Laporan Praktikum 12 Analisis Numerik
|
|
|
- Adi Iskandar
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Laporan Praktikum 12 Analisis Numerik Syarif Abdullah (G ) Matematika Terapan Departemen Matematika FMIPA IPB syarif 2 Juni 2016 MONTE CARLO METHODS AND SIMULATION (Integral Monte Carlo) Deskripsi: Mengambil 1 soal latihan dari buku Numerical Mathematics and Computing, Sixth edition Ward Cheney, David Kincaid, Tuliskan dengan LaTex dan modifikasi menjadi soal untuk dikerjakan dalam Scilab. Computer Problem 13.2 Nomor 2: Tulis dan tes suatu program untuk mengevaluasi integral 1 0 ex dx dengan Metode Monte Carlo menggunakan n = 25, 50, 100, 200, 400, 800, 16000, dan Amati bahwa bilangan random dibutuhkan, dan bahwa pekerjaan dalam setiap kasus dapat digunakan pada kasus selanjutnya. Print jawaban eksak. Plot hasil dengan mengunakan skala logaritmik untuk menunjukkan laju perubahannya. Jawab: Langkah Kerja: 1. Membuat program Integral Monte Carlo beserta plotting hasil pada fungsi yang diberikan. 2. Menjalankan program Integral Monte Carlo beserta plotting hasil pada fungsi yang diberikan. 3. Analisis hasil program Integral Monte Carlo dengan hasil eksak beserta analisis error relatifnya. Adapun pseudocode lengkap Integral Monte Carlo adalah sebagai berikut: //Praktikum Analsis Numerik 2016 //INTEGRAL MONTE CARLO http ://syarif abdullah.student.ipb.ac.id/ File dibuat dengan LYX Program 1
2 //a : Batas bawah Interval //b : Batas Atas Interval //n : n bilangan random //monte : hasil perhitungan monte carlo //eksak : hasil perhitungan integral fungsi eksak //relerr : hasil perhitungan relatif error //[hasil]=intmonte(f,a,b,n) : fungsi pembangkit INTEGRAL MONTE CARLO clear; clc; close(); funcprot(0); disp( Praktikum Analisis Numerik Syarif Abdullah (G ) ) disp( INTEGRAL MONTE CARLO ) disp( Akan dilakukan Integral Monte Carlo pada fungsi y = exp(x) ) disp( 1. Masukkan batas integral & vektor n-bilangan random. Misalkan, ) disp( a=0;b=1;n=[25,50,100,200,400,800,16000,32000]; ) disp( 2. Panggil Fungsi Program pemanggil Integral Monte Carlo. Yaitu: ) disp( [hasil]=intmonte(f,a,b,n) ) function y=f(x) y=exp(x); endfunction function [hasil]=intmonte(f,a,b,n) k=length(n); monte=zeros(k,1); eksak=zeros(k,1); relerr=zeros(k,1); for i=1:k x=(b-a)*grand(1,n(i), def ) + a; // Random Sebaran Normal fx=f(x); monte(i)=(b-a)*sum(fx)/n(i); eksak(i)=intg(a,b,f); relerr(i)=abs(monte(i)-eksak(i))/eksak(i); // Relatif Error hasil=[n monte eksak relerr]; end disp( n-random INTEGRAL MONTE CARLO vs HASIL EKSAK & ERROR RELATIF ) plot(log10(monte)) xtitle( INTEGRAL MONTE CARLO FUNGSI y=exp(x), x, y ); endfunction 2
3 Apabila program di atas dijalankan, maka akan mendapatkan hasil sebagai berikut: Praktikum Analisis Numerik Syarif Abdullah (G ) INTEGRAL MONTE CARLO Akan dilakukan Integral Monte Carlo pada fungsi y = exp(x) 1. Masukkan batas integral & vektor n-bilangan random. Misalkan, a=0;b=1;n=[25,50,100,200,400,800,16000,32000]; 2. Panggil Fungsi Program pemanggil Integral Monte Carlo. Yaitu: [hasil]=intmonte(f,a,b,n) >a=0;b=1;n=[25,50,100,200,400,800,16000,32000]; 3
4 >[hasil]=intmonte(f,a,b,n) n-random INTEGRAL MONTE CARLO vs HASIL EKSAK & ERROR RELATIF hasil =
5 Dari hasil diatas didapatkan hasil aproksimasi integral Metode Monte Carlo pada n = 32000, 1 0 ex dx = dengan Errorrelatif = Hal ini menunjukkan bahwa untuk menghitung suatu integral, selain menggunakan metode-metode pada subbab sebelumnya dapat pula menggunakan Metode Monte Carlo. Motode Monte Carlo ini dibangkitkan oleh suatu bilangan random. Semakin besar bilangan random yang diberikan, maka akan lebih mendekati pada hasil eksak. Demikian. Semoga bermanfaat. Amin. Referensi : 1. AMTH142. Lecture 14. Monte-Carlo Integration Simulation. 2. Arief, Saifuddin Pengenalan Scilab. 3. Atkinson, K. E Scilab Textbook Companion for An Introduction To Numerical Analysis. 4. Cheney, Ward and Kincaid, David Numerical Mathematics and Computing, Sixth edition. Thomson Brooks: United States of America. 5. Gilberto E. Urroz Numerical Integration Using Scilab. Info Clearinghouse.com 6. Jacques, I and Judd, C Scilab Textbook Companion for Numerical Analysis I. 5
6 Profile: Nama : Syarif Abdullah Tmpt/Tgl Lahir : Gresik, 26 Januari 1986 Alamat : Leran Manyar Gresik Jawa Timur NRP : G Jurusan : Matematika Terapan Departement : Matematika Fakultas : Matematika dan Ilmu Pengetahuan Alam Universitas : Institut Pertanian Bogor Hobby : Baca buku dan utek-utek soal syarif [email protected] Web/Blog : http ://syarif abdullah.student.ipb.ac.id/ 6
Laporan Praktikum 10 Analisis Numerik
Laporan Praktikum 10 Analisis Numerik Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB E-mail: syarif [email protected] 19 Mei 2016 SYSTEM OF ORDINARY DIFFERENTIAL
Laporan Praktikum 7 Analisis Numerik
Laporan Praktikum 7 Analisis Numerik Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB E-mail: syarif [email protected] 14 April 2016 SYSTEM PERSAMAAN LINEAR METODE
Laporan Praktikum 5 Analisis Numerik
Laporan Praktikum 5 Analisis Numerik Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB E-mail: syarif [email protected] 25 Maret 2016 INTEGRASI NUMERIK METODE SIMPSON
Laporan Praktikum 9 Analisis Numerik
Laporan Praktikum 9 Analisis Numerik Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB E-mail: syarif [email protected] 12 Mei 2016 ORDINARY DIFFERENTIAL EQUATIONS (Euler,
Laporan Praktikum 4 Analisis Numerik
Laporan Praktikum 4 Analisis Numerik Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB E-mail: syarif [email protected] 17 Maret 2016 INTEGRASI NUMERIK METODE TRAPESIUM
Laporan Praktikum 14 Metode Komputasi Matematika (Latihan Bab 3 dari Buku J. Leon Aljabar Linear) Program Scilab
Laporan Praktikum 14 Metode Komputasi Matematika (Latihan Bab 3 dari Buku J. Leon Aljabar Linear) Program Scilab Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB e-mail:
Laporan Praktikum I Analisis Numerik
Laporan Praktikum I Analisis Numerik Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB E-mail: syarif [email protected] 25 Februari 2016 Deskripsi: Mengambil 1 soal
Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.
Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: [email protected] 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System
Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 1 dari Buku J. Leon Aljabar Linear) Program Scilab
Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 1 dari Buku J. Leon Aljabar Linear) Program Scilab Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB email: [email protected]
Syarif Abdullah (G )
Trees, Binary Trees dan Binary Search Trees Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB e-mail: syarif [email protected] & [email protected] 17 Januari
Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab
Laporan Praktikum Metode Komputasi Matematika (Latihan Bab 2 dari Buku J. Leon Aljabar Linear) Program Scilab Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB email: [email protected]
Beberapa Perintah Matriks Pada Scilab
Beberapa Perintah Matriks Pada Scilab Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB email: [email protected] 10 Desember 2015 Dalam sesi ini Kita akan belajar
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang December 2, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik December 2, 2013 1 / 18 Praktikum 1: Deret
[ 1 1 PENDAHULUAN SCILAB. Modul Praktikum Metode Numerik. 1. Struktur Scilab
PENDAHULUAN SCILAB 1. Struktur Scilab Program Scilab sudah memiliki text editor di dalamnya. Perintah/kode program Scilab dapat dituliskan di dalam window Scilab Execution (Scilex) ataupun di window Scipad
Laporan Praktikum 14 (3) ( ) Metode Komputasi Matematika. Catatan Video, Bahan Relevan dan Buku Syaifudin. Syarif Abdullah (G )
Laporan Praktikum 14 (3) (19-01-2015) Metode Komputasi Matematika Perulangan dan Kondisional Catatan Video, Bahan Relevan dan Buku Syaifudin Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut
LAPORAN PRAKTIKUM METODE KOMPUTASI MATEMATIKA (Rangkuman Kuliah 1 s.d. 4) Syarif Abdullah (G )
LAPORAN PRAKTIKUM METODE KOMPUTASI MATEMATIKA (Rangkuman Kuliah 1 s.d. 4) Syarif Abdullah (G551150381) Matematika Terapan Departemen Matematika FMIPA IPB email: [email protected] 3 Desember 2015
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR. Rino Martino 1 ABSTRACT
METODE ITERASI BARU BERTIPE SECANT DENGAN KEKONVERGENAN SUPER-LINEAR Rino Martino 1 1 Mahasiswa Program Studi S1 Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
Kata-kata kunci: metode Persegipanjang,integrasi numerik, penyelesaian persoalan fisis
Warsono Metode Persegipanjang METODE PERSEGIPANJANG SEBAGAI METODE ALTERNATIF INTEGRASI NUMERIK DAN PENGGUNAANNYA DALAM PENYELESAIAN PERSOALAN FISIS THE SQUARE METHOD AS ALTERNATIVE METHOD OF NUMERICAL
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut dapat dikembangkan melalui pemodelan matematika. Sehingga dengan
Laporan Praktikum 1. I Made Yoga Emma Prasetya (G ) 25 Februari 2016
Laporan Praktikum 1 I Made Yoga Emma Prasetya (G551150271) 25 Februari 2016 1 Ringkasan Materi Materi : Pendahuluan dan Galat Pendahuluan Masalah Matematika tidak selalu dapat selesaikan secara analitik
PENGANTAR MONTE CARLO
6 PEGATAR MOTE CARLO Pada bab ini dibahas pengantar ke pemahaman tentang metode Monte Carlo, yang sangat berperan dalam bidang fisika lanjut, terutama diimplementasikan pada sistem-sistem dengan sejumlah
Modul Praktikum Analisis Numerik
Modul Praktikum Analisis Numerik (Versi Beta 1.2) Mohammad Jamhuri UIN Malang September 27, 2013 Mohammad Jamhuri (UIN Malang) Modul Praktikum Analisis Numerik September 27, 2013 1 / 12 Praktikum 1: Deret
Laporan Praktikum 14 (5) ( ) Metode Komputasi Matematika. Penyelesaian Soal UAS Metode Komputasi Syarif Abdullah (G )
Laporan Praktikum 14 (5) (19-01-2015) Metode Komputasi Matematika Penyelesaian Soal UAS Metode Komputasi 2016 Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: [email protected]
FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM. Oktario Anjar Pratama ABSTRACT
FAMILI METODE ITERASI BEBAS TURUNAN DENGAN ORDE KONVERGENSI ENAM Oktario Anjar Pratama Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
METODE MONTE CARLO. Presented by Muchammad Chusnan Aprianto Dr.KHEZ Muttaqien Istitute of Technology
METODE MONTE CARLO Presented by Muchammad Chusnan Aprianto Dr.KHEZ Muttaqien Istitute of Technology 1 M O N T E C A R L O Metode pencarian acak adalah suatu metode dimana solusi dicari secara acak dan
Beberapa Freeware Pengganti MATLAB
Beberapa Freeware Pengganti MATLAB Saifuddin Arief [email protected] Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan secara bebas untuk tujuan bukan komersial
Kerancuan dan Kesulitan Tersembunyi dalam Perhitungan Aritmatika dengan Program Spreadsheet
Kerancuan dan Kesulitan Tersembunyi dalam Perhitungan Aritmatika dengan Program Spreadsheet Saifuddin Arief [email protected] Lisensi Dokumen: Copyright 2003-2006 IlmuKomputer.Com Seluruh dokumen di IlmuKomputer.Com
Fungsi ini dibuat melalui menu File New Script. Kemudian tulis fungsi di bawah ini di layer MATLAB editor.
MATERI 12 FUNGSI DAN INTEGRAL Beberapa fungsi Fungsi dalam MATLAB disajikan dalam tabel berikut: Category Function Description Plotting fplot Untuk membuat plot fungsi Optimization and zero fminbnd Mencari
PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK. Nurul Ain Farhana 1, Imran M. 2 ABSTRACT
PEMILIHAN KOEFISIEN TERBAIK KUADRATUR KUADRAT TERKECIL DUA TITIK DAN TIGA TITIK Nurul Ain Farhana, Imran M Mahasiswa Program Studi S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.
METODE SIMPSON-LIKE TERKOREKSI Ilis Suryani, M. Imran, Asmara Karma Mahasiswa Program Studi S Matematika Laboratorium Matematika Terapan, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam
POSITRON, Vol. VI, No. 2 (2016), Hal ISSN :
Penentuan Energi Keadaan Dasar Osilator Kuantum Anharmonik Menggunakan Metode Kuantum Difusi Monte Carlo Nurul Wahdah a, Yudha Arman a *,Boni Pahlanop Lapanporo a a JurusanFisika FMIPA Universitas Tanjungpura,
SIMULASI MONTE CARLO UNTUK PELAYANAN PERPANJANGAN SURAT TANDA NOMOR KENDARAAN BERMOTOR
SIMULASI MONTE CARLO UNTUK PELAYANAN PERPANJANGAN SURAT TANDA NOMOR KENDARAAN BERMOTOR Asep Nurjaman 1, Rinda Cahyana 2, Luthfi Nurwandi 3 Jurnal Teknik Informatika Sekolah Tinggi Teknologi Garut Jl. Mayor
SHABRINA ROSE HAPSARI M SURAKARTA
digilib.uns.ac.id HALAMAN JUDUL PEMBUATAN KALKULATOR INTEGRASI NUMERIK DENGAN METODE TRAPESIUM, 1/3 SIMPSON, 3/8 SIMPSON, ROMBERG DAN MONTE CARLO PADA KASUS INTEGRAL TUNGGAL DAN INTEGRAL GANDA SKRIPSI
PENENTUAN HARGA OPSI PUT AMERIKA MENGGUNAKAN ALGORITMA MONTE CARLO. Rina Ayuhana
PENENTUAN HARGA OPSI PUT AMERIKA MENGGUNAKAN ALGORITMA MONTE CARLO Rina Ayuhana Program Studi Ilmu Komputasi Universitas Telkom, Bandung [email protected] Abstrak Opsi adalah suatu kontrak yang memberikan
GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS. Anggy S. Mandasary 1, Zulkarnain 2 ABSTRACT
GERSHGORIN DISK FRAGMENT UNTUK MENENTUKAN DAERAH LETAK NILAI EIGEN PADA SUATU MATRIKS Anggy S. Mandasary 1, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika
Bab IV Simulasi Metode Monte Carlo Mengatasi Masalah dalam Distribusi Data
24 Bab IV Simulasi Metode Monte Carlo Mengatasi Masalah dalam Distribusi Data IV.1 Mengenal Metode Monte Carlo Distribusi probabilitas digunakan dalam menganalisis sampel data. Sebagaimana kita ketahui,
Berhitung dengan mudah dan cepat menggunakan freeware Eigenmath
Berhitung dengan mudah dan cepat menggunakan freeware Eigenmath Saifuddin Arief [email protected] Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan secara
METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI ABSTRACT
METODE ITERASI OPTIMAL TANPA TURUNAN BERDASARKAN BEDA TERBAGI Amelia Riski, Putra. Supriadi 2, Agusni 2 Mahasiswa Program Studi S Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika Fakultas
PENERAPAN ALGORITME GENETIKA UNTUK PENDUGAAN PARAMETER PADA METODE PEMULUSAN EKSPONENSIAL HOLT-WINTERS ADAM MUHAMMAD RIDWAN
PENERAPAN ALGORITME GENETIKA UNTUK PENDUGAAN PARAMETER PADA METODE PEMULUSAN EKSPONENSIAL HOLT-WINTERS ADAM MUHAMMAD RIDWAN DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT
MODIFIKASI METODE RUNGE-KUTTA ORDE EMPAT KUNTZMANN BERDASARKAN RATA-RATA GEOMETRI TUGAS AKHIR
MODIFIKASI METODE RUNGE-KUTTA ORDE EMPAT KUNTZMANN BERDASARKAN RATA-RATA GEOMETRI TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh LYLY YULIARNI
METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR ABSTRACT
METODE ITERASI KSOR UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Adek Putri Syafriani, Syamsudhuha 2, Zulkarnain 2 Mahasiswa Program Studi S Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan
SOLUSI PERSAMAAN BOLTZMANN DENGAN NILAI AWAL BOBYLEV MENGGUNAKAN PENDEKATAN ANALITIK DAN NUMERIK YOANITA HISTORIANI
SOLUSI PERSAMAAN BOLTZMANN DENGAN NILAI AWAL BOBYLEV MENGGUNAKAN PENDEKATAN ANALITIK DAN NUMERIK YOANITA HISTORIANI SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2007 PERNYATAAN MENGENAI TESIS DAN
PERBANDINGAN METODE GAUSS-LEGENDRE, GAUSS-LOBATTO DAN GAUSS- KRONROD PADA INTEGRASI NUMERIK FUNGSI EKSPONENSIAL
PERBANDINGAN METODE GAUSS-LEGENDRE, GAUSS-LOBATTO DAN GAUSS- KRONROD PADA INTEGRASI NUMERIK FUNGSI EKSPONENSIAL (COMPARISON OF GAUSS-LEGENDRE,GAUSS- LOBATTO, AND GAUSS-KRONROD ON NUMERICAL INTEGRATION
Aplikasi Komputer 2. Catatan Kuliah. Lusiana Prastiwi. Prodi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan. Universitas Dr.
Catatan Kuliah Prastiwi Universitas Dr. Soetomo Prodi Pendidikan Matematika Fakultas Keguruan dan Ilmu Pendidikan Materi Kuliah Dan Referensi Materi Kuliah Dan Referensi Materi kuliah : Materi Kuliah Dan
APLIKASI BASIS L 2 LAGUERRE PADA INTERAKSI TOLAK MENOLAK ANTARA ATOM TARGET HIDROGEN DAN POSITRON. Ade S. Dwitama
APLIKASI BASIS L 2 LAGUERRE PADA INTERAKSI TOLAK MENOLAK ANTARA ATOM TARGET HIDROGEN DAN POSITRON Ade S. Dwitama PROGRAM STUDI FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR
SIMULASI PERGERAKAN HARGA SAHAM MENGGUNAKAN PENDEKATAN METODE MONTE CARLO
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 07, No. (018), hal 119 16. SIMULASI PERGERAKAN HARGA SAHAM MENGGUNAKAN PENDEKATAN METODE MONTE CARLO Lusiana, Shantika Martha, Setyo Wira Rizki
PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 68 75 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN PERSAMAAN NONLINIER DENGAN METODE MODIFIKASI BAGI DUA ELSA JUMIASRI, SUSILA BAHRI, BUKTI GINTING
KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR. Rio Kurniawan ABSTRACT
KELUARGA BARU METODE ITERASI BERORDE LIMA UNTUK MENENTUKAN AKAR SEDERHANA PERSAMAAN NONLINEAR Rio Kurniawan Mahasiswa Program Studi S Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia.
INTEGRASI NUMERIK TANPA ERROR UNTUK FUNGSI-FUNGSI TERTENTU Irma Silpia 1, Syamsudhuha, Musraini M. 1 Mahasiswi Jurusan Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam
METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 50 57 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND METODE PSEUDOSPEKTRAL CHEBYSHEV PADA APROKSIMASI TURUNAN FUNGSI ILHAM FEBRI RAMADHAN Program Studi Matematika
MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA
MODIFIKASI APROKSIMASI TAYLOR DAN PENERAPANNYA Irpan Riski M 1, Musraini M 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas
KAJIAN ANTRIAN TIPE M/M/ DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT
KAJIAN ANTRIAN TIPE M/M/ DENGAN SISTEM PELAYANAN FASE CEPAT DAN FASE LAMBAT QUEUES ANALYSIS M/M/ TYPE WITH SLOW AND FAST PHASE SERVICE SYSTEM Oleh: Erida Fahma Nurrahmi NRP. 1208 100 009 Dosen Pembimbing:
FUNGSI-FUNGSI INVERS
FUNGSI-FUNGSI INVERS Logaritma, Eksponen, Trigonometri Invers Departemen Matematika FMIPA IPB Bogor, 202 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 202 / 49 Topik Bahasan Fungsi Satu ke Satu 2
METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA. Edo Nugraha Putra ABSTRACT ABSTRAK 1.
METODE TRANSFORMASI DIFERENSIAL UNTUK MENYELESAIKAN PERSAMAAN INTEGRAL VOLTERRA JENIS KEDUA Edo Nugraha Putra Mahasiswa Program Studi S1 Matematika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
BAB IV SIMULASI MONTE CARLO
BAB IV SIMULASI MONTE CARLO Monte Carlo adalah algoritma komputasi untuk mensimulasikan berbagai perilaku sistem fisika dan matematika. Penggunaan klasik metode ini adalah untuk mengevaluasi integral definit,
Bab VI Perbandingan Model Simulasi menggunakan Metode Monte Carlo dan Metode Functional Statistics Algorithm (FSA)
37 Bab VI Perbandingan Model Simulasi menggunakan Metode Monte Carlo dan Metode Functional Statistics Algorithm (FSA) VI.1 Probabilitas Integral (Integral Kumulatif) Ketika menganalisis distribusi probabilitas,
MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS
MASALAH VEKTOR EIGEN MATRIKS INVERS MONGE DI ALJABAR MAX-PLUS Farida Suwaibah, Subiono, Mahmud Yunus Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember Surabaya,, e-mail: [email protected]
Kata Pengantar. Medan, 11 April Penulis
Kata Pengantar Puji syukur penulis panjatkan kepada Tuhan YME, bahwa penulis telah menyelesaikan tugas mata kuliah Matematika dengan membahas Numerical Optimization atau Optimasi Numerik dalam bentuk makalah.
PRATIKUM METODE KOMPUTASI MATEMATIKA TERAPAN
PRATIKUM METODE KOMPUTASI OLEH : N E W T O N NRP. G551150031 MATEMATIKA TERAPAN FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2015 DAFTAR ISI DAFTAR ISI ii Pratikum Metode
UNNES Journal of Mathematics
UJM (1) 2017 UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm PENERAPAN METODE NEWTON-COTES OPEN FORM 5 TITIK UNTUK MENYELESAIKAN SISTEM PERSAMAAN NONLINIER M Ziaul Arif, Yasmin
PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 97 104 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN NUMERIK DARI PERSAMAAN DIFERENSIAL NONLINIER ADVANCE-DELAY YOSI ASMARA Program Studi Magister
PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 2 (2014), hal 117 124. PENYELESAIAN NUMERIK PERSAMAAN DIFERENSIAL FUZZY ORDE SATU MENGGUNAKAN METODE ADAMS BASHFORTH MOULTON ORDE TIGA
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Persamaan diferensial adalah suatu persamaan diantara derivatif-derivatif yang dispesifikasikan pada suatu fungsi yang tidak diketahui nilainya dan diketahui jumlah
Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer
Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Dewita Sonya Tarabunga - 13515021 Program Studi Tenik Informatika Sekolah Teknik
PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK
PENURUNAN PERSAMAAN GELOMBANG SOLITON DENGAN DERET FOURIER ORDE DUA SECARA NUMERIK Sarwadi Jurusan Matematika FMIPA UNDIP Abstrak Salah satu solusi dari persamaan Korteweg - de Vries (KdV) adalah gelombang
INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN POLINOMIAL LEGENDRE
Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 148 153 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND INTEGRASI NUMERIK DENGAN METODE KUADRATUR GAUSS-LEGENDRE MENGGUNAKAN PENDEKATAN INTERPOLASI HERMITE DAN
MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG)
MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG) Shaifudin Zuhdi, Dewi Retno Sari Saputro Fakultas Matematika dan Ilmu Pengetahuan
PERBANDINGAN METODE BLACK SCHOLES DAN SIMULASI MONTE CARLO DALAM PENENTUAN HARGA OPSI EROPA
Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 7 16 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PERBANDINGAN METODE BLACK SCHOLES DAN SIMULASI MONTE CARLO DALAM PENENTUAN HARGA OPSI EROPA TOMI DESRA YULIANDI,
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Di zaman sekarang, kemajuan sains dan teknologi sangat berkembang pesat. Salah satu ilmu yang berkembang adalah matematika yang merupakan induk dari semua ilmu
PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE
PENERAPAN METODE ELEMEN HINGGA UNTUK SOLUSI PERSAMAAN STURM-LIOUVILLE Viska Noviantri Mathematics & Statistics Department, School of Computer Science, Binus University Jln. K.H. Syahdan No. 9, Palmerah,
TERAPAN INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 22
TERAPAN INTEGRAL Departemen Matematika FMIPA IPB Bogor, 2012 (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, 2012 1 / 22 Topik Bahasan 1 Luas Daerah Bidang Rata 2 Nilai Rataan Fungsi (Departemen Matematika
PENENTUAN PROSENTASE CALON MAHASISWA BARU YANG AKAN MENDAFTAR ULANG DENGAN BANTUAN SIMULASI MONTE CARLO
PENENTUAN PROSENTASE CALON MAHASISWA BARU YANG AKAN MENDAFTAR ULANG DENGAN BANTUAN SIMULASI MONTE CARLO Yogi Yusuf Wibisono Jurusan Teknik Industri Universtias Katolik Parahyangan Jalan Ciumbuleuit 94
SIMULASI Kendalan (Reliability Simulation)*
TKS 6112 Keandalan Struktur SIMULASI Kendalan (Reliability Simulation)* * Pranata, Y.A. Teknik Simulasi Untuk Memprediksi Keandalan Lendutan Balok Statis Tertentu. Prosiding Konferensi Teknik Sipila Nasional
SISTEM PERSAMAAN LINEAR ( BAGIAN II )
SISTEM PERSAMAAN LINEAR ( BAGIAN II ) D. FAKTORISASI MATRIKS D2 2. METODE ITERASI UNTUK MENYELESAIKAN SPL D3 3. NILAI EIGEN DAN VEKTOR EIGEN D4 4. POWER METHOD Beserta contoh soal untuk setiap subbab 2
Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)
Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2) 1) Program Studi Fisika Jurusan Fisika Universitas Tanjungpura 2)Program Studi Ilmu Kelautan
TRAPEZOIDAL RULE DENGAN MENGGUNAKAN EXCEL. Abstract.
1 TRAPEZOIDAL RULE DENGAN MENGGUNAKAN EXCEL Krisnawati Abstract. Trapezoidal is one of methods that used to approximate numerical integration. Although we can implemented based to mathematical subroutine
MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8. Supriadi Putra & M. Imran
MUNGKINKAH MELAKUKAN PERUMUMAN LAIN ATURAN SIMPSON 3/8 Supriadi Putra & M. Imran Laboratorium Komputasi Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya
PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI
PERBANDINGAN PENYELESAIAN SISTEM OREGONATOR DENGAN METODE ITERASI VARIASIONAL DAN METODE ITERASI VARIASIONAL TERMODIFIKASI oleh AMELIA FEBRIYANTI RESKA M0109008 SKRIPSI ditulis dan diajukan untuk memenuhi
Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95)
Modul 1: Analisis Galat (error) dan Masalah-masalah Mendasar Dalam Komputasi Numeris (dengan Turbo Pascal dan FORTRAN 77/90/95) A. Kendala Dalam Sistem Komputasi Numerik Dalam komputasi numerik, yaitu
PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN
E-Jurnal Matematika Vol. 2, No.2, Mei 2013, 11-17 ISSN: 2303-1751 PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON- RAPHSON DAN METODE JACOBIAN NANDA NINGTYAS RAMADHANI UTAMI 1,
APLIKASI SIMULASI MONTE CARLO UNTUK MENENTUKAN NILAI OPSI ASIA DENGAN MENGGUNAKAN METODE CONTROL VARIATE PADA KOMODITAS PERTANIAN
APLIKASI SIMULASI MONTE CARLO UNTUK MENENTUKAN NILAI OPSI ASIA DENGAN MENGGUNAKAN METODE CONTROL VARIATE PADA KOMODITAS PERTANIAN D. P. ANGGRAINI 1, D. C. LESMANA 2, B. SETIAWATY 2 Abstrak Petani memiliki
Pertemuan ke-10: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR
Pertemuan ke-0: UJI PERBANDINGAN, DERET BERGANTI TANDA, KEKONVERGENAN MUTLAK, UJI RASIO, DAN UJI AKAR Departemen Matematika FMIPA IPB Bogor, 205 (Departemen Matematika FMIPA IPB) Kalkulus II Bogor, 205
PENERAPAN ALGORITMA GENETIKA UNTUK PENENTUAN PENJADWALAN JOB SHOP SECARA MONTE CARLO
TUGAS AKHIR - ST 1325 PENERAPAN ALGORITMA GENETIKA UNTUK PENENTUAN PENJADWALAN JOB SHOP SECARA MONTE CARLO YANTER SIANIFAR BASUKI NRP 1303100049 Dosen Pembimbing Prof. Drs. Nur Iriawan, M.Ikom. Ph.D JURUSAN
BAB 1 PENDAHULUAN. Metode Numerik
Metode Numerik BAB 1 PENDAHULUAN Metode numerik adalah metode menggunakan komputer untuk mengaproksimasi solusi masalah matematika melalui kinerja dari sejumlah operasi dasar pada angka. Alasan penggunaan
SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU ABSTRACT
SOLUSI NUMERIK PERSAMAAN INTEGRAL VOLTERRA-FREDHOLM NONLINEAR MENGGUNAKAN FUNGSI BASIS BARU Vanny Octary 1 Endang Lily 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika
MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN
MODUL PRAKTIKUM METODE NUMERIK NAZARUDDIN JURUSAN INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SYIAH KUALA BANDA ACEH 2012 DAFTAR ISI DAFTAR ISI... 1 KATA PENGANTAR... 2 PENDAHULUAN...
PENERAPAN METODE INTEGRASI MONTE CARLO PADA LEMBARKERJA EXCEL. Implementattion of Monte-Carlo Integration Method in Excel Worksheet
Prosiding Seminar Nasional Penelitian, Pendidikan, dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 PENERAPAN METODE INTEGRASI MONTE CARLO PADA LEMBARKERJA EXCEL Eko Sulistya
TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR ABSTRACT
TEKNIK ITERASI VARIASIONAL UNTUK MENYELESAIKAN PERSAMAAN NONLINEAR Koko Saputra 1, Supriadi Putra 2, Zulkarnain 2 1 Mahasiswa Program Studi S1 Matematika 2 Laboratorium Matematika Terapan, Jurusan Matematika
SATUAN ACARA PERKULIAHAN (SAP)
SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH KODE / SKS PROGRAM STUDI : REKAYASA KOMPUTASIONAL (d/h Metode Numerik) : TI / 2 SKS : TEKNIK INFORMAA Pertemu Pokok Bahasan an ke dan 1 Pendahuluan-1 Agar mahasiswa
Judul : Perhitungan Premi Asuransi Jiwa Endowment Suku Bunga Vasicek dengan Simulasi Monte Carlo ABSTRAK
Judul : Perhitungan Premi Asuransi Jiwa Endowment Suku Bunga Vasicek dengan Simulasi Monte Carlo Nama : Desi Kurnia Sari (NIM: 1208405054) Pembimbing : 1. Drs. I Nyoman Widana, M.Si. 2. Kartika Sari, S.Si,
DASAR-DASAR ANALISIS MATEMATIKA
(Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: [email protected]. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah
BAB V PENUTUP ( ( ) )
BAB V PENUTUP 5.1 Kesimpulan Penentuan harga opsi Asia menggunakan rata-rata Aritmatik melalui Simulasi Monte Carlo dapat dinyatakan sebagai berikut. ( ( ) ) ( ( ) ) dimana merupakan harga opsi Call Asia
BAB I PENDAHULUAN. masalah dan menafsirkan solusi dari permasalahan yang ada. Tanpa
BAB I PENDAHULUAN 1.1. Latar Belakang Penggunaan matematika dalam kehidupan sangat berguna untuk meningkatkan pemahaman dan penalaran, serta untuk memecahkan suatu masalah dan menafsirkan solusi dari permasalahan
BAB IV. Pada bab IV ini, akan dibahas implementasi metode Least-Square. Monte Carlo (LSM) untuk menentukan nilai opsi put Amerika dengan
BAB IV IMPLEMENTASI METODE LEAST-SQUARE MONTE CARLO 4.1 Implementasi Pada bab IV ini, akan dibahas implementasi metode Least-Square Monte Carlo (LSM) untuk menentukan nilai opsi put Amerika dengan menggunakan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Dasar Teori 2.1.1 Integral Integral merupakan invers atau kebalikan dari differensial. Integral terdiri dari dua macam yakni integral tentu dan integral tak tentu. Integral
PEMROGRAMAN TERSTRUKTUR MENGGUNAKAN MATLAB
PETUNJUK PRAKTIKUM PEMROGRAMAN TERSTRUKTUR MENGGUNAKAN MATLAB Oleh Ahmad Kamsyakawuni JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2009 MODUL 1 MENGENAL MATLAB A.
IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI INTEGRAL TENTU MENGGUNAKAN POLINOMIAL BERORDE 4 DAN 5. Wahyu Sakti G. I.
Sakti G.I., Implementasi Formula Newton-Cotes Untuk Menentukan Nilai Aproksimasi Integral Tentu Menggunakan Polinomial Berorde 4 dan 5 IMPLEMENTASI FORMULA NEWTON-COTES UNTUK MENENTUKAN NILAI APROKSIMASI
SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT ABSTRACT
SEBUAH VARIASI BARU METODE NEWTON BERDASARKAN TRAPESIUM KOMPOSIT Vera Alvionita Harahap 1, Asmara Karma 1 Mahasiswa Program Studi S1 Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan
A. Kompetensi Setelah mengiktui mata kuliah ini, mahasiswa diharapkan dapat memahami dan bisa melakukan:
No. LST/EKA/PTI 236/07 Revisi: 01 April 2011 Hal 1 dari 9 A. Kompetensi Setelah mengiktui mata kuliah ini, mahasiswa diharapkan dapat memahami dan bisa melakukan: 1. Mengenal dan menggunakan matlab sebagai
SOLUSI MODEL SIKLUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA DENGAN METODE RUNGE-KUTTA ORDE EMPAT NUR AISYAH MUKARROMAH
SOLUSI MODEL SIKLUS BISNIS KALDOR-KALECKI TANPA WAKTU TUNDA DENGAN METODE RUNGE-KUTTA ORDE EMPAT NUR AISYAH MUKARROMAH DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN
