Disriusi Broulli...Blu d... f : S B, dg f PX - d P X u f P X,,. Apli doi dri f diprlus jdi R, k fugsi dg prs : f c :
Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0
PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan
PERSAMAAN DAN FUNGSI KUADRAT Oleh Shhil Ahyn A. Bentk Umm Persmn Kdrt Definisi : Mislkn,, Rdn, mk persmn yng erentk + + = dinmkn persmn kdrt dlm peh. Berkitn dengn nili-nili dri,, dikenl eerp persmn kdrt
htt://meetied.wordress.com Mtemtik X Semester SMAN BoeBoe Jik sesutu tmk sulit gi kti, jg meggg org li tidk mmu melkuk. Selik, jik sesutu dt dilkuk oleh org li, kikh hw kit jug mmu melkuk. (Mrcus Aurelius
Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan
III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
PAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI PENYEESAIAN SISTEM PERSAMAAN DIFERENSIA INEAR DENGAN TRANSFORMASI APACE SKRIPSI Dijuk uuk mmuhi Slh Su Sr Mmprolh Glr Srj Si Progrm Sudi Mmik Diuu Olh: Hilri Hpriz
MA SKS Silabus :
Aljr Lier Elemeter A SKS Silus : B I triks d Opersiy B II Determi triks B III Sistem Persm Lier B IV Vektor di Bidg d di Rug B V Rug Vektor B VI Rug Hsil Kli Dlm B VII Trsformsi Lier B VIII Rug Eige 7//7
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)
PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh
BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA
BAB BENTUK PANGKAT, AKAR, DAN LOGARITMA A RINGKASAN MATERI. Sift-sift Ekspoe Misly d ilg rel ( 0, 0) sert d ilg rsiol, k erlku huug segi erikut. =... fktor = + = ( ) = ( ) =. Betuk Akr Jik d ilg rsiol
II. TINJAUAN PUSTAKA. pasangan itu dengan operasi-operasi tertentu yang sesuai padanya dapat
3 II. TINJUN PUSTK. Sistm ilnn Komplks Sistm ilnn komplks dpt dinytkn scr orml dnn mnunkn konsp psnn trurut ordrd pir ilnn riil,. Himpunn smu psnn itu dnn oprsi-oprsi trtntu yn ssui pdny dpt didinisikn
BAB 3. DIFFERENSIAL. lim. Motivasi:
BAB. DIFFERENSIAL Motivsi: bim meetuk rdie ris siu sutu kurv di sutu titik pd kurv bim meetuk kecept sest sutu bed bererk sepj ris lurus Deiisi: mislk dl usi terdeiisi pd sel buk memut. Turu usi di diotsik
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
SOLUSI PREDIKSI UJIAN NASIONAL MATEMATIKA IPS TAHUN 2015
SOLUSI REDIKSI UJIAN NASIONAL MATEMATIKA IS TAHUN AKET ilih Gd: ilihlh stu jw g plig tept.. Sit: p q p q Jdi, igkr dri pert dlh emerith meghpusk keijk susidi h kr mik tetpi d org g hidup tidk sejhter.
PERTEMUAN 4 Metode Simpleks Kasus Maksimum
PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x
B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
1. Bilangan Berpangkat Bulat Positif
N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui
3 PANGKAT, AKAR, DAN LOGARITMA
PANGKAT, AKAR, DAN LOGARITMA.. Pngkt Pngkt dri seuh ilngn dlh sutu indeks ng menunjukkn nkn perklin ilngn ng sm secr eruntun. Notsi n errti hw hrus diklikn degn itu sendiri senk n kli. Notsi ilngn erpngkt
BAB 1 BENTUK PANGKAT, AKAR, DAN LOGARITMA
BAB BENTUK PANGKAT, AKAR, DAN LOGARITMA A RINGKASAN MATERI. Sift-sift Ekspoe Misl d ilg rel ( 0, 0) sert d ilg rsiol, k erlku huug segi erikut. =... fktor = + = ( ) = ( ) =. Betuk Akr Jik d ilg rsiol positif,
MA1201 MATEMATIKA 2A Hendra Gunawan
MA1201 MATEMATIKA 2A Hedr Guw Semester II, 2016/2017 24 Februri 2017 9.6 Deret Pgkt Kulih yg Llu Meetuk selg kekoverge deret pgkt 9.7 Opersi pd Deret Pgkt Melkuk opersi pd deret pgkt yg dikethui jumlhy
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN.
METODE NUMERIK SISTEM PERSAMAAN ALJABAR LINIER (SPL) SIMULTAN http://mul.lecture.u.c.id/lecture/metode-umerik/ Sistem Persm Liier Misl terdpt SPL deg uh vriel es Mtriks: m m m m Peyelesi Sistem Persm Liier
PANGKAT, AKAR, DAN LOGARITMA., maka berlaku sifat-sifat operasi hitung: a).
Sip UN Mtetik sikeljrwordpresso PANGKAT, AKAR, DAN LOGARITMA A Sift-sift Opersi Hitug Pgkt Jik d ilg rel d 0,, k erlku sift-sift opersi hitug: ) deg srt sek ) ) d) e) f) g) 0 h) i) j) Pehs sol UN tetik
EXPONEN DAN LOGARITMA
Drs Pudjul Prijoo SMA Negeri Mlg EXPONEN DAN LOGARITMA A EXPONEN Sift-sift il Berpgkt yg ekspoey il Bult Sift-sift il Berpgkt yg ekspoey il Rsiol/Peh 0 ; 0 ; 0 0, 0 ; 0 0 d ; 7 0 0; ; Meyederhk etuk :
BAB 2 SISTEM BILANGAN DAN KESALAHAN
Metode Numerik Segi Algoritm Komputsi 5 BAB SISTEM BILANGAN DAN KESALAHAN.. Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik : N ( )...... Cotoh : 67. 6. 7.. Bilg
Aljabar Linear Elementer
Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII rnsformsi Liner B VIII
DERET TAK HINGGA. Deret Geometri Suatu deret yang berbentuk: Dengan a 0 dinamakan deret geometri. Kekonvergenan: divergen jika r 1 Bukti:
DERET TAK HINGGA Cooh dere k higg : + + 3 + = k= k u k. Bris jumlh prsil S, deg S = + + 3 + + = k= k Defiisi Dere k higg, k= k, koverge d mempuyi jumlh S, pbil bris jumlh-jumlh prsil S koverge meuju S.
Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya
Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler
PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 1
PENGAYAAN MATEMATIKA SOLUSI SOAL-SOAL LATIHAN 6y y 8y. Dikethui R dn. Temukn nili y. y y 8y 6 Solusi: 6y y 8y y y 8y 6 6y y 8y 8y y 6 y 8 0 y y y 0 y y y 0 ( y ) ( y ) 0 y y 8y 6 ( y )(y ) 0 y 0tu y 0
MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ
MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ [email protected] DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks
Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan
Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript
IDENTIFIKASI TINGKAT KETAHUAN MASYARAKAT TENTANG UPAYA-UPAYA PERBAIKAN LINGKUNGAN SUNGAI CIKAPUNDUNG KOTA BANDUNG (Studi Kasus : Kelurahan Tamansari)
Mjlh Ilmih UNIOM Vl.12 N. 1 bid HUMANIORA IDENIFIASI INGA EAHUAN MASYARAA ENANG UPAYA-UPAYA PERBAIAN LINGUNGAN SUNGAI CIAPUNDUNG OA BANDUNG (Sdi ss : lrh msri) SAONA ANGOASAN, LIA WARLINA Prrm Sdi Prc
BENTUK PANGKAT, AKAR DAN LOGARITMA
BENTUK PANGKAT, AKAR DAN LOGARITMA Stndr Kompetensi Memhmi dn menggunkn turn dn sift sert mnipulsi Aljr dlm pemechn mslh ng erkitn dengn entuk pngkt, kr dn logritm. Kompetensi Dsr Menggunkn sift, turn
Ketaksamaan Chaucy Schwarz Engel
Keksm Chuy Shwrz Egel Fedi Alfi Fuzi Rigks Keksm Cuhy Shwrz merupk Keksm yg ukup mpuh uuk memehk ergi mm persol yg meygku sol keksm pd olimpide memik igk siol mupu iersiol. Pd pper ii k diperkelk euk li
D E F I N I S I. Contoh 1: 08/11/2015. Anita T. Kurniawati. Mendefinisikan fungsi f yang mengawankan bilangan dengan bilangan x
08//05 Anit T. Kurniwti disebut unsi dri jik dpt ditentukn sutu hubunn ntr dn SDH untuk setip nili menentukn secr tunl nili. Hubunn ntr dn bisn ditulis : Contoh : ) ) Mendeinisikn unsi n menwnkn bilnn
KEMENTERIAhI PENDIDIKAN DAN KEBT]DAYAAN UNTYERSITAS HALU OLEO Alamat : Karyus Brrmi rridharma Anduonohu Telp. (0401) , Fax (0401)
KMRh K K]Y UYRSS HU OO lm Ky m hm h l. (41) 91 x (41) 19 KUUS ROR UVRSS HU OO OMOR U b l29ll2 K SRUKUR K H ROS URU () H ROMM SRS URU.M HU 21 RYO 12 UVRSS HU OO RKOR UVRSS HU OO Mm. hw lm k lk U-U m 14
Revisi JAWABAN Persiapan TO - 3
Revisi JAWAAN Persi TO - Mt IPS l l l l l l l Cr li: l l l U ulu sis lrit- eji sis k iseut u kli sl itu sis l l l l l l l l l l l Ar rl eiliki ili ksiu st = k = Mksiu & iiu rl (usi kurt) sti terji i suu
1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:
) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut
Solusi Pengayaan Matematika Edisi 3 Januari Pekan Ke-3, 2008 Nomor Soal: 21-30
Solusi Pengn Mtemtik Edisi Jnuri Pekn Ke-, 00 Nomor Sol: -0. Crilh himpunn penelesin dri sistem persmn log log. () log Misln 0 ( )( ) 0 tu, mk persmn () menjdi: log tu log log log log tu log log log log
INTEGRAL TAK-WAJAR. bentuk tak-tentu karena bentuk ini saling membantu dan tidak bersaing.
INTEGRAL TAK-WAJAR A. Tk Terhingg Seip ilngn sli merupkn ilngn erhingg dn dp menykn sesuu yng nykny erhingg. Arisoeles menykn hw ilngn sli n dp ernili seesr-esrny epi ep erhingg dn idk kn pernh sm dengn
MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH
MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup
PERSAMAAN DIOPHANTINE NON LINEAR z. 1,2,3) Staf Pengajar pada Jurusan Matematika dan Ilmu Pengetahuan Alam Unsoed
Prosiding Seminr Nsionl Thunn Mtemtik, Sins dn Teknologi 0 Universits Teruk Convention Center, 1 Oktoer 0 PERSAMAAN DIOPHANTINE NON LINEAR z Agus Sugndh 1, Agustini Tripen Surkti, Agung Prowo 3 1,,3) Stf
Metode Iterasi Gauss Seidell
Metode Itersi Guss Seidell Metode itersi Guss-Seidel : metode yg megguk proses itersi higg diperoleh ili-ili yg berubh. Bil dikethui persm liier simult: Berik ili wl dri setip i (i s/d ) kemudi persm liier
matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT
K1 Kels X tetik PEMINATAN SIFAT-SIFAT EKSPONEN TUJUAN PEMBELAJARAN Setelh epeljri teri ii, ku dihrpk eiliki kepu erikut. 1. Mehi defiisi ekspoe.. Mehi sift-sift etuk pgkt.. Mehi sift-sift etuk kr.. Megguk
SUKU BANYAK ( POLINOM)
SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)
SUKU BANYAK ( POLINOM)
SUKU BANYAK ( POLINOM) B 15 A. PENGERTIAN SUKU BANYAK. Bentuk 1 0 x x x x x, dengn 0 dn n { il. cch } n diseut dengn Suku nyk (Polinomil) dlm x erderjt n ( n dlh pngkt tertinggi dri x),,,., diseut keofisien
BAB VI SIFAT-SIFAT LANJUTAN INTEGRAL RIEMANN
BAB VI SIFAT-SIFAT LANJUTAN INTEGAL IEMANN Sift-sift Ljut Itegrl iem Teorem 6.1 Jik f [, ] d f [, ] deg < < mk f [, ]. Leih ljut f x dx f x dx + () f x dx f [, ] d f [, ], mislk () f x dx A 1 d () f x
Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon
Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi
E-LEARNING MATEMATIKA
MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli
24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.
// Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE
SUKUBANYAK (POLINOMIAL)
SUKUBANYAK (POLINOMIAL) A. Bentuk Umum Sukubnyk (Polinomil) n n n b c... z n = pngkt tertinggi (derjt sukubnyk) n = koefisien 7 5 5 9 6 dlh sukubnyk berderjt 7, koefisien dlh 9, koefisien konstnt dlh 6
VEKTOR DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA
VEKTOR DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA Pengertin Dsr Vektor merpkn kombinsi dri st besrn dn st rh Vektor dpt dintkn dlm pnh-pnh, pnjng pnh mentkn besrn ektor dn rh pnh mennjkkn rh ektor
LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan
LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN
DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom
III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL
III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j
http://meetbied.wordpress.com SMAN Bone-Bone, Luwu Utr, Sul-Sel Bnyk keggln dlm hidup ini dikrenkn orng tidk menydri betp dektny merek dengn keberhsiln, st merek menyerh (Thoms Alf Edison) [RUMUS CEPAT
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA Yogyakarta 2011
Progrm Sudi M Kulih Pokok hsn : Memik : Geomeri : Kesengunn isusun oleh r. li Mhmudi FKULTS MTEMTIK N ILMU PENGETHUN LM UNIVERSITS NEGERI YOGYKRT Yogykr 0 Lemr Kegin Mhsisw Geomeri Lemr Kegin Mhsisw M
F. Logaritma EKSPONEN DAN LOGARITMA 11/9/2015. Peta Konsep. F. Logaritma. Nomor W4901. Hitunglah Log 49
11/9/01 Pet Konsep Jurnl Mteri Umum Pet Konsep Pngkt Rsionl Dftr Hdir Mteri F EKSPONEN DAN LOGARITMA Kels X, Semester 1 F. ritm Pngkt Bult Positif Pngkt Nol Pngkt Bult Negtif Bentuk Akr Pngkt Pechn SolLtihn
.2$,tutizots. 4. Kasubdit Kualifikasi Direktorat Pendidik dan Tenaga Kependidikan 5. PPK Direktorat Pendidik dan Tenaga Kependidikan Kemristek DiKi
RTKDKT KMTR RST, TK D PDDK T. Ry Si, Pi Sy, k 1070 Tp. (01 79100 (HT / (x 01790 i bppiki..i Hp hp/ iki.. i pi Pih 1., 1 ( Pj Pp D Pi Biw Piik Pj D i (BPPD b 1 Th 0'1.,i Kp h. Dik P Pj ii Hi. Pii Kk K.
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
Hendra Gunawan. 21 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge
PERSAMAAN KUADRAT. ac 0 p dan q sama tanda. 2. dg. Melengkapkan bentuk kuadrat ( kuadrat sempurna ) :
PERSAMAAN KUADRAT Bb. Bentuk Umum : b c,,, b, c Re l Menyelesikn ersmn kudrt :. dg. Memfktorkn : b c ( )( q) q q = ( q) dimn : b = + q dn c, Jik c dn q berbed tnd c dn q sm tnd. dg. Melengkkn bentuk kudrt
Kompetensi 2 (Bagian 2) PERSAMAAN DAN FUNGSI KUADRAT
Kometensi (Bgin PERSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Menentukn Jenis Akr-Akr Persmn Kudrt Menggunkn Diskriminn (D Bentuk Umum: D = - 4c + x + c ; 0 Pengertin: x = α dlh kr-kr ersmn + x + c α
Integral Tak Tentu dan Integral Tertentu
Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi
Q Juli Kasubdit Kualifikasi Direktorat Pendidik dan Tenaga Kependidikan. 2. Rektor Universitas Negeri Malang
STKBKT KMTRA RST, TK DA PDDKA T. Ry Si, Pi Sy, k 1070 T. (01) 579100 (HT) / (x) 01790 i biki.g.i H g h/ /iki.g. i i Pih 15.? 1.1015 1 () P P D Pi Biw Piik P D gi (BPPD) bg 1 Th Agg 015 Q i015 K h. Dik
Modul 8. (Pertemuan 12 s/d 16) DERET FOURIER
Modul 8. (Pertemu s/d 6) DERET FOURIER 8. FUNGSI PERIODIK DAN FUNGSI KONTINU TERPOTONG Defiisi Fugsi f diseut fugsi periodik il terdpt p > sedemiki sehigg utuk setip erlku f ( p) f ( ). Nili p > terkecil
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN GRAFIKNYA Persmn dlh klimt mtemtik teruk ng memut huungn sm dengn. Sedngkn klimt mtemtik tertutup ng memut huungn sm dengn diseut kesmn. Klimt mtemtik :. Klimt mtemtik
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi
A x = b apakah solusi x
MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.
JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 1, 41-45, April 2001, ISSN : KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH
Vol. 4. No. 1, 41-45, Aril 2001, ISSN : 1410-8518 KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Bmbg Irwto Jurus Mtemtik FMIPA UNDIP Abstct I this er, it ws lered of the ecessry d sufficiet coditio for
= W 1. Amalia Rakhmawati. I. Prinsip kalibrasi metode gravimetrik
Prinsip Klirsi Perln Gels olmerik olmeri Glsswre Berdsrkn ASTM E 5 0 Sndrd Prie For Clirion of Lorory Apprs I Prinsip klirsi meode grimerik Amli Rkhmwi Prinsip klirsi perln gels olmerik dengn meode grimeri
