BAB I PENDAHULUAN 1.1. Dasar Teori

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN 1.1. Dasar Teori"

Transkripsi

1 BAB I PENDAHULUAN 1.1. Dasar Teori Pengertian Pengadukan Pengadukan (agitation) adalah gerakan yang terinduksi menurut cara tertentu pada suatu bahan di dalam bejana, dimana gerakan itu biasanya mempunyai semacam pola sirkulasi. Pencampuran adalah peristiwa menyebarkan bahan-bahan secara acak, dimana bahan yang satu menyebar ke dalam bahan yang lain dan sebaliknya, sedang bahan-bahan itu sebelumnya terpisah dalam dua fasa atau lebih Tujuan Pengadukan Tujuan pengadukan zat cair dilakukan untuk berbagai maksud bergantung dari tujuan langkah pengolahan itu sendiri. Tujuan pengadukan antara lain : 1. Untuk membuat suspensi partikel zat padat 2. Untuk mencampur zat cair yang mampu campur (miscible) 3. Untuk menyebarkan (dispersi) gas di dalam zat cair dalam gelembung-gelembung kecil 4. Untuk meyebarkan zat cair yang tidak dapat bercampur dengan zat cair yang lain, sehingga membentuk emulsi atau suspensi butiran-butiran halus 5. Untuk mempercepat perpindahan kalor antara zat cair dengan kumparan Tangki Pengaduk Zat cair biasanya diaduk di dalam suatu tangki atau bejana, biasanya yang berbentuk silinder dengan sumbu terpasang vertikal. Bagian atas tangki mungkin saja terbuka ke udara atau dapat pula tertutup. Ukuran dan proporsi tangki bermacam-macam, bergantung pada masalah pengadukan itu sendiri. Ujung bawah tangki itu biasanya agak membulat, jadi tidak datar maksudnya agar tidak terdapat terlalu banyak sudut-sudut tajam atau daerah yang sulit ditembus arus zat cair. Kedalaman zat cair biasanya hampir sama dengan diameter tangki.

2 1.1.4 RATB ( Reaktor Alir Tangki Berpengaduk ) RATB adalah reaktor kontinyu yang berupa tangki berpengaduk, pola aliran adalah mixed flow, sehingga bisa diasumsikan konsentrasi, konversi, dan suhu di semua titik dalam reaktor adalah homogen. Ada beberapa jenis reaktor RATB Sehingga pada reaktor ini suhu bisa dianggap isotermal: a. RATB biasa, digunakan untuk sistem cair-cair, dimana reaktan adalah fasa cair, dan bila ada katalisator juga cair. b. Reaktor Gelembung: Reaktor untuk mereaksikan sistem gas cair, dimana gas di umpankan dengan sparger dari bawah dan cairan dari atas secara kontinyu. c. Slurry Reactor : Reaktor yang mereaksikan cairan dan padatan, baik padatan sebagai katalisator ataupun reaktan, dengan pengadukan. Untuk RATB dapat disusun seri 3-5 buah untuk mendapatkan pola aliran similar dengan plugflow, dan dapat dipasang pendingin/pemanas baik jacket maupun koil untuk menjaga suhu konstan.

3 Gambar RATB (Reaktor Alir Tangki Berpengaduk) Bagian dalam suatu RATB : RATB dikenal juga sebagai RTIK (Reaktor Tangki Ideal Kontinu). Di RATB, satu atau lebih reaktan masuk ke dalam suatu bejana berpengaduk dan bersamaan dengan itu sejumlah yang sama (produk) dikeluarkan dari reaktor. Pengaduk dirancang sehingga campuran teraduk dengan sempurna dan diharapkan reaksi berlangsung secara optimal. Waktu tinggal dapat diketahui dengan membagi volum reaktor dengan kecepatan volumetrik cairan yang masuk reaktor. Dengan perhitungan kinetika reaksi, konversi suatu reaktor dapat diketahui. Beberapa hal penting mengenai RATB: Reaktor berlangsung secara ajeg, sehingga jumlah yang masuk setara dengan jumlah yang ke luar reaktor jika tidak tentu reaktor akan berkurang atau bertambah isinya. Perhitungan RATB mengasumsikan pengadukan terjadi secara sempurna sehingga semua titik dalam reaktor memiliki komposisi yang sama. Dengan asumsi ini, komposisi keluar reaktor selalu sama dengan bahan di dalam reaktor. Seringkali, untuk menghemat digunakan banyak reaktor yang disusun secara seri daripada menggunakan reaktor tunggal yang besar. Sehingga reaktor yang di belakang akan memiliki komposisi produk yang lebih besar dibanding di depannya.

4 Dapat dilihat, bahwa dengan jumlah RATB kecil yang tak terbatas model perhitungan akan menyerupai perhitungan untuk RAP Pencampuran (mixing) Pencampuran (mixing) adalah peristiwa menyebarnya bahan-bahan secara acak dimana bahan satu menyebar ke bahan yang lain dan sebaliknya, sedangkan bahan-bahan tersebut sebelumnya terpisah dalam dua fase atau lebih. Prinsip percobaan pencampuran adalah berdasarkan pada peningkatan pengacakan dan distribusi dua atau lebih komponen yang mempunyai sifat yang berbeda. Derajat pencampuran dapat dikarakterisasi dari waktu yang dibutuhkan, keadaan produk atau bahkan jumlah energi yang dibutuhkan untuk melakukan pencampuran. Derajat keseragaman pencampuran diukur dari sampel yang diambil selama pencampuran. Jika komponen yang dicampur telah terdistribusi melalui komponen lain secara random, maka dikatakan pencampuran telah berlangsung dengan baik. Variabel-variabel yang mempengaruhi proses pencampuran adalah komposisi bahan, reaktor yang digunakan, kecepatan pengadukan, waktu pengadukan, densitas, dan viskositas bahan. Semakin lama pengadukan, maka campuran akan semakin homogen. Homogenitas campuran berpengaruh pada viskositas dan densitas campuran. Besar kecilnya viskositas tergantung pada densitas. a. Tangki Pencampuran (Mixing) Alat pencampur fasa padat ke fasa cair jenis ini diperuntukkan untuk memperoleh campuran dengan viskositas rendah, biasanya berupa tangki pencampur beserta perlengkapannya. Dimensi tangki atau vessels, jenis pengaduk atau impeller, kecepatan putar pengaduk, jenis pengaduk, jumlah penyekat atau buffle, letak impeller beserta dimensinya bergantung dari kapasitas dan jenis dari bahan yang dicampurkan. b. Bagian-bagian Alat Pencampur o Tangki atau vessel wadah untuk pencampuran berbentuk silinder dengan bagian bawah melengkung atau datar.

5 o Penyekat/buffle berbentuk batang yang diletakkan dipinggir tangki berguna untuk menghindari vortex dan digunakan untuk mempolakan aliran menjadi turbulen. Jumlah buffle biasanya 3, 4 atau 6 buah dengan ukuran 1/12 diameter tangki. Sekat (baffle) adalah lembaran vertikal datar yang ditempelkan pada dinding tangki. Tujuan utama menggunakan sekat dalam tangki adalah memecah terjadinya pusaran saat terjadinya pengadukan dan pencampuran. Oleh karena itu, posisi sumbu pengaduk pada tangki bersekat berada di tengah. Namun, pada umumnya pemakaian sekat akan menambah beban pengadukan yang berakibat pada bertambahnya kebutuhan daya pengadukan. Sekat pada tangki juga membentuk distribusi konsentrasi yang lebih baik di dalam tangki, karena pola aliran yang terjadi terpecah menjadi empat bagian. Penggunaan ukuran sekat yang lebih besar mampu menghasilkan pencampuran yang lebih baik. o Pengaduk/impeller digunakan untuk mengaduk campuran, jenis dari impeller beragam disesuaikan pada sifat dari zat yang akan dicampurkan. Jenis-jenis impeller yang umumnya digunakan adalah : Tree-blades/marine impeller digunakan untuk pencampuran dengan bahn dengan viscositas rendah dengan putaran yang tinggi, Turbine with flat vertical blades impeller digunakan untuk cairan kental dengan viscositas tinggi, Horizontal plate impeller digunakan untuk zat berserat dengan sedikit terjadinya pemotongan, Turbine with blades are inclined impeller paling cocok digunakan untuk tangki yang dilengkapi jaket pemanas, Curve bade Turbines impeller efektif untuk bahan berserat tanpa pemotongan dengan viskositas rendah, Flate plate impeller digunakan untuk pencampuran emulsi, Cage beaters impart impeller cocok

6 digunakan untuk pemotongan dan penyobekan, Anchore paddle impeller digunakan campuran dengan viscositas sangat tinggi berupa pasta. c. Ukuran dan Letak (Impeller) Ukuran impeller biasanya berkisar antara 0,3-0,6 kali diameter tangki, sedangkan letak impeller tergantung pada dimensi vessel viscositas campuran yang diaduk. Tata letak dari impeller seperti pada tabel dibawah ini : h adalah tinggi vessel s dan Dt adalah diameter vessel s Letak impeller untuk tangki dengan menggunakan buffle biasanya di tengah/center karena pola turbulensi yang dikehendaki akan terbentuk dengan adanya buffle. Untuk tangki tanpa menggunakan buffle, letak pengaduk sangat mempengaruhi pola aliran yang dihasilkan. Biasanya untuk menghindari adanya vortex aliran fluida karena pengadukan tangki tanpa buffle meletakkan pengaduk tidak tepat ditengah/tidak senter dengan tangki Jenis Jenis Pengaduk Ada beberapa tipe impeller yang biasa digunakan antara lain : propeller, paddle, turbin,dan helical ribbon. a. Propeller Jenis impeller ini biasa digunakan untuk kecepatan pengadukan tinggi dengan arah aliran aksial. Pengaduk ini dapat digunakan untuk cairan yang memiliki viskositas rendah dan tidak bergantung pada ukuran serta bentuk tangki. Kapasitas sirkulasi yang dihasilkan besar dan sensitif terhadap beban head. Dalam perancangan propeller, luas sudu biasa dinyatakan dalam perbandingan luas area yang terbentuk dengan luas daerah disk. Nilai nisbah ini berada pada rentang 0.45 sampai dengan Pengaduk propeller terutama menimbulkan aliran arah aksial, arus aliran meninggalkan pengaduk secara kontinu melewati fluida ke satu arah

7 tertentu sampai dibelokkan oleh dinding atau dasar tangki. Impeller jenis ini dapat dioperasikan pada seluruh range kecepatan. Propeller kecil biasanya berputar pada kecepatan motor penuh, yaitu atau rpm, propeller besar berputar pada 400 sampai 800 rpm. Tipe impeller ini berbentuk kipas yang menghasilkan aliran aksial. Propeller mempunyai tingkat efisiensi yang baik bila digunakan pada fluida yang berviskositas rendah, kurang dari 2000 cp. Arus yang meninggalkan propeller mengalir melalui zat cair menurut arah tertentu sampai dibelokkan oleh lantai atau dinding bejana. Hal ini efektif digunakan dalam bejana besar. Biasanya alat pengaduk propeller dibuat dalam dua bagian dan berputar dengan cepat. Pengaduk propeller digunakan untuk mengaduk bahan dengan viskositas rendah. Ada beberapa jenis pengaduk yang biasa digunakan. Salah satunya adalah propeller berdaun tiga. Baling-baling ini digunakan pada kecepatan berkisar antara 400 hingga 1750 rpm (radius per minute) dan digunakan untuk cairan dengan viskositas rendah. b. Paddle Pengaduk jenis ini sering memegang peranan penting pada proses pencampuran dalam industri. Bentuk pengaduk ini memiliki minimum 2 sudut, horizontal atau vertikal, dengan nilai D/T yang tinggi. Paddle digunakan pada aliran fluida laminar, transisi atau turbulen tanpa baffle. Pengaduk paddle menimbulkan aliran arah radial dan tangensial dan hampir tanpa gerak vertikal sama sekali, kecuali digunakan baffle. Arus yang bergerak ke arah horizontal setelah mencapai dinding akan dibelokkan ke atas atau ke bawah. Tipe impeller ini akan mendorong zat cair secara radial dan tangensial. Arus yang terjadi bergerak keluar ke arah dinding, lalu membelok ke atas atau ke bawah.

8 Paddle merupakan impeller yang paling efektif. Hal ini dapat dilihat dari pola aliran yang ditimbulkan akibat gerakan paddle ke seluruh bagian sehingga molekul yang akan dilarutkan bergerak acak dan homogenitas yang tinggi dihasilkan. Hal ini menyebabkan paddle mempunyai efisiensi yang tinggi. Impeller ini digunakan untuk fluida yang berviskositas sampai cp. Berbagai jenis pengaduk dayung biasanya digunakan pada kesepatan rendah diantaranya 20 hingga 200 rpm. Dayung datar berdaun dua atau empat biasa digunakan dalam sebuah proses pengadukan. Panjang total dari pengadukan dayung biasanya 60-80% dari diameter tangki dan lebar dari daunnya 1/6-1/10 dari panjangnya. Pengaduk dayung menjadi tidak efektif untuk suspensi padatan, karena aliran radial bisa terbentuk namun aliran aksial dan vertikal menjadi kecil. Sebuah dayung jangkar atau pagar, yang terlihat pada gambar 6 biasa digunakan dalam pengadukan. Jenis ini menyapu dan mengeruk dinding tangki dan kadang-kadang bagian bawah tangki. Jenis ini digunakan pada cairan kental dimana endapan pada dinding dapat terbentuk dan juga digunakan untuk meningkatkan transfer panas dari dan ke dinding tangki. Bagaimanapun jenis ini adalah pencampuran yang buruk. Pengaduk dayung sering digunakan untuk proses pembuatan cat, bahan perekat dan kosmetik. c. Turbin Istilah turbin ini diberikan bagi berbagai macam jenis pengaduk tanpa memandang rancangan, arah discharge ataupun karakteristik aliran. Turbin merupakan pengaduk dengan sudu tegak datar dan bersudut konstan. Pengaduk jenis ini digunakan pada viskositas fluida rendah seperti halnya pengaduk jenis propeller [Uhl & Gray, 1966]. Pengaduk turbin menimbulkan aliran arah radial dan tangensial. Di sekitar turbin terjadi daerah turbulensi yang kuat, arus dan geseran yang kuat antar fluida. Salah satu jenis pengaduk turbin adalah pitched blade. Pengaduk jenis ini memiliki sudut konstan.

9 Turbin biasanya efektif untuk fluida berviskositas sedang yaitu 2000 sampai cp. Arus yang ditimbulkan bersifat radial dan tangensial. Komponen tangensialnya menimbulkan vortex dan arus putar yang harus diehntikan dengan menggunakan baffle. Arus yang ditimbulkan oleh gerakan impeller ini menyebabkan terbentuknya vortex yang sangat tidak diinginkan dalam proses mixing. Untuk mencegah terjadinya vortex ketika fluida diaduk dalam tangki silinder dengan impeller yang berada pada pusatnya maka digunakan baffle yang dipasang pada dinding vessel. Baffle yang digunakan biasanya memiliki jarak yang sama. Baffle biasanya tidak menempel pada dinding vessel sehingga secara kebetulan akan terdapat celah antara baffle dengan dinding vessel. Pengaduk turbin adalah pengaduk dayung yang memiliki banyak daun pengaduk dan berukuran lebih pendek, digunakan pada kecepatan tinggi untuk cairan dengan rentang kekentalan yang sangat luas. Diameter dari sebuah turbin biasanya antara 30-50% dari diamter tangki. Turbin biasanya memiliki empat atau enam daun pengaduk. Turbin dengan daun yang datar memberikan aliran yang radial. Jenis ini juga berguna untuk dispersi gas yang baik, gas akan dialirkan dari bagian bawah pengadukdan akan menuju ke bagian daun pengaduk lalu tepotong-potong menjadi gelembung gas. Pada turbin dengan daun yang dibuat miring sebesar 45o, beberapa aliran aksial akan terbentuk sehingga sebuah kombinasi dari aliran aksial dan radial akan terbentuk. Jenis ini berguna dalam suspensi padatan kerena aliran langsung ke bawah dan akan menyapu padatan ke atas. Terkadang sebuah turbin dengan hanya empat daun miring digunakan dalam suspensi padat. Pengaduk dengan aliran aksial menghasilkan pergerakan fluida yang lebih besar dan pencampuran per satuan daya dan sangat berguna dalam suspensi padatan.

10 d. Helical-Ribbon Jenis pengaduk ini digunakan pada larutan pada kekentalan yang tinggi dan beroperasi pada rpm yang rendah pada bagian laminer. Ribbon (bentuk seperti pita) dibentuk dalam sebuah bagian helical (bentuknya seperti baling-balling helicopter dan ditempelkan ke pusat sumbu pengaduk). Cairan bergerak dalam sebuah bagian aliran berliku-liku pada bagiam bawah dan naik ke bagian atas pengaduk. 1. Flat blades turbine Jenis impeller yang dapat menangani semua aplikasi pencampuran fluida. Pemompaan yang tinggi membuat jenis impeller ini baik untuk pencampuran operasi. Hal ini disesuaikandengan penutup pelindungnya yang terbuat dari plastik, karet dan timah.

11 2. Curved blade turbine Jenis impeller ini efektif untuk menghilangkan bahan berserat tanpa adanya fouling dan juga digunakanuntuk pengeboran minyak. Impeller ini digunakan untuk kebutuhan low shear (gaya geser rendah). 3. Gate paddle Digunakan untuk bahan dengan viskositas tinggi dan beroperasi pada kecepatan poros yang rendah. Hal yang diperhatikan untuk menggunakan jenis impeller ini yaitu tinggi cairan dangkal dan tangki lebar. Bekerja pada aliran aliran radial, tidak memiliki sirkulasi vertikal kecuali menggunakan baffle. Tidak mudah hancur pada operasi, dan juga biayanya relatif murah. 4. Marine propeller Dimodelkan seperti baling baling kapal laut tetapi memiliki pitch untuk turbulensi maksimum. Digunakan untuk pada kecepatan tinggi sampai 1800 rpm dengan viskositas cairan rendah sampai sekitar 4000 cp. Bersirkulasi oleh aliran parallel aksial dan pola aliran dimodifikasi oleh sekat biasanya oleh arus bawah. Bisa dipasang pada berbagai sudut, yang paling umum di pasang pada sudut persegi.

12 5. Lifter turbine Jenis impeller ini efisiensi untuk pompa dengan volume besar terhadap head static kurang dari 36 inch. Typical radial impeller agitator beropreasi sebagai turbin agitasi atau propeller konvensional pada berbagai aplikasi. 6. Flat blade pitched paddle Merupakan jenis impeller yang sederhana dan di desain dengan biaya rendah serta digunakan untuk berbagai pekerjaan. Beroperasi pada kecepatan rendah, itu akan memberikan pemompaan maksimum dengan turbulensi minimum. 7. Plain cage beater Jenis Jenis impeller ini memberikan aksi pemotongan. Biasanya terpasang pada poros yang sama dengan propeller standar. 8. Studded cage beater Besar bidang kontak memberikan untuk potongan yang sangat kasar dan memotong pada tindakan tertentu pada proses emulsi dan pembuatan pulp.

13 9. Saw toothed propeller Menggantikan sejumlah zat cair dan menggabungkan pemotongan dan merobek. Cocok untuk bahan berserat. 10. Perforated propeller Jenis impeller ini dioperasikan pada pembasahan kering bubuk. 11. Shrouded turbine Jenis impeller yang digunakan untuk kapasitas pompa yang tinggi. Bekerja dengan aliran radial. Kisaran kecepatannya terbatas. Pada kecepatan yang rendah tidak mudah hancur. Efektif pada viskositas yang tinggi. Biayanya relatif tinggi. Biasanya digunakan untuk head static rendah. 12. Radial propeller Beroperasi sebagai turbin agitasi atau propeller konvensional pada berbagai aplikasi.

14 13.Cut out propeller Menggantikan sejumlah cairan kemudian dikombinasikan dengan laju tinggi memotong dan memecahkan cairan. 14. Wedless propeller Digunakan untuk bahan yang berserat panjang dan akan terjerat pada baling-baling biasa Jenis Pola Aliran Pola aliran yang dapat terbentuk pada proses pengadukan dan pencampuran dapat dibagi menjadi tiga, yaitu : 1. Aliran radial, yang bekerja pada arah tegak lurus terhadap poros pengaduknya. 2. Aliran tangensial atau rotasial, yang bekerja pada arah singgung terhadap lintasan lingkar di sekeliling poros. 3. Aliran aksial yang bekerja pada arah paralel ( sejajar ) dengan poros.

15 Dalam posisi poros vertikal, komponen radial dan tangensial berada pada satu bidang horisontal, sedangkan komponen aksial adalah vertikal. Komponen radial dan longitudinal sangat aktif dalam memberikan aliran yang diperlukan untuk melakukan pencampuran. Untuk jenis aliran tangensial, akan cenderung terbentuknya arus lingkar sehingga dapat menyebabkan terbentuknya vorteks yang tidak di inginkan dalam proses pencampuran. Terjadinya arus lingkar atau arus putar dapat dicegah dengan salah satu cara berikut : o Pergeseran posisi poros pengaduk o Pemasangan poros pada sisi tangki o Pemasangan baffle Gambar 7. Pola Aliran Setelah Pergeseran Posisi Poros dan Pemasangan Baffle Faktor yang Mempengaruhi Proses Pengadukan dan Pencampuran Faktor-faktor yang mempengaruhi proses pengadukan dan pencampuran diantaranya adalah perbandingan antara geometri tangki dengan geometri pengaduk, bentuk dan jumlah pengaduk, posisi sumbu pengaduk, kecepatan putaran pengaduk, penggunaan sekat dalam tangki dan juga properti fisik fluida yang diaduk yaitu densitas dan viskositas. Oleh karena itu, perlu tersedia seperangkat alat tangki berpengaduk yang bisa digunakan untuk mempelajari operasi dari pengadukan dan pencampuran tersebut.

16 Pencampuran terjadi pada tiga tingkatan yang berbeda yaitu : 1.Mekanisme konvektif : pencampuran yang disebabkan aliran cairan secara keseluruhan (bulk flow). 2.Eddy diffusion : pencampuran karena adanya gumpalan - gumpalan fluida yang terbentuk dan tercampakan dalam medan aliran. 3.Diffusion : pencampuran karena gerakan molekuler. Ketiga mekanisme terjadi secara bersama-sama, tetapi yang paling menentukan adalah eddy diffusion. Mekanisme ini membedakan pencampuran dalam keadaan turbulen dengan pencampuran dalam medan aliran laminer. Sifat fisik fluida yang berpengaruh pada proses pengadukan adalah densitas dan viskositas. Secara khusus, proses pengadukan dan pencampuran digunakan untuk mengatasi tiga jenis permasalahan utama, yaitu : 1.Untuk menghasilkan keseragaman statis ataupun dinamis pada sistem multifase multikomponen. 2.Untuk memfasilitasi perpindahan massa atau energi diantara bagian-bagian dari sistem yang tidak seragam. 3.Untuk menunjukkan perubahan fase pada sistem multikomponen dengan atau tanpa perubahan komposisi. Aplikasi pengadukan dan pencampuran bisa ditemukan dalam rentang yang luas, diantaranya dalam proses suspensi padatan, dispersi gas-cair, cair-cair maupun padat-cair, kristalisasi, perpindahan panas dan reaksi kimia. Pemilihan pengaduk yang tepat menjadi salah satu faktor penting dalam menghasilkan proses dan pencampuran yang efektif. Pengaduk jenis baling-baling (propeller) dengan aliran aksial dan pengaduk jenis turbin dengan aliran radial menjadi pilihan yang lazim dalam pengadukan dan pencampuran. Dalam proses mixing ini digunakan impeller sebagai mixer yang akan mencampurkan dua fase atau lebih yang terpisah. Pengaduk ini terdiri atas tiga daun yang melengkung. Biasanya daun tersebut agak bengkok keatas sehingga sesuai dengan bentu dasar bejana. Pengaduk impeller mempunyai diameter sebesar 2/3 hingga ½ dari diameter bejana dan frekuensi putarannya rpm.

17 Pengaduk impeller dibuat dari satu atau beberapa bagian. Karena pengaduk ini dapat dilapisi dengan baik, alat ini seringkali digunakan dalam bejana pengaduk yang ber . Bersama dengan perangkat penggerak yang dapat dikontrol, pengaduk impeler dapat dimanfaatkan secara serba guna, misalnya untuk melarutkan, mensuspensikan atau mengemulsikan padatan dalam cairan serta juga untuk reaksi-reaksi kimia dan proses-proses pertukaran panas Waktu Homogenitas Waktu homogenitas adalah waktu yang dibutuhkan sehingga diperoleh keadaan yang homogen untuk menghasilkan campuran atau produk dengan kualitas yang telah ditentukan. Sedangkan laju pencampuran (rate of mixing) adalah laju dimana proses pencampuran berlangsung hingga mencapai kondisi akhir. Pada operasi pencampuran dalam tangki berpengaduk, waktu pencampuran ini dipengaruhi oleh beberapa hal : 1. Yang berkaitan dengan alat, seperti : - Ada tidaknya baffle atau cruciform vaffle - Bentuk atau jenis pengaduk (turbin, propele, padel) - Ukuran pengaduk (diameter, tinggi) - Laju putaran pengaduk - Kedudukan pengaduk pada tangki, seperti : a. Jarak pengaduk terhadap dasar tangki b. Pola pemasangan : - Center, vertikal - Off center, vertikal - Miring (inclined) dari atas - Horisontal c. Jumlah daun pengaduk d. Jumlah pengaduk yang terpasang pada poros pengaduk 2. Yang berhubungan dengan cairan yang diaduk : - Perbandingan kerapatan atau densitas cairan yang diaduk - Perbandingan viskositas cairan yang diaduk - Jumlah kedua cairan yang diaduk

18 - Jenis cairan yang diaduk (miscible, immiscible) Faktor-faktor tersebut dapat dijadikan variabel yang dapat dimanipulasi untuk mengamati pengaruh setiap faktor terhadap karakteristik pengadukan, terutama tehadap waktu pencampuran Kebutuhan Daya dalam Tangki Pengaduk Dalam merancang tangki pengaduk, kebutuhan daya untuk mendorong pengaduk merupakan suatu pertimbangan yang sangat penting. Untuk menaksir daya yang diperlukan untuk memutar pengaduk pada kecepatan tertentu, diperlukan suatu korelasi empirik mengenai daya ( angka daya ). Angka daya itu sendiri dapat diperoleh dari grafik hubungan Bilangan power ( Np ) Vs Bilangan Reynolds NRe. Bilangan Reynolds menjelaskan pengaruh dari viskositas larutan. Rumus dari bilangan Reynolds yaitu : R N = p. N. D 2 η Persamaan (1-1) Keterangan : D = diameter pengaduk N = kecepatan putaran pengaduk η = viskositas ρ = densitas Sedangkan bilangan power ( angka daya ) dirumuskan sebagai berikut : Np = P n 3 D 5 ρ Persamaan (1-2) Keterangan : Np = Power Number P = Power (Daya. Watt) n = Kecepatan pengadukan (putaran/detik) ρ = Densitas fluida (kg/m 3 ) D = diameter pengaduk (m)

19 Sehingga dari rumus angka daya tersebut dapat diperoleh nilai power yang di butuhkan untuk mendorong pengaduk. Persamaan-persamaan diatas berlaku bagi tangki bersekat maupun tidak bersekat. Namun untuk tangki tak bersekat, nilai angka daya yang diperoleh harus dikoreksi lagi dengan Angka Froude (NFr). Angka Froude merupakan ukuran rasio tegangan inersia terhadap gaya gravitasi per satuan luas yang bekerja pada fluida dalam tangki. Hal ini terdapat dalam situasi di mana terdapat gerakan gelombang yang tidak dapat diabaikan pada permukaan zat cair. Persamaan angka ini yaitu : N Fr = N 2.D g Persamaan (1-3) Pembuktian Rumus : Keterangan: D = diameter pengaduk (m) N = kecepatan putar pengaduk ( frekuensi (1/s)) g = Gravitasi bumi (m/s 2 ) Sehingga nilai Np koreksi dapat diperoleh dari persamaan berikut : Np (koreksi) = Np x NFrm Eksponensial m itu sendiri diperoleh dari persamaan : m = a - Log N Re b Dimana a dan b merupakan tetapan. Nilai a dan b dapat diperoleh dari tabel konstanta a dan b sebagai berikut :

20 Gambar Kurva a B 9-12 D 1,0 40, B 1,7 18,0 Sumber : Operasi Teknik Kimia, Mc Cabe, W. I

21 Sehingga jika nilai eksponensial diperoleh dan angka Froude ( NFr) juga diperoleh maka angka daya (NP) yang diperoleh dari grafik dapat dikoreksi dan hasil yang diperoleh di gunakan untuk menghitung daya yang dibutuhkan dengan menggunakan persamaan angka daya. ( Mc Cabe, W. I. 1999) Waktu Pencampuran Impeller yang berputar akan menghasilkan efek pencampuran, biasanya putaran tinggi menghasilkan aliran lebih bergolak sehingga menghasilkan efek pencampuran lebih efektif. Adanya buffle akan mengakibatkan aliran berbelok arah dari tepi dinding menuju pusat tangki, sehingga menyebabkan efek pencampuran bertambah efektif. Waktu pencampuran secara umum, diberikan oleh Norwood dan Metzner adalah : Untuk pengaduk propeller,

22 Dimana :

23 DAFTAR PUSTAKA Agung dkk, Laporan POT MIXING, Pengaduk, 17 : 00 3 Oktober 2012 Buku Petunjuk Praktikum Satuan Operasi, 2004, Agitasi dan Pencampuran, Jurusan Teknik Kimia, Politeknik Negeri Bandung Djauhari, A., 2002, Peralatan Kontak dan Pemisah Antar Fasa, Diktat Kuliah, hal 55-59, Teknik Kimia Politeknik Negeri Bandung Kurniawan, R, Pengadukan dan Pencampuran, 15: 47 2 Oktober 2012 McCabe,Warren L, Dkk Operasi Teknik Kimia Jilid 1. Jakarta : Erlangga McCabe, W. L., Smith, J.C. and Harriot, P., 1993, Unit Operation of Chemical Engineering 5 rd., hal , McGraw-Hill, Singapore

MIXING. I. Tujuan Percobaan Untuk menghomogenkan larutan dengan mengetahui kebutuhan energi pengaduk yang dibutuhkan.

MIXING. I. Tujuan Percobaan Untuk menghomogenkan larutan dengan mengetahui kebutuhan energi pengaduk yang dibutuhkan. MIXING I. Tujuan Percobaan Untuk menghomogenkan larutan dengan mengetahui kebutuhan energi pengaduk yang dibutuhkan. II. Perincian Kerja Menghomogenkan Larutan garam (NaCl); Mengoperasikan mixing untuk

Lebih terperinci

LABORATORIUM PERLAKUAN MEKANIK

LABORATORIUM PERLAKUAN MEKANIK LABORATORIUM PERLAKUAN MEKANIK SEMESTER GENAP TAHUN AJARAN 2013 / 2014 MODUL PEMBIMBING : Mixing : Ir. Gatot Subiyanto, M.T. Tanggal Praktikum : 03 Juni 2014 Tanggal Pengumupulan : 10 Juni 2014 (Laporan)

Lebih terperinci

BAB I PENDAHULUAN 1.1 Tujuan Percobaan 1.2 Latar Belakang

BAB I PENDAHULUAN 1.1 Tujuan Percobaan 1.2 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Tujuan Percobaan Tujuan dari percobaan ini adalah : 1. Dapat menjelaskan pola aliran yang terjadi dalam tangki berpengaduk. 2. Dapat menjelaskan pengaruh penggunaan sekat dan tanpa

Lebih terperinci

Kata kunci: fluida, impeller, pengadukan, sekat, vorteks.

Kata kunci: fluida, impeller, pengadukan, sekat, vorteks. ABSTRAK Pengadukan (agitation) merupakan suatu operasi yang menimbulkan gerakan pada suatu bahan (fluida) di dalam sebuah tangki, yang mana gerakannya membentuk suatu pola sirkulasi. Salah satu sistem

Lebih terperinci

LAPORAN PRAKTIKUM OPERASI TEKNIK KIMIA WAKTU PENCAMPURAN

LAPORAN PRAKTIKUM OPERASI TEKNIK KIMIA WAKTU PENCAMPURAN LAPORAN PRAKTIKUM OPERASI TEKNIK KIMIA WAKTU PENCAMPURAN DI SUSUN OLEH KELOMPOK : VI (enam) Ivan sidabutar (1107035727) Rahmat kamarullah (1107035706) Rita purianim (1107035609) PROGRAM STUDI TEKNIK KIMIA

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Keberhasilan suatu proses pengolahan sering amat bergantung pada efektivnya pengadukan dan pencampuran zat cair dalam prose situ. Pengadukan (agitation) menunjukkan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Percobaan untuk Pola Aliran Dengan dan Tanpa Sekat Ada jenis impeller yang membentuk pola aliran aksial dan ada juga jenis impeller lain yang membentuk pola aliran radial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Mixer Mixer merupakan salah satu alat pencampur dalam sistem emulsi sehingga menghasilkan suatu dispersi yang seragam atau homogen. Terdapat dua jenis mixer yang

Lebih terperinci

BAB II MIXING APARATUS

BAB II MIXING APARATUS BAB II MIXING APARATUS 2.1. Tujuan Percobaan - Mengetahui pengaruh jenis pengaduk dan baffle terhadap angka Frounde pada air dan minyak kelapa - Mengetahui hubungan antara bilangan Reynold (N Re ) terhadap

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dicampur gula merah aren dan santan kelapa. Ketiga bahan baku tersebut. kematangan tertentu. Ketiga komposisi yaitu

BAB IV HASIL DAN PEMBAHASAN. dicampur gula merah aren dan santan kelapa. Ketiga bahan baku tersebut. kematangan tertentu. Ketiga komposisi yaitu BAB IV HASIL DAN PEMBAHASAN 4.1 Komposisi Dodol Dodol sebagai makanan khas biasanya terbuat dari tepung beras ketan dicampur gula merah aren dan santan kelapa. Ketiga bahan baku tersebut kemudian diproses

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA SOLID-LIQUID MIXING

PRAKTIKUM OPERASI TEKNIK KIMIA SOLID-LIQUID MIXING PRAKTIKUM OPERASI TEKNIK KIMIA SOLID-LIQUID MIXING I. TUJUAN 1. Mengetahui jenis pola alir dari proses mixing. 2. Mengetahui bilangan Reynolds dari operasi pengadukan campuran tersebut setelah 30 detik

Lebih terperinci

I. TUJUAN. Menghitung Nilai Power Number Menjelaskan pengaruh viskositas, densitas, dan rate pengadudukan terhadap Power pengsadukana

I. TUJUAN. Menghitung Nilai Power Number Menjelaskan pengaruh viskositas, densitas, dan rate pengadudukan terhadap Power pengsadukana MIXING I. TUJUAN Menghitung Nilai Power Number Menjelaskan pengaruh viskositas, densitas, dan rate pengadudukan terhadap Power pengsadukana II. PERINCIAN KERJA Menghitung densitas dari larutan garam Menghitung

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB I PENDAHULUAN 1.1 Latar Belakang Pengadukan adalah suatu operasi kesatuan yang mempunyai sasaran untuk menghasilkan pergerakan tidak beraturan dalam suatu cairan, dengan alat mekanis yang terpasang

Lebih terperinci

ALAT PENCAMPURAN. BAHAN (MIXING) Agitasi(pengadukan) dan Mixing (Pencampuran)

ALAT PENCAMPURAN. BAHAN (MIXING) Agitasi(pengadukan) dan Mixing (Pencampuran) ALAT PENCAMPURAN C BAHAN (MIXING) Agitasi(pengadukan) dan Mixing (Pencampuran) Agitasi dan mixing Pengadukan (agitation) adalah pemberian gerakan tertentu sehingga menimbulkan reduksi gerakan pada bahan,

Lebih terperinci

PERANCANGAN MIXER MATERI KULIAH KALKULUS TEP FTP UB RYN MATERI KULIAH KALKULUS TEP FTP UB

PERANCANGAN MIXER MATERI KULIAH KALKULUS TEP FTP UB RYN MATERI KULIAH KALKULUS TEP FTP UB PERANCANGAN MIXER MATERI KULIAH KALKULUS TEP FTP UB RYN - 2012 Mechanical Mixing Tujuan : Sifat 2 baru (rheologi, organoleptik, fisik) untuk melarutkan berbagai campuran Meningkatkan transfer massa dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Digester Digester merupakan alat utama pada proses pembuatan pulp. Reaktor ini sebagai tempat atau wadah dalam proses delidnifikasi bahan baku industri pulp sehingga

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

Pengadukan dan Pencampuran

Pengadukan dan Pencampuran Pengadukan dan Pencampuran Pengadukan adalah operasi yang menciptakan terjadinya gerakan dari bahan yang diaduk seperti molekul- molekul, zat-zat yang bergerak atau komponennya menyebar (terdispersi).

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kalorimeter Menurut Nurfauziawati, Nova ( 2010) kalor adalah energi mekanik akibat gerakan partikel materi dan dapat dipindah dari satu tempat ke tempat lain. Pengukuran jumlah

Lebih terperinci

TANGKI BERPENGADUK (TGK)

TANGKI BERPENGADUK (TGK) MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA TANGKI BERPENGADUK (TGK) Koordinator LabTK Dr. Dianika Lestari / Dr. Pramujo Widiatmoko PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN Page 1 BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan efflux time dalam dunia industri banyak dijumpai pada pemindahan fluida dari suatu tempat ke tempat yang lain dengan pipa tertutup serta tangki sebagai

Lebih terperinci

PAPER MESIN DAN PERALATAN PENGOLAHAN PANGAN Mesin Pencampuran Bahan Cair-Padat

PAPER MESIN DAN PERALATAN PENGOLAHAN PANGAN Mesin Pencampuran Bahan Cair-Padat PAPER MESIN DAN PERALATAN PENGOLAHAN PANGAN Mesin Pencampuran Bahan Cair-Padat Disusun oleh: Kelompok 3 Shift A1 Rendy Yus Sriyanto (240110110010) Hana Lestari I (240110110012) Farah Nuranjani (240110110027)

Lebih terperinci

Mixing & Agitation in Food Processing (Pencampuran dan Pengadukan dalam Pengolahan Pangan)

Mixing & Agitation in Food Processing (Pencampuran dan Pengadukan dalam Pengolahan Pangan) Mixing & Agitation in Food Processing (Pencampuran dan Pengadukan dalam Pengolahan Pangan) SUHARGO 2000 BAHAN KULIAH TEKNIK PRODUK PERTANIAN I JURUSAN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

BAB 5 DASAR POMPA. pompa

BAB 5 DASAR POMPA. pompa BAB 5 DASAR POMPA Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Zat cair tersebut contohnya adalah air, oli atau minyak pelumas,

Lebih terperinci

Simulasi Pola Aliran dalam Tangki Berpengaduk menggunakan Side-Entering Impeller untuk Suspensi Padat-Cair

Simulasi Pola Aliran dalam Tangki Berpengaduk menggunakan Side-Entering Impeller untuk Suspensi Padat-Cair Simulasi Pola Aliran dalam Tangki Berpengaduk menggunakan Side-Entering Impeller untuk Suspensi Padat-Cair Oleh : 1. Brilliant Gustiayu S. (2308 100 074) 2. Ayu Ratna Sari (2308 100 112) Pembimbing : Prof.Dr.Ir.Sugeng

Lebih terperinci

VI. DASAR PERANCANGAN BIOREAKTOR. Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium

VI. DASAR PERANCANGAN BIOREAKTOR. Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium VI. DASAR PERANCANGAN BIOREAKTOR Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium A. Strategi perancangan bioreaktor Kinerja bioreaktor ditentukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Oli Oli atau pelumas (lubricant) atau sering disebut (lube) adalah suatu bahan (biasanya berbentuk cairan) yang berfungsi untuk mereduksi keausan antara dua permukaan benda

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Pengadukan dan Pencampuran. Proses pengadukan dan pencampuran material biasanya terjadi dibanyak proses kimia seperti di dalam proses pembuatan cat, dimana bahan ataupun

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

PENGARUH DESAIN IMPELLER, BAFFL ve, DAN KECEPATAN PUTAR PADA PROSES ISOLASI MINYAK KELAPA MURNI DENGAN METODE PENGADUKAN

PENGARUH DESAIN IMPELLER, BAFFL ve, DAN KECEPATAN PUTAR PADA PROSES ISOLASI MINYAK KELAPA MURNI DENGAN METODE PENGADUKAN PENGARUH DESAIN IMPELLER, BAFFL ve, DAN KECEPATAN PUTAR PADA PROSES ISOLASI MINYAK KELAPA MURNI DENGAN METODE PENGADUKAN Didik Purwanto Jurusan Teknik Kimia Institut Teknologi Adhi Tama Surabaya (ITATS)

Lebih terperinci

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI BAB VI FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI VI.1 Pendahuluan Sebelumnya telah dibahas pengetahuan mengenai konversi reaksi sintesis urea dengan faktor-faktor yang mempengaruhinya.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI. Disusun Oleh : Zeffa Aprilasani NIM :

LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI. Disusun Oleh : Zeffa Aprilasani NIM : LAPORAN PRAKTIKUM TEKNIK KIMIA IV DINAMIKA PROSES PADA SISTEM PENGOSONGAN TANGKI Disusun Oleh : Zeffa Aprilasani NIM : 2008430039 Fakultas Teknik Kimia Universitas Muhammadiyah Jakarta 2011 PENGOSONGAN

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

Aliran Turbulen (Turbulent Flow)

Aliran Turbulen (Turbulent Flow) Aliran Turbulen (Turbulent Flow) A. Laminer dan Turbulen Laminer adalah aliran fluida yang ditunjukkan dengan gerak partikelpartikel fluidanya sejajar dan garis-garis arusnya halus. Dalam aliran laminer,

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

BAB 3 POMPA SENTRIFUGAL

BAB 3 POMPA SENTRIFUGAL 3 BAB 3 POMPA SENTRIFUGAL 3.1.Kerja Pompa Sentrifugal Pompa digerakkan oleh motor, daya dari motor diberikan kepada poros pompa untuk memutar impeler yang dipasangkan pada poros tersebut. Zat cair yang

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

BLOWER DAN KIPAS SENTRIFUGAL

BLOWER DAN KIPAS SENTRIFUGAL BLOWER DAN KIPAS SENTRIFUGAL Hampir kebanyakan pabrik menggunakan fan dan blower untuk ventilasi dan untuk proses industri yang memerlukan aliran udara. Sistim fan penting untuk menjaga pekerjaan proses

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES. Kode M-01 M-02 M-03 Fungsi Mencampur NaOH 98% dengan air menjadi larutan NaOH 15%

BAB III SPESIFIKASI ALAT PROSES. Kode M-01 M-02 M-03 Fungsi Mencampur NaOH 98% dengan air menjadi larutan NaOH 15% III.1 Spesifikasi Alat Utama BAB III SPESIFIKASI ALAT PROSES Alat-alat utama di pabrik ini meliputi mixer, reaktor, netralizer, evaporator, centrifuge, dekanter. Spesifikasi yang ditunjukkan adalah fungsi,

Lebih terperinci

2. TINJAUAN PUSTAKA. Pelapisan massa air merupakan sebuah kondisi yang menggambarkan

2. TINJAUAN PUSTAKA. Pelapisan massa air merupakan sebuah kondisi yang menggambarkan 2. TINJAUAN PUSTAKA 2.1 Kestabilan Massa Air Pelapisan massa air merupakan sebuah kondisi yang menggambarkan bahwa dalam kolom air massa air terbagi secara vertikal kedalam beberapa lapisan. Pelapisan

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

BAB III DASAR-DASAR PERENCANAAN

BAB III DASAR-DASAR PERENCANAAN BAB III DASAR-DASAR PERENCANAAN 3.1 Perencanaan Bejana dan Pengaduk. Dasar-dasar perencanaan dari bejana dan pengaduk merupakan suatu dasar perencanaan yang didasarkan pada suatu teori-teori yang ada dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Pengertian Pompa Pompa adalah suatu mesin yang digunakan untuk memindahkan fluida dari satu tempat ketempat lainnya, melalui suatu media aluran pipa dengan cara menambahkan energi

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial

BAB II TINJAUAN PUSTAKA. fluida yang dimaksud berupa cair, gas dan uap. yaitu mesin fluida yang berfungsi mengubah energi fluida (energi potensial BAB II TINJAUAN PUSTAKA 2.1. Mesin-Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

LOGO POMPA CENTRIF TR UGAL

LOGO POMPA CENTRIF TR UGAL LOGO POMPA CENTRIFUGAL Dr. Sukamta, S.T., M.T. Pengertian Pompa Pompa merupakan salah satu jenis mesin yang berfungsi untuk memindahkan zat cair dari suatu tempat ke tempat yang diinginkan. Klasifikasi

Lebih terperinci

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA). BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena

BAB II LANDASAN TEORI. bisa mengalami perubahan bentuk secara kontinyu atau terus-menerus bila terkena BAB II LANDASAN TEORI 2.1 Mekanika Fluida Mekanika fluida adalah subdisiplin dari mekanika kontinyu yang mempelajari tentang fluida (dapat berupa cairan dan gas). Fluida sendiri merupakan zat yang bisa

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Solar Menurut Syarifuddin (2012), solar sebagai bahan bakar yang berasal dari minyak bumi yang diproses di tempat pengilangan minyak dan dipisah-pisahkan hasilnya berdasarkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Dasar Steam merupakan bagian penting dan tidak terpisahkan dari teknologi modern. Tanpa steam, maka industri makanan kita, tekstil, bahan kimia, bahan kedokteran,daya, pemanasan

Lebih terperinci

Teori Koagulasi-Flokulasi

Teori Koagulasi-Flokulasi MIXING I. TUJUAN 1. Mengetahui 2. Mengetahui 3. Memahami II. TEORI DASAR Pengadukan (mixing) merupakan suatu aktivitas operasi pencampuran dua atau lebih zat agar diperoleh hasil campuran yang homogen.

Lebih terperinci

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : soebyakto@gmail.com ABSTRAK Tenaga angin sering disebut sebagai

Lebih terperinci

OPERASI TEKNIK KIMIA I

OPERASI TEKNIK KIMIA I PENUNTUN PRAKTIKUM OPERASI TEKNIK KIMIA I NAMA MAHASISWA : NOMOR STAMBUK : KELAS/KELOMPOK : LABORATORIUM OPERASI TEKNIK KIMIA JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MUSLIM INDONESIA

Lebih terperinci

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah Fluida adalah zat aliar, atau dengan kata lain zat yang dapat mengalir. Ilmu yang mempelajari tentang fluida adalah mekanika fluida. Fluida ada 2 macam : cairan dan gas. Ciri dari fluida adalah 1. Mengalir

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian pompa Pompa adalah peralatan mekanis untuk meningkatkan energi tekanan pada cairan yang di pompa. Pompa mengubah energi mekanis dari mesin penggerak pompa menjadi energi

Lebih terperinci

ANALISIS REAKTOR ALIR TANGKI PENGADUK pada KAPASITAS 20 M 3 dengan TEMPERATUR C

ANALISIS REAKTOR ALIR TANGKI PENGADUK pada KAPASITAS 20 M 3 dengan TEMPERATUR C ANALISIS REAKTOR ALIR TANGKI PENGADUK pada KAPASITAS 20 M 3 dengan TEMPERATUR 152 0 C Wisjnu P.Marsis, Doni Saputro Universitas Muhammadiyah Jakarta, Jurusan Teknik Mesin ABSTRAK Dalam industri proses

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Radiator Radiator memegang peranan penting dalam mesin otomotif (misal mobil). Radiator berfungsi untuk mendinginkan mesin. Pembakaran bahan bakar dalam silinder mesin menyalurkan

Lebih terperinci

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL Oleh: ANGGIA PRATAMA FADLY 07 171 051 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 DATA Selama penelitian berlangsung, penulis mengumpulkan data-data yang mendukung penelitian serta pengolahan data selanjutnya. Beberapa data yang telah terkumpul

Lebih terperinci

PERANCANGAN DAN KONSTRUKSI INSULATION MATERIAL PADA ELEMEN PEMANASMESIN MIXER KAPASITAS 6,9 LITER DAN PUTARAN 280 Rpm

PERANCANGAN DAN KONSTRUKSI INSULATION MATERIAL PADA ELEMEN PEMANASMESIN MIXER KAPASITAS 6,9 LITER DAN PUTARAN 280 Rpm PERANCANGAN DAN KONSTRUKSI INSULATION MATERIAL PADA ELEMEN PEMANASMESIN MIXER KAPASITAS 6,9 LITER DAN PUTARAN 280 Rpm SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

PEMISAHAN MEKANIS (mechanical separations)

PEMISAHAN MEKANIS (mechanical separations) PEMISAHAN MEKANIS (mechanical separations) sedimentasi (pengendapan), pemisahan sentrifugal, filtrasi (penyaringan), pengayakan (screening/sieving). Pemisahan mekanis partikel fluida menggunakan gaya yang

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA POMPA Kriteria pemilihan pompa (Pelatihan Pegawai PUSRI) Pompa reciprocating o Proses yang memerlukan head tinggi o Kapasitas fluida yang rendah o Liquid yang kental (viscous liquid) dan slurrie (lumpur)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Dasar-dasar Pompa Sentrifugal Pada industri minyak bumi, sebagian besar pompa yang digunakan ialah pompa bertipe sentrifugal. Gaya sentrifugal ialah sebuah gaya yang timbul akibat

Lebih terperinci

Prarancangan Pabrik Asam Nitrat Dari Asam Sulfat Dan Natrium Nitrat Kapasitas Ton/Tahun LAMPIRAN

Prarancangan Pabrik Asam Nitrat Dari Asam Sulfat Dan Natrium Nitrat Kapasitas Ton/Tahun LAMPIRAN 107 R e a k t o r (R-01) LAMPIRAN Fungsi : mereaksikan asam sulfat dan natrium nitrat membentuk asam nitrat dan natrium bisulfat Kondisi operasi: 1.Tekanan 1 atm 2.Suhu 150⁰C kec reaksi 3.Konversi 90%

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor adalah ilmu yang mempelajari berpindahnya suatu energi (berupa kalor) dari suatu sistem ke sistem lain karena adanya perbedaan temperatur.

Lebih terperinci

ANALISIS LAJU ALIRAN PANAS PADA REAKTOR TANKI ALIR BERPENGADUK DENGAN HALF - COIL PIPE

ANALISIS LAJU ALIRAN PANAS PADA REAKTOR TANKI ALIR BERPENGADUK DENGAN HALF - COIL PIPE ANALISIS LAJU ALIRAN PANAS PADA REAKTOR TANKI ALIR BERPENGADUK DENGAN HALF - COIL PIPE Ir.Bambang Setiawan,MT 1. Chandra Abdi 2 Lecture 1,College student 2,Departement of machine, Faculty of Engineering,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian dan Prinsip Dasar Alat uji Bending 2.1.1. Definisi Alat Uji Bending Alat uji bending adalah alat yang digunakan untuk melakukan pengujian kekuatan lengkung (bending)

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 RANCANGAN OBSTACLE Pola kecepatan dan jenis aliran di dalam reaktor kolom gelembung sangat berpengaruh terhadap laju reaksi pembentukan biodiesel. Kecepatan aliran yang tinggi

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

Sistem pengering pilihan

Sistem pengering pilihan Sistem pengering pilihan Tujuan Instruksional Khusus (TIK) Setelah mengikuti kuliah ini mahasiswa akan dapat menjelaskan alat pengeringan yang khusus (pilihan) Sub Pokok Bahasan 1.Pengering dua tahap 2.Pengering

Lebih terperinci

BAB III METODOLOGI PENGUKURAN

BAB III METODOLOGI PENGUKURAN BAB III METODOLOGI PENGUKURAN Kincir angin merupakan salah satu mesin konversi energi yang dapat merubah energi kinetic dari gerakan angin menjadi energi listrik. Energi ini dibangkitkan oleh generator

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Perpindahan Panas Perpindahan kalor (heat transfer) ialah ilmu untuk meramalkan perpindahan energi yang terjadi karena adanya perbedaan suhu di antara benda atau material.

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang

BAB I PENDAHULUAN. kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang BAB I PENDAHULUAN 1.1. Latar Belakang Proses pemanasan atau pendinginan fluida sering digunakan dan merupakan kebutuhan utama dalam sektor industri, energi, transportasi, serta dibidang elektronika. Sifat

Lebih terperinci

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump).

BAB II DASAR TEORI. bagian yaitu pompa kerja positif (positive displacement pump) dan pompa. kerja dinamis (non positive displacement pump). BAB II DASAR TEORI 2.1. Dasar Teori Pompa 2.1.1. Definisi Pompa Pompa merupakan alat yang digunakan untuk memindahkan suatu cairan dari suatu tempat ke tempat lain dengan cara menaikkan tekanan cairan

Lebih terperinci