Nilai dan Vektor Eigen

Ukuran: px
Mulai penontonan dengan halaman:

Download "Nilai dan Vektor Eigen"

Transkripsi

1 Nilai dan Vekto Eigen Mengingat kembali: pekalian matiks Dibeikan matiks A x dan vekto-vekto u, v, dan w 0 1 u 0 5 A v w u 1 Hitunglah Au, Aw, Av. Manakah dai hasil kali tesebut yang hasilnya adalah vekto yang sejaja dengan vekto semula Jawab: Av v 1 8 u u Aw 1. w Au k u 1 untuk semua k R v dan Av sejaja w dan Aw sejaja u dan Au TIDAK sejaja 1

2 Mengingat kembali: SPL homogen dan deteminan 1. A adalah matiks nxn dan SPL Ax 0 mempunyai penyelesaian tivial saja. Apa kesimpulanm tentang A? Jawaban: A mempunyai invese. Det(A) 0. A adalah matiks nxn dan SPL Ax 0 mempunyai penyelesaian TIDAK tivial. Apa kesimpulanmu tentang A dan det(a)? Jawaban: A tidak mempunyai invese. Det(A) 0 Pekalian vekto dengan matiks A x x λ Ax x x Ax x dan Ax sejaja

3 Pekalian vekto dengan matiks k 5 Au u Av v Aw kw y 8 y y x x x Definisi: Nilai dan Vekto Eigen Definisi: Dibeikan matiks A nxn, vekto tak nol v di R n disebut vekto eigen dai A jika tedapat skala sedemikian hingga Av λv. λ disebut nilai eigen, v adalah vekto eigen dai A yang besesuaian dengan λ. Syaat pelu: v 0 (1) λ 1 () 0 λ 1 (3) -1 λ 0 () λ - 1 3

4 Masalah Vekto Eigen Dibeikan matiks pesegi A, A x sejaja x A x λ x Temukan semua vekto tidak nol x sedemikian hingga Ax adalah kelipatan skala x (Ax sejaja dengan x). atau Temukan semua vekto tak nol x sedemikian hingga Ax λx untuk suatu skala λ Masalah Nilai Eigen Dibeikan matiks pesegi A. A x λ x x vekto tak nol Temukan semua skala λ sedemikian hingga Ax λx untuk suatu vekto tak nol x. atau Temukan semua vekto skala λ sedemikian hingga pesamaan Ax λx mempunyai penyelesaian tak nol

5 Penyataan-penyataan ekuivalen Jika A matiks pesegi nxn, maka kalimat-kalimat beikut ekuivalen 1. λ nilai eigen A. Tedapat vekto tak nol x sedemikian hingga Ax λx 3. SPL (A λi)x 0 mempuyai solusi tidak nol (non-tivial). λ adalah penyelesaian pesamaan det (A λi) 0 Mencai nilai eigen A sama saja mencai penyelesaian pesamaan det(λi-a) 0 Pesamaan Kaakteistik Jika diuaikan, det (A - λi) meupakan suku banyak bedeajat n dalam λ, p(λ ) λⁿ + c n-1 λ n-1 +c n- λ n- + + c 1 λ+ c 0 suku banyak kaakteistik Pesamaan det((a - λi) λⁿ + c n-1 λ n-1 +c n- λ n- + + c 1 λ+ c 0 0 disebut pesamaan kaakteistik A - λi A-λI pesamaan kaakteistik det A-λI λⁿ + c n-1 λ n-1 +c n- λ n- + + c 1 λ+ c 0 0 Pesamaan dengan deajat n mempunyai paling banyak n penyelesaian, jadi matiks nxn paling banyak mempunyai n nilai eigen. 5

6 Contoh Mencai semua nilai eigen A 0 1 Mencai semua penyelesaian pesamaan det - λ λ 0 Mencai penyelesaian pesamaan kaakteistik ( - λ )( 1 - λ ) 0 λ, Nilai eigen A adalah 1 λ 1 Posedu: menentukan nilai eigen Dibeikan matiks pesegi A. Nilai-nilai eigen A dapat dipeoleh sebagai beikut: 1. Tentukan pesamaan kaakteistik det((a - λi) 0 tuliskan A dan matiks yang elemen diagonal utamanya dikuangi λ. (Jika dipelukan) uaikan pesamaan kaakteistik ke dalam pesamaan sukubanyak kaakteistik: λⁿ + c n-1 λ n-1 +c n- λ n- + + c 1 λ+ c Selesaikan pesamaan yang dipeoleh pada langkah di atas. Nilai-nilai eigen meupakan penyelesaian pesamaan tesebut. 6

7 Contoh: Menentukan nilai eigen Dibeikan matiks pesegi A Tentukan pesamaan kaakteistik det(a - λi) 0 1 λ 1 1 det( A λi ) det 0 3 λ λ (1 λ ) (3 λ ) 6 + (3 λ ) 3(1 λ ) 0. Ubahlah pesamaan kaakteistik ke dalam pesamaan sukubanyak kaakteistik: 3. Selesaikan pesamaan di atas untuk mempeoleh nilai-nilai eigen (1 λ) (3 λ) (3 λ) 0 Nilai-nilai eigen A: λ( λ )(3 λ) 0 λ 1 0 λ λ 3 3 Nilai eigen matiks diagonal Dibeikan matiks diagonal Pesamaan kaakteistik: Nilai-nilai eigen, 6, 5, 1 (meupakan enti diagonal utama) A λ λ 0 0 A λi λ λ ( λ)(5 λ)(6 λ)(1 λ) 0 Nilai-nilai eigen matiks diagonal adalah elemen diagonal utamanya. 7

8 Bagaimana menentukan apakah suatu skala meupakan nilai eigen? Tentukan apakah, 0, meupakan nilai eigen A. 0 A Jawab: Bentuk det(a-λi) untuk λ, 0,. Jika det(a-λi) 0, maka meupakan nilai eigen, kalau 0, maka bukan nilai eigen. Kunci:, nilai eigen A, 0 bukan nilai eigen A. 0 det( A I ) det det( A 0 I ) det det( A I) det adalah nilai eigen A 0 bukan nilai eigen A nilai eigen A Kelipatan skala vekto eigen Dibeikan A. Diketahui bahwa x adalah vekto eigen A yang besesuaian dengan nilai eigen. Selidiki apakah 1/x, 10x, 5x juga vekto-vekto eigen A A, 1 1 x 6 1 x x x Ax 6 1 x 1 1 Ax x A(10 x) (10 x) A(10x) (10x) A x λ x A (10) x λ (10) x 8

9 Kelipatan skala vekto eigen A, 1 1 x 6 1 x Ax 6 1 x A( 1 x) 3 6 ( 1 ) x Ax x A(1/ x) (1/ x) A x λ x A (1/) x λ (1/) x Kelipatan skala (tak nol) dai vekto eigen adalah vekto eigen tehadap nilai eigen yang sama Menentukan semua vekto eigen E λ Dibeikan vekto matiks A dan salah satu nilai eigennya, misalnya λ. Tentukan semua vekto eigen yang besesuaian dengan λ. Vekto-vekto eigen A yang besesuaian dengan λ 3 dapat dipeoleh dengan menyelesaikan SPL (A - λ I)x 0. Vekto eigen adalah anggota Null(A - λ I) Null(A - λ I) Himpunan semua penyelesaian SPL (A - λ I)x 0 0 Himpunan semua vekto eigen besesuaian dengan λ Null(A - λ I)-{0} 9

10 Ruang Eigen Ruang eigen A yang besesuaian dengan λ tedii atas semua vekto eigen yang besesuaian dengan λ dan vekto nol Ruang penyelesaian SPL (A - λ I)x 0 Null(A - λ I)x 0 Ruang Eigen Eλ Null(A - λ I) E λ Menentukan E λ sama dengan menentukan himpunan penyelesaian SPL (A - λ I)x 0 Menentukan uang eigen E λ Dibeikan vekto matiks A dan salah satu nilai eigennya, misalnya λ 3. Tentukan semua vekto eigen yang besesuaian dengan λ A A λi SPL (A - 3 I)x x1 0 x1 + x + x3 0 ( A 3 I) x 3 x 3x x x1 + x x Penyelesaian x1 a a, a R x a Himpunan penyelesaian 0 x3 0 1 Himpunan vekto eigen A besesuaian dengan λ 3 : a, a 0, a R 0 10

11 Nilai eigen matiks pangkat Nilai eigen dai A adalah 0,, dan A 1 1 Tentukan nilai eigen untuk A 6 1 1, A, A 1 Dibeikan sembaang matiks A dan diketahui bahwa λ adalah nilai eigennya. Maka tedapat vekto tak nol x sedemikian hingga Ax λx kalikan kedua uas dengan matiks A A.Ax A λx A x λ(ax) substitusi Ax dengan λx A x λ x jadi, λ meupakan nilai eigen A Teoema: Jika n adalah bilangan bulat positif, λ nilai eigen matiks A, maka λ n adalah nilai eigen A n Nilai eigen matiks singula Misalkan λ 0 meupakan nilai eigen dai A. Maka 0 meupakan penyelesaian pesamaan kaakteistik: dengan menganti λ dengan 0, dipeoleh c0 0. Padahal det(a- λi) 0, dengan λ 0, maka det(a) c0 0. Kaena det(a) 0 maka A tidak mempunyai invese. Sebaliknya, det(a) det(a - λi) dengan mengambil λ 0.Jadi det(a) c0. Jika A tidak mempunyai invese, maka det(a) 0 c0. Sehingga λ 0 meupakan salah satu penyelesaian pesamaan kaakteistik; λ 0 meupakan salah satu nilai eigen dai A. 0 adalah nilai eigen A jika dan hanya jika A tidak mempunyai invese. 11

12 Nilai eigen matiks tanspose det(b) det(b T ) (A- λ I) T (A T -λ I) Misalkan λ 0 meupakan nilai eigen dai A, maka det(a- λ I) 0 Kaena matiks dan tansposenya mempunyai deteminan yang sama, maka det(a- λ I) T 0 Kaena (A- λ I) T (A T -λ I), maka det(a T - λ I) 0 Jadi, λ adalah nilai eigen dai A T A dan A T mempunyai nilai eigen yang sama A dan A -1 mempuyai nilai eigen yang sama Diagonalisasi Definisi: Matiks pesegi A dapat didiagonalkan jika tedapat matiks yang mempunyai invese sedemikian hingga P -1 AP D adalah matiks diagonal. Contoh: 5 6 A 3 1 P P 1 P -1 AP D 0 1 A dapat didiagonalkan Matiks diagonal 1

13 Kapan matiks A dapat didiagonalkan? Teoema: Jika A adalah matiks nxn, maka kalimat-kalimat beikut ini ekuivalen: 1. A dapat didiagonalkan. A mempunyai n vekto-vekto eigen yang bebas linie Bukti (1) () Dibeikan A a11 a1 L a1n a1 a a n A L M M M an1 an L ann Misalkan A dapat didiagonalkan, maka tedapat matiks P yang mempunyai invese p11 p1 L p1n p11 p1 L p1n p1 p p n P L p1 p p APPD L n M M M M M M pn1 pn L pnn pn1 pn L pnn Sedemikian hingga P -1 AP D matiks diagonal λ1 p11 λ p1 L λn p1n λ1 p1 λ p λn p L n M M M λ1 pn1 λ pn L λn pnn λ1 0 L 0 0 λ 0 D L M M M 0 0 L λn Kapan matiks A dapat didiagonalkan? (lanjt) P -1 AP D, kalikan dengan P -1, AP PD p11 p1 L p1n p1 p p n PD L M M M pn1 pn L pnn λ1 0 L 0 0 λ 0 L M M M 0 0 L λn λ1 p11 λ p1 L λn p1n λ1 p1 λ p λn p L n M M M λ1 pn1 λ pn L λn pnn uu uu uu λ1 p1 λ p λn p L n a11 a1 L a1n a1 a a n AP L M M M an1 an L ann AP PD, jadi p11 p1 L p1n p1 p p L n M M M pn1 pn L pnn uu uu uu A p1 A p A pn L uu uu uu uu uu uu Ap1 λ1 p1 Ap λ p L Apn λn pn Kaena P mempunyai invese, maka kolom-kolmnya bukan kolom nol. Bedasakan deinisi nilai eigen, maka λ 1, λ, λ 3,,λ n meupakan nilai-nilai eigen A, dan kolom-kolom P adalah vekto-vekto eigen A yang bebas linie (kaena P mempunya invese) Bukti untuk () (1) kejakanlah sebagai latihan untuk mempedalam pemahaman. 13

14 Posedu mendiagonalkan matiks Dibeikan matiks A nxn. Akan dicai P sedemikian hingga PAP -1 D. Posedu 1. Tentukan n vekto eigen A yang bebas linie, misalkan p 1, p, p 3,, p n. Dibentuk matiks P yang kolom-kolomnya adalah p 1, p, p 3,, p n 3. Maiks D P -1 AP adalah matiks diagonal yang enti diagonal utamanya adalah λ 1, λ, λ 3,,λ n dengan λ j adalah nilai eigen besesuaian dengan p j untuk j 1,, 3,, n Contoh: mendiagonalkan matiks Dibeikan matiks A nxn. Akan dicai P sedemikian hingga PAP -1 D. 5 6 A 3 Posedu 1. Tentukan vekto eigen A yang bebas linie. Petama kita tentukan nilai-nilai eigennya yaitu λ 1 dan λ -1 (telah dihitung sebelumnya). Tentukan vekto eigen besesuaian dengan nilai eigen, dengan menyelesaiakn SPL (A - λ I)x 0. Dipeoleh u u 1 p1 1 p 1. Dibentuk matiks P yang kolom-kolomnya adalah vekto-vekto eigen di atas. 1 P P 1 3. Matiks D P -1 A P adalah matiks diagonal yang enti diagonal utamanya adalah λ 1, λ betuut-tuut D

15 Masalah Diagonalisasi dan masalah vekto eigen Masalah vekto eigen Dibeikan matiks A nxn, apakah tedapat basis di R n tedii atas vekto-vekto eigen? Masalah diagonalisasi Dibeikan matiks A nxn apakah tedapat matiks yang mempunyai invese P sedemikian hingga np -1 AP adalah matiks diagonal? Teoema: A nxn dapat didiagonalkan jika dan hanya jika tedapat n vekto eigen yang bebas linie. Padahal, setiap n vekto yang saling bebas linie di R n meupakan basis R n. Kesimpulan: masalah vekto eigen sama dengan masalah diagonalisasi 15

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A =

NILAI EIGEN DAN VEKTOR EIGEN disebut vektor eigen dari matriks A = NILAI EIGEN DAN VEKTOR EIGEN >> DEFINISI NILAI EIGEN DAN VEKTOR EIGEN Jika A adalah sebuah matriks n n, maka sebuah vektor taknol x pada R n disebut vektor eigen (vektor karakteristik) dari A jika Ax adalah

Lebih terperinci

Eigen value & Eigen vektor

Eigen value & Eigen vektor Eigen value & Eigen vektor Hubungan antara vektor x (bukan nol) dengan vektor Ax yang berada di R n pada proses transformasi dapat terjadi dua kemungkinan : 1) 2) Tidak mudah untuk dibayangkan hubungan

Lebih terperinci

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal

7. NILAI-NILAI VEKTOR EIGEN. Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal 7. NILAI-NILAI VEKTOR EIGEN Nilai Eigen dan Vektor Eigen Diagonalisasi Diagonalisasi Ortogonal Nilai Eigen, Vektor Eigen Diketahui A matriks nxn dan x adalah suatu vektor pada R n, maka biasanya tdk ada

Lebih terperinci

SUMMARY ALJABAR LINEAR

SUMMARY ALJABAR LINEAR SUMMARY ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam. Shalawat serta

Lebih terperinci

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks

Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks Latihan 7 : Similaritas, Pendiagonalan Matriks, Polinom Matriks 6. Tentukan polinomial karakteristik dari matriks transformasi A=. Andaikan A adalah matriks persegi berdimensi x. Polinom karakteristik

Lebih terperinci

A 10 Diagonalisasi Matriks Atas Ring Komutatif

A 10 Diagonalisasi Matriks Atas Ring Komutatif A 10 Diagonalisasi Matriks Atas Ring Komutatif Joko Harianto 1, Puguh Wahyu Prasetyo 2, Vika Yugi Kurniawan 3, Sri Wahyuni 4 1 Mahasiswa S2 Matematika FMIPA UGM, 2 Mahasiswa S2 Matematika FMIPA UGM, 3

Lebih terperinci

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi

Yang dipelajari. 1. Masalah Nilai Eigen dan Penyelesaiannya 2. Masalah Pendiagonalan. Referensi : Kolman & Howard Anton. Ilustrasi 7// NILAI EIGEN dan VEKTOR EIGEN Yang dipelajari.. Masalah Nilai Eigen dan Penyelesaiannya. Masalah Pendiagonalan Referensi : Kolman & Howard Anton. Ilustrasi Misalkan t : R n R n dengan definisi t(x)

Lebih terperinci

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS

METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS METODE PANGKAT DAN METODE DEFLASI DALAM MENENTUKAN NILAI EIGEN DAN VEKTOR EIGEN DARI MATRIKS Arif Prodi Matematika, FST- UINAM Wahyuni Prodi Matematika, FST-UINAM Try Azisah Prodi Matematika, FST-UINAM

Lebih terperinci

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN

KS KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN KS091206 KALKULUS DAN ALJABAR LINEAR Eigen Value Eigen Vector TIM KALIN TUJUAN INSTRUKSIONAL KHUSUS Setelah menyelesaikan pertemuan ini mahasiswa diharapkan: Dapat menghitung eigen value dan eigen vector

Lebih terperinci

Konstruksi Fungsi Lyapunov untuk Menentukan Kestabilan

Konstruksi Fungsi Lyapunov untuk Menentukan Kestabilan JURNAL SAINS DAN SENI ITS Vol. 6, No., (27) 2337-352 (23-928X Pint) A 28 Konstuksi Fungsi Lyapunov untuk Menentukan Kestabilan Reni Sundai dan Ena Apiliani Juusan Matematika, Fakultas Matematika dan Ilmu

Lebih terperinci

BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil

BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Sub bab ini membahas tentang faktorisasi matriks A berorde nxn ke dalam hasil BAB V DIAGONALISASI DAN DEKOMPOSISI MATRIKS. Diagonalisasi Sub bab ini membahas tentang faktorisasi matriks A berorde nn ke dalam hasil kali berbentuk PDP, di mana D adalah matriks diagonal. Jika diperoleh

Lebih terperinci

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse

Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Dalam bab ini akan diberikan beberapa materi yang akan diperlukan di dalam pembahasan, seperti: matriks secara umum; matriks yang dipartisi; matriks tereduksi dan taktereduksi; matriks

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

Bab II. Konsep Dasar

Bab II. Konsep Dasar Bab II Konsep Dasa Konsep dasa mengenai gaf dan jaingan dikutip dai Bondy dan Muty [1], Diestel [2], dan Fleische [3]. Beikut ini dibeikan bebeapa notasi himpunan untuk memudahkan pendefinisian gaf dan

Lebih terperinci

MULTIMEDIA PEMBELAJARAN DIAGONALISASI MATRIKS

MULTIMEDIA PEMBELAJARAN DIAGONALISASI MATRIKS MULTIMEDIA PEMBELAJARAN DIAGONALISASI MATRIKS 1 Kirana Permata Putri, 2 Ardi Pujiyanta(0529056601) 1,2 Program Studi Teknik Informatika Universitas Ahmad Dahlan Prof. Dr. Soepomo, S.H., Janturan, Umbulharjo,

Lebih terperinci

Penerapan Diagonalisasi Matriks untuk Menyelidiki Pewarisan Genotip pada Generasi ke-n dalam Genetika

Penerapan Diagonalisasi Matriks untuk Menyelidiki Pewarisan Genotip pada Generasi ke-n dalam Genetika Penerapan Diagonalisasi Matriks untuk Menyelidiki Pewarisan Genotip pada Generasi ke-n dalam Genetika Nurmia,a), Muhammad Abdy,b), Syafruddin Side 3,c),,3 Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II.A.1 Matriks didefinisikan sebagai susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Contoh II.A.1: 9 5

Lebih terperinci

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2 Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung

Lebih terperinci

SISTEM PERSAMAAN LINEAR ( BAGIAN II )

SISTEM PERSAMAAN LINEAR ( BAGIAN II ) SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2

Lebih terperinci

BAB III RANCANGAN PENELITIAN. tujuan utama yang ingin dicapai melalui penelitian ini adalah untuk memperoleh

BAB III RANCANGAN PENELITIAN. tujuan utama yang ingin dicapai melalui penelitian ini adalah untuk memperoleh 44 BAB III RACAGA PEELITIA.. Tujuan Penelitian Bedasakan pokok pemasalahan yang telah diuaikan dalam Bab I, maka tujuan utama yang ingin dicapai melalui penelitian ini adalah untuk mempeoleh jawaban atas

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari

BAB 2 LANDASAN TEORI. Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari BAB 2 LANDASAN TEORI 21 Analisis Komponen Utama 211 Pengantar Analisis Komponen Utama (AKU, Principal Componen Analysis) bermula dari tulisan Karl Pearson pada tahun 1901 untuk peubah non-stokastik Analisis

Lebih terperinci

BAB 7 NILAI EIGEN DAN VEKTOR EIGEN. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 7 NILAI EIGEN DAN VEKTOR EIGEN. Dr. Ir. Abdul Wahid Surhim, MT. BAB 7 NILAI EIGEN DAN VEKTOR EIGEN Dr. Ir. Abdul Wahid Surhim, MT. KERANGKA PEMBAHASAN. Nilai Eigen dan Vekor Eigen. Diagonalisasi. Diagonalisasi secara Orogonal 7. NILAI EIGEN DAN VEKTOR EIGEN Definisi

Lebih terperinci

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data

BAB II KAJIAN TEORI. representasi pemodelan matematika disebut sebagai model matematika. Interpretasi Solusi. Bandingkan Data A. Model Matematika BAB II KAJIAN TEORI Pemodelan matematika adalah proses representasi dan penjelasan dari permasalahan dunia real yang dinyatakan dalam pernyataan matematika (Widowati dan Sutimin, 2007:

Lebih terperinci

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift

Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Jurnal Penelitian Sains Volume 14 Nomer 1(A) 14103 Menentukan Nilai Eigen Tak Dominan Suatu Matriks Definit Negatif Menggunakan Metode Kuasa Invers dengan Shift Yuli Andriani Jurusan Matematika FMIPA,

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 8 VEKTOR DAN NILAI EIGEN /5/7 9.9 Beberapa Aplikasi Ruang Eigen Uji Kesabilan dalam sisem dinamik Opimasi dengan SVD pada pengolahan Cira Sisem Transmisi dan lain-lain.

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Silabus : Aljabar Linear Elemener MA SKS Bab I Mariks dan Operasinya Bab II Deerminan Mariks Bab III Sisem Persamaan Linear Bab IV Vekor di Bidang dan di Ruang Bab V Ruang Vekor Bab VI Ruang Hasil Kali

Lebih terperinci

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR

Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Yang dibahas : Ortogonal Basis ortogonal Ortonormal Matrik ortogonal Komplemen ortogonal Proyeksi ortogonal Faktorisasi QR Ortogonal Himpunan vektor {v, v,.., v k } dalam R n disebut himpunan

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut:

Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: Bagian 5. RUANG VEKTOR 5.1 Lapangan (Field) Suatu himpunan tak kosong F dengan operasi penjumlahan dan perkalian, dikatakan sebagai field jika untuk setiap,, memenuhi sifat-sifat berikut: 1. dan 2., 3.,

Lebih terperinci

BAB 2. DETERMINAN MATRIKS

BAB 2. DETERMINAN MATRIKS BAB. DETERMINAN MATRIKS DETERMINAN MATRIKS . Definisi DETERMINAN Determinan : produk (hasil kali) bertanda dari unsur-unsur matriks sedemikian hingga berasal dari baris dan kolom yang berbeda, kemudian

Lebih terperinci

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang dilakukan adalah penelitian asosiatif dengan analisa

BAB II METODOLOGI PENELITIAN. Jenis penelitian yang dilakukan adalah penelitian asosiatif dengan analisa .1. Bentuk Penelitian BAB II METODOLOGI PENELITIAN Jenis penelitian yang dilakukan adalah penelitian asosiatif dengan analisa kuantitatif, dengan maksud untuk mencai maksud dan pengauh antaa vaiable independen

Lebih terperinci

BAB III REGERSI COX PROPORTIONAL HAZARD. hidup salahsatunyaadalah Regresi Proportional Hazard. Analisis

BAB III REGERSI COX PROPORTIONAL HAZARD. hidup salahsatunyaadalah Regresi Proportional Hazard. Analisis 13 BAB III REGERSI COX PROPORTIONAL HAZARD 3.1 Pendahuluan Analisisegesi yang seingkali digunakan dalam menganalisis data uji hidup salahsatunyaadalah Regesi Popotional Hazad. Analisis egesiinimengasumsikanbahwaasio

Lebih terperinci

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan.

BAB II TINJAUAN PUSTAKA. kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas mengenai dasar teori untuk menganalisis simulasi kestabilan model predator-prey tipe Holling II dengan faktor pemanenan. 2.1 Persamaan Diferensial Biasa

Lebih terperinci

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS

(MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Seminar Nasional Statistika 2 November 20 Vol 2, November 20 (MS.3) SUBRUANG CONINVARIAN DARI MATRIKS KUADRAT KOMPLEKS Euis Hartini Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Lebih terperinci

Soal Ujian Komprehensif

Soal Ujian Komprehensif Soal Ujian Komprehensif Bahan ujian komprehensif memuat konsep-konsep penting pada bidang: Kalkulus, dan Matriks / Aljabar Linear. Logika, Soal ujian disediakan secara terbuka, dapat diperoleh setiap saat

Lebih terperinci

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT

Pertemuan Ke 2 SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST.,MT Pertemuan Ke SISTEM PERSAMAAN LINEAR (SPL) By SUTOYO,ST,MT Pendahuluan Suatu sistem persamaan linier (atau himpunan persaman linier simultan) adalah satu set persamaan dari sejumlah unsur yang tak diketahui

Lebih terperinci

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg uiopasdfghjklzxcvbnmqwertyuiopasd Qwertyuiopasdfghjklzxcvbnmqwerty cvbnmqwertyuiopasdfghjklzxcvbnmq fghjklzxcvbnmqwertyuiopasdfghjklzx wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg

Lebih terperinci

dimana a 1, a 2,, a n dan b adalah konstantakonstanta

dimana a 1, a 2,, a n dan b adalah konstantakonstanta Persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.), perkalian, pembagian dengan peubah lain atau dirinya sendiri. Secara umum persamaan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. banyaknya komponen listrik motor yang akan diganti berdasarkan Renewing Free

BAB IV HASIL DAN PEMBAHASAN. banyaknya komponen listrik motor yang akan diganti berdasarkan Renewing Free BAB IV HASIL DAN PEMBAHASAN 4. Pendahuluan Bedasakan tujuan penelitian ini, yaitu mendapatkan ekspektasi banyaknya komponen listik moto yang akan diganti bedasakan Renewing Fee Replacement Waanty dua dimensi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 7 BAB II TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa poin tentang sistem dinamik, kestabilan sistem dinamik, serta konsep bifurkasi. A. Sistem Dinamik Secara umum Sistem dinamik didefinisikan

Lebih terperinci

Aljabar Matriks. Aljabar Matriks

Aljabar Matriks. Aljabar Matriks Aljabar Matriks No No Unit Unit Kompetensi 1 Menerapkan keamanan web dinamis 2 Membuat halaman web dinamis dasar 3 Membuat halaman web dinamis lanjut 4 Menerapkan web hosting 5 Menerapkan konten web memenuhi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sistem Persamaan Diferensial Definisi 2.1.1 Persamaan Diferensial Persamaan diferensial adalah persamaan yang memuat variabel bebas, variabel tak bebas dan derivative-derivatif

Lebih terperinci

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut:

BAB 2 LANDASAN TEORI. yang dibicarakan yang akan digunakan pada bab selanjutnya. Bentuk umum dari matriks bujur sangkar adalah sebagai berikut: BAB 2 LANDASAN TEORI Pada bab ini dibicarakan mengenai matriks yang berbentuk bujur sangkar dengan beberapa definisi, teorema, sifat-sifat dan contoh sesuai dengan matriks tertentu yang dibicarakan yang

Lebih terperinci

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3.

Matriks - Definisi. Sebuah matriks yang memiliki m baris dan n kolom disebut matriks m n. Sebagai contoh: Adalah sebuah matriks 2 3. MATRIKS Pokok Bahasan Matriks definisi Notasi matriks Matriks yang sama Panambahan dan pengurangan matriks Perkalian matriks Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar

Lebih terperinci

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU

BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU BAB VII MATRIKS DAN SISTEM LINEAR TINGKAT SATU Sistem persamaan linear orde/ tingkat satu memiliki bentuk standard : = = = = = = = = = + + + + + + + + + + Diasumsikan koefisien = dan fungsi adalah menerus

Lebih terperinci

PROSES IDENTIFIKASI DAN ESTIMASI VARIABEL KEADAAN PADA MODEL TEREDUKSI

PROSES IDENTIFIKASI DAN ESTIMASI VARIABEL KEADAAN PADA MODEL TEREDUKSI ESIS-SM 45 PROSES IDENIFIKASI DAN ESIMASI VARIABEL KEADAAN PADA MODEL EREDUKSI RIFENA PUNANA LESNUSSA 5 DOSEN PEMBIMBING D. Didik Khusnul Aif, S.Si., M.Si. D.Dieky Adzkiya, S.Si, M.Si PROGRAM MAGISER DEPAREMEN

Lebih terperinci

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu

BAB II SISTEM PERSAMAAN LINEAR. Sistem persamaan linear ditemukan hampir di semua cabang ilmu BAB II SISTEM PERSAMAAN LINEAR Sistem persamaan linear ditemukan hampir di semua cabang ilmu pengetahuan. Di bidang ilmu ukur, diperlukan untuk mencari titik potong dua garis dalam satu bidang. Di bidang

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi

Lebih terperinci

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 009 ANALISIS KORELASI 1. Koefisien Koelasi Peason Koefisien Koelasi Moment

Lebih terperinci

BAB III METODE PENELITIAN. identifikasi variabel penelitian, definisi operasional variabel penelitian, subjek

BAB III METODE PENELITIAN. identifikasi variabel penelitian, definisi operasional variabel penelitian, subjek 9 BAB III METODE PEELITIA A. Identifikasi Vaiabel Penelitian Pada bagian ini akan diuaikan segala hal yang bekaitan dengan identifikasi vaiabel penelitian, definisi opeasional vaiabel penelitian, subjek

Lebih terperinci

Peningkatan Kinerja Pemodelan Resistivitas DC 3D dengan GPU Berkemampuan CUDA

Peningkatan Kinerja Pemodelan Resistivitas DC 3D dengan GPU Berkemampuan CUDA Peningkatan Kineja Pemodelan Resistivitas DC 3D dengan GPU Bekemampuan CUDA Haiil Anwa 1,a), Achmad Imam Kistijantoo 1,b) dan Wahyu Sigutomo 2,c) 1 Laboatoium Sistem edistibusi, Kelompok Keilmuan Infomatika,

Lebih terperinci

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT

PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 6, No. 0 (017), hal 17 6. PENENTUAN NILAI EIGEN DAN VEKTOR EIGEN MATRIKS INTERVAL MENGGUNAKAN METODE PANGKAT Yuyun Eka Pratiwi, Mariatul Kiftiah,

Lebih terperinci

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut:

Dalam bentuk SPL masalah ini dapat dinyatakan sebagai berikut: SISTEM PERSAMAAN LINIER Persamaan linier adalah persamaan dimana peubahnya tidak memuat fungsi eksponensial, trigonometri, logaritma serta tidak melibatkan suatu hasil kali peubah atau akar peubah atau

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 5 BAB II LANDASAN TEORI 2.1 Matriks Matriks (matrix) adalah jajaran empat persegi panjang dan bilanganbilangan. Bilangan-bilangan dalam jajaran tersebut disebut entri dari matriks. Berikut ini beberapa

Lebih terperinci

dengan dimana adalah vektor satuan arah radial keluar. F r q q

dengan dimana adalah vektor satuan arah radial keluar. F r q q MEDAN LISTRIK 1 2.1 Medan Listik Gaya Coulomb di sekita suatu muatan listik akan membentuk medan listik. Dalam membahas medan listik, digunakan pengetian kuat medan. Untuk medan gaya Coulomb, kuat medan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Analytic Hierarchy Process (AHP) Sumber kerumitan masalah keputusan bukan hanya dikarenakan faktor ketidakpasatian atau ketidaksempurnaan informasi saja. Namun masih terdapat penyebab

Lebih terperinci

INFORMATION RETRIEVAL SYSTEM DENGAN METODE LATENT SEMANTIC INDEXING TESIS HENDRA BUNYAMIN NIM : Program Studi Rekayasa Perangkat Lunak

INFORMATION RETRIEVAL SYSTEM DENGAN METODE LATENT SEMANTIC INDEXING TESIS HENDRA BUNYAMIN NIM : Program Studi Rekayasa Perangkat Lunak INFORMAION RERIEVAL SYSEM DENGAN MEODE LAEN SEMANIC INDEXING ESIS Kaya tulis sebagai salah satu syaat untuk mempeoleh gela Magiste dai Institut eknologi Bandung Oleh HENDRA BUNYAMIN NIM : 353 Pogam Studi

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB PENDAHULUAN Lata Belakang Pada zaman moden sepeti saat sekaang ini, enegi listik meupakan kebutuhan pime bagi manusia, baik masyaakat yang tinggal di pekotaan maupun masyaakat yang tinggal di pedesaan

Lebih terperinci

SISTEM PERSAMAAN LINEAR

SISTEM PERSAMAAN LINEAR Pokok Bahasan : Sistem persamaan linier Sub Pokok Bahasan : Sistem persamaan linier Eliminasi Gauss Eliminasi Gauss Jordan Penyelesaian SPL dengan invers SISTEM PERSAMAAN LINEAR Tujuan : Menyelesaikan

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk

Lebih terperinci

RUANG VEKTOR. Nurdinintya Athari (NDT)

RUANG VEKTOR. Nurdinintya Athari (NDT) 1 RUANG VEKTOR Nurdinintya Athari (NDT) RUANG VEKTOR Sub Pokok Bahasan Ruang Vektor Umum Subruang Basis dan Dimensi Basis Subruang Beberapa Aplikasi Ruang Vektor Beberapa metode optimasi Sistem kontrol

Lebih terperinci

Part II SPL Homogen Matriks

Part II SPL Homogen Matriks Part II SPL Homogen Matriks SPL Homogen Bentuk Umum SPL homogen dalam m persamaan dan n variabel x 1, x 2,, x n : a 11 x 1 + a 12 x 2 + + a 1n x n = 0 a 21 x 1 + a 22 x 2 + + a 2n x n = 0 a m1 x 1 + a

Lebih terperinci

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66

(Departemen Matematika FMIPA-IPB) Matriks Bogor, / 66 MATRIKS Departemen Matematika FMIPA-IPB Bogor, 2012 (Departemen Matematika FMIPA-IPB) Matriks Bogor, 2012 1 / 66 Topik Bahasan 1 Matriks 2 Operasi Matriks 3 Determinan matriks 4 Matriks Invers 5 Operasi

Lebih terperinci

UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

UNIVERSITAS SWADAYA GUNUNG JATI CIREBON TRIGONOMETRI disusun untuk memenuhi salah satu tugas akhi Semeste Pendek mata kuliah Tigonometi Dosen : Fey Fedianto, S.T., M.Pd. Oleh Nia Apiyanti (207022) F PRODI PENDIDIKAN MATEMATIKA FAKULTAS KEGURUAN

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA Bab II : Kajian Pustaka 3 BAB II KAJIAN PUSTAKA Mateial bedasakan sifat popetinya dibagi menjadi bebeapa jenis, yaitu:. Isotopik : mateial yang sifat popetinya sama ke segala aah, misalnya baja.. Othotopik

Lebih terperinci

MODUL V EIGENVALUE DAN EIGENVEKTOR

MODUL V EIGENVALUE DAN EIGENVEKTOR MODUL V EIGENVALUE DAN EIGENVEKTOR 5.. Pendahuluan Biasanya jika suatu matriks A berukuran mm dan suatu vektor pada R m, tidak ada hubungan antara vektor dan vektor A. Tetapi seringkali kita menemukan

Lebih terperinci

BAB II TEORI KODING DAN TEORI INVARIAN

BAB II TEORI KODING DAN TEORI INVARIAN BAB II TEORI KODING DAN TEORI INVARIAN Pada bab 1 ini akan dibahas definisi kode, khususnya kode linier atas dan pencacah bobot Hammingnya. Di samping itu, akan dijelaskanan invarian, ring invarian dan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pembahasan mendasar mengenai matriks terutama yang berkaitan dengan matriks yang dapat didiagonalisasi telah jelas disajikan dalam referensi yang biasanya digunakan

Lebih terperinci

BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER

BAB II MEDAN LISTRIK DI SEKITAR KONDUKTOR SILINDER BAB II MDAN ISTRIK DI SKITAR KONDUKTOR SIINDR II. 1 Hukum Coulomb Chales Augustin Coulomb (1736-1806), adalah oang yang petama kali yang melakukan pecobaan tentang muatan listik statis. Dai hasil pecobaannya,

Lebih terperinci

BAB III MENENTUKAN PRIORITAS DALAM AHP. Wharton School of Business University of Pennsylvania pada sekitar tahun 1970-an

BAB III MENENTUKAN PRIORITAS DALAM AHP. Wharton School of Business University of Pennsylvania pada sekitar tahun 1970-an BAB III MENENTUKAN PRIORITAS DALAM AHP Pada bab ini dibahas mengenai AHP yang dikembangkan oleh Thomas L Saaty di Wharton School of Business University of Pennsylvania pada sekitar tahun 970-an dan baru

Lebih terperinci

II. KINEMATIKA PARTIKEL

II. KINEMATIKA PARTIKEL II. KINEMATIKA PARTIKEL Kinematika adalah bagian dai mekanika ang mempelajai tentang geak tanpa mempehatikan apa/siapa ang menggeakkan benda tesebut. Bila gaa penggeak ikut dipehatikan, maka apa ang dipelajai

Lebih terperinci

1 ANGKET PERSEPSI SISWA TERH

1 ANGKET PERSEPSI SISWA TERH 48 Lampian ANGKET PERSEPSI SISWA TERHADAP PERANAN ORANG TUA DAN MINAT BELAJAR DALAM PENINGKATAN HASIL BELAJAR BIOLOGI SISWA KELAS XI IPA SMA NEGERI 8 MEDAN Nama : Kelas : A. Petunjuk Pengisian. Bacalah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Konvek Definisi 2.1.1. Suatu himpunan C di R n dikatakan konvek jika untuk setiap x, y C dan setiap bilangan real α, 0 < α < 1, titik αx + (1 - α)y C atau garis penghubung

Lebih terperinci

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI

DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani

Lebih terperinci

BAB II Tinjauan Teoritis

BAB II Tinjauan Teoritis BAB II Tinjauan Teoitis BAB II Tinjauan Teoitis 2.1 Antena Mikostip 2.1.1 Kaakteistik Dasa Antena mikostip tedii dai suatu lapisan logam yang sangat tipis ( t

Lebih terperinci

Dan koefisien korelasi parsial antara Y, X 2 apabila X 1 dianggap tetap, dinyatakan sebagai r y 2.1 rumusnya sebagai berikut:

Dan koefisien korelasi parsial antara Y, X 2 apabila X 1 dianggap tetap, dinyatakan sebagai r y 2.1 rumusnya sebagai berikut: Koelasi Pasial Koelasi Pasial beupa koelasi antaa sebuah peubah tak bebas dengan sebuah peubah bebas sementaa sejumlah peubah bebas lainnya yang ada atau diduga ada petautan dengannya, sifatnya tetentu

Lebih terperinci

BAB IV ANALISIS HUBUNGAN UMPAN BALIK DENGAN MOTIVASI BELAJAR PENDIDIKAN AGAMA ISLAM SISWA SMP NEGERI 9 BATANG

BAB IV ANALISIS HUBUNGAN UMPAN BALIK DENGAN MOTIVASI BELAJAR PENDIDIKAN AGAMA ISLAM SISWA SMP NEGERI 9 BATANG BAB IV ANALISIS HUBUNGAN UMPAN BALIK DENGAN MOTIVASI BELAJAR PENDIDIKAN AGAMA ISLAM SISWA SMP NEGERI 9 BATANG Setelah data dai kedua vaiabel yaitu vaiabel X dan vaiabel Y tekumpul seta adanya teoi yang

Lebih terperinci

dengan kriteria, dalam arti memiliki kesejajaran antara tes dan kriteria Untuk menguji validitas setiap butir soal maka skor-skor yang ada pada

dengan kriteria, dalam arti memiliki kesejajaran antara tes dan kriteria Untuk menguji validitas setiap butir soal maka skor-skor yang ada pada VALIDITAS a. Pengetian Validitas adalah suatu ukuan yang menunjukkan tingkat kesahihan suatu tes. Suatu tes dikatakan valid apabila tes tesebut menguku apa yang hendak diuku. Tes memiliki validitas yang

Lebih terperinci

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE

Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Sistem Persamaan Linear Homogen 3P x 3V Metode OBE Ogin Sugianto sugiantoogin@yahoo.co.id penma2b.wordpress.com Majalengka, 12 November 2016 Sistem Persamaan Linear (SPL) Homogen yang akan dibahas kali

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

Fisika Matematika II 2011/2012

Fisika Matematika II 2011/2012 Fisika Matematika II 2/22 diterjemahkan dari: Mathematical Methods for Engineers and Scientists, 2, dan 3 K. T. Tang Penterjemah: Imamal Muttaqien dibantu oleh: Adam, Ma rifatush Sholiha, Nina Yunia, Yudi

Lebih terperinci

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS

APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Jurnal UJMC, Volume, Nomor, Hal 36-40 pissn : 460-3333 eissn : 579-907X APLIKASI METODE PANGKAT DALAM MENGAPROKSIMASI NILAI EIGEN KOMPLEKS PADA MATRIKS Novita Eka Chandra dan Wiwin Kusniati Universitas

Lebih terperinci

Teori kendali. Oleh: Ari suparwanto

Teori kendali. Oleh: Ari suparwanto Teori kendali Oleh: Ari suparwanto Minggu Ke-1 Permasalahan oleh : Ari Suparwanto Permasalahan Diberikan sistem dan sinyal referensi. Masalah kendali adalah menentukan sinyal kendali sehingga output sistem

Lebih terperinci

Solusi Persamaan Ricci Flow dalam Ruang Empat Dimensi Bersimetri Bola

Solusi Persamaan Ricci Flow dalam Ruang Empat Dimensi Bersimetri Bola Bab 3 Solusi Pesamaan Ricci Flow dalam Ruang Empat Dimensi Besimeti Bola Bedasakan bentuk kanonik metik besimeti bola.18, dapat dibuat sebuah metik besimeti bola yang begantung paamete non-koodinat τ sebagai,

Lebih terperinci

ALJABAR LINIER DAN MATRIKS

ALJABAR LINIER DAN MATRIKS ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Macam Matriks Matriks Nol (0) Matriks yang semua entrinya nol. Ex: Matriks Identitas (I) Matriks persegi dengan entri pada diagonal utamanya

Lebih terperinci

MEDAN LIST S RIK O eh : S b a a b r a Nu N r u oh o m h an a, n M. M Pd

MEDAN LIST S RIK O eh : S b a a b r a Nu N r u oh o m h an a, n M. M Pd MEDAN LISTRIK Oleh : Saba Nuohman, M.Pd Ke Menu Utama Pehatikan Video Beikut: Mengapa itu bisa tejadi? Muatan Listik Penjelasan seputa atom : Diamete inti atom Massa potonmassa neton Massa elekton Muatan

Lebih terperinci

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta

BAB II LANDASAN TEORI. dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta BAB II LANDASAN TEORI Pada bab ini akan diuraikan beberapa teori-teori yang digunakan sebagai acuan dalam penulisan skripsi ini. Teori-teori yang digunakan berupa definisi-definisi serta teorema-teorema

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasa I (FI-321) Topik hai ini (minggu 7) Geak Rotasi Kinematika Rotasi Dinamika Rotasi Kekekalan Momentum Sudut Geak Menggelinding Kinematika Rotasi Pepindahan Sudut Riview geak linea: Pepindahan,

Lebih terperinci

Stabilisasi Pada Sistem Pendulum-Kereta dengan Menggunakan Metode Fuzzy-Sliding Mode Control

Stabilisasi Pada Sistem Pendulum-Kereta dengan Menggunakan Metode Fuzzy-Sliding Mode Control JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Pint) B-53 Stabilisasi Pada Sistem Pendulum-Keeta Menggunakan Metode Fuzzy-Sliding Mode Contol Nioa Fatimah Tanzania, Tihastuti Agustinah

Lebih terperinci

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih:

Modul Praktikum. Aljabar Linier. Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: Modul Praktikum Aljabar Linier Disusun oleh: Machudor Yusman IR., M.Kom. Ucapan Terimakasih: David Abror Gabriela Minang Sari Hanan Risnawati Ichwan Almaza Nuha Hanifah Riza Anggraini Saiful Anwar Tri

Lebih terperinci

LISTRIK STATIS. F k q q 1. k 9.10 Nm C 4. 0 = permitivitas udara atau ruang hampa. Handout Listrik Statis

LISTRIK STATIS. F k q q 1. k 9.10 Nm C 4. 0 = permitivitas udara atau ruang hampa. Handout Listrik Statis LISTIK STATIS * HUKUM COULOM. ila dua buah muatan listik dengan haga q dan q, saling didekatkan, dengan jaak pisah, maka keduanya akan taik-menaik atau tolak-menolak menuut hukum Coulomb adalah: ebanding

Lebih terperinci

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PENERIMA BEASISWA MAHASISWA KURANG MAMPU PADA STMIK BUDIDARMA MEDAN MENERAPKAN METODE PROFILE MATCHING

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PENERIMA BEASISWA MAHASISWA KURANG MAMPU PADA STMIK BUDIDARMA MEDAN MENERAPKAN METODE PROFILE MATCHING SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN PENERIMA BEASISWA MAHASISWA KURANG MAMPU PADA STMIK BUDIDARMA MEDAN MENERAPKAN METODE PROFILE MATCHING T.M Syahu Ichsan (1111667 ) Mahasiswa Pogam Studi Teknik Infomatika

Lebih terperinci

MATRIKS. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS

MATRIKS. Slide : Tri Harsono PENS - ITS. 1 Politeknik Elektronika Negeri Surabaya (PENS) - ITS MATRIKS Slide : Tri Harsono PENS - ITS 1 Sifat Matriks Perkalian dua matriks tidak komutatif Perkalian dua matriks bersifat assosiatif dan distributif tidak komutatif AB BA (AB)C = A(BC) A(B+C) = AB +

Lebih terperinci