MIXING. I. Tujuan Percobaan Untuk menghomogenkan larutan dengan mengetahui kebutuhan energi pengaduk yang dibutuhkan.

Ukuran: px
Mulai penontonan dengan halaman:

Download "MIXING. I. Tujuan Percobaan Untuk menghomogenkan larutan dengan mengetahui kebutuhan energi pengaduk yang dibutuhkan."

Transkripsi

1 MIXING I. Tujuan Percobaan Untuk menghomogenkan larutan dengan mengetahui kebutuhan energi pengaduk yang dibutuhkan. II. Perincian Kerja Menghomogenkan Larutan garam (NaCl); Mengoperasikan mixing untuk menghomogenkan larutan garam (NaCl); Menghitung viskositas larutan garam (NaCl) sebelum pengadukan dan setelah pengadukan; Menghitung Densitas dari larutan garam setiap menit pengambilan sampel. III. Alat dan Bahan Bahan : Aquadest; Garam (NaCl). Alat : Viskometer Oswald; Erlenmeyer; Gelas Kimia plastik 2000 ml; Gelas Kimia 500 ml; Labu semprot; Piknometer; Gelas Ukur; Agitator (tangki berpengaduk); Sendok plastik; Pipet volume 25 ml; Pipet ukur 10 ml; Bola hisap; Stopwatch. IV. Dasar Teori

2 Pengadukan adalah operasi yang menciptakan terjadinya gerakan dari bahan yang diaduk seperti molekul- molekul, zat-zat yang bergerak atau komponennya menyebar (terdispersi). gambar 1. (Dimensi sebuah Tangki Berpengaduk) Dimana: : C = tinggi pengaduk dari dasar tangki D = diameter pengaduk Dt = diameter tangki H = tinggi fluida dalam tangki J = lebar baffle W = lebar pengaduk Pencampuran adalah operasi yang menyebabkan tersebarnya secara acak suatu bahan ke bahan yang lain dimana bahan-bahan tersebut terpisah dalam dua fasa atau lebih. Proses pencampuran bisa dilakukan dalam sebuah tangki berpengaduk. Hal ini dikarenakan faktor-faktor penting yang berkaitan dengan proses ini, dalam aplikasi nyata bisa dipelajari dengan seksama dalam alat ini. Faktor-faktor yang mempengaruhi proses pengadukan dan pencampuran diantaranya adalah perbandingan antara geometri tangki dengan geometri pengaduk, bentuk dan jumlah pengaduk, posisi sumbu pengaduk, kecepatan putaran pengaduk, penggunaan sekat dalam tangki dan juga properti fisik fluida yang diaduk yaitu densitas dan viskositas. Oleh karena itu, perlu tersedia seperangkat alat tangki berpengaduk yang bisa digunakan untuk mempelajari operasi dari pengadukan dan pencampuran tersebut.

3 Pencampuran terjadi pada tiga tingkatan yang berbeda yaitu : 1. Mekanisme konvektif : pencampuran yang disebabkan aliran cairan secara keseluruhan (bulk flow). 2. Eddy diffusion : pencampuran karena adanya gumpalan - gumpalan fluida yang terbentuk dan tercampakan dalam medan aliran. 3. Diffusion : pencampuran karena gerakan molekuler. Ketiga mekanisme terjadi secara bersama-sama, tetapi yang paling menentukan adalah eddy diffusion. Mekanisme ini membedakan pencampuran dalam keadaan turbulen dengan pencampuran dalam medan aliran laminer. Sifat fisik fluida yang berpengaruh pada proses pengadukan adalah densitas dan viskositas. Secara khusus, proses pengadukan dan pencampuran digunakan untuk mengatasi tiga jenis permasalahan utama, yaitu : 1. Untuk menghasilkan keseragaman statis ataupun dinamis pada sistem multifase multikomponen. 2. Untuk memfasilitasi perpindahan massa atau energi diantara bagian-bagian dari sistem yang tidak seragam. 3. Untuk menunjukkan perubahan fase pada sistem multikomponen dengan atau tanpa perubahan komposisi. Aplikasi pengadukan dan pencampuran bisa ditemukan dalam rentang yang luas, diantaranya dalam proses suspensi padatan, dispersi gas-cair, cair-cair maupun padatcair, kristalisasi, perpindahan panas dan reaksi kimia. Proses pengolahan zat sangat tergantung pada pengadukan dan pencampuran. Kedua istilah tersebut sering dianggap sama, meskipun kenyataannya satu sama lain berbeda. Pengadukan (agitasi) menunjukkan gerakan yang terinduksi dengan cara tertentu pada suatu bahan di dalam bejana. Gerakan tersebut biasanya mempunyai pola sirkulasi tertentu. Pengadukan sendiri dilakukan untuk berbagai tujuan antara lain : Membuat campuran homogen

4 Melarutkan partikel-partikel padat dalam cairan Mempertahankan reaksi yang terjadi karena perpindahan momentum dari pengadukan. Pencampuran (mixing) merupakan peristiwa penyebaran bahan-bahan secara acak, bahan yang satu menyebar ke bahan yang lainnya dan sebaliknya. Dimensi dan Geometri Tangki Kapasitas tangki yang dibutuhkan untuk menampung fluida menjadi salah satu pertimbangan dasar dalam perancangan dimensi tangki. Fluida dalam kapasitas tertentu ditempatkan pada sebuah wadah dengan besarnya diameter tangki sama dengan ketinggian fluida. Rancangan ini ditujukan untuk mengoptimalkan kemampuan pengaduk untuk menggerakkan dan membuat pola aliran fluida yang melingkupi seluruh bagian fluida dalam tangki. Persamaan (1) merupakan rumus dari volume sebuah tangki silinder. Sehingga salah satu pertimbangan awal untuk merancang alat ini adalah dengan mencari nilai dari diameter yang sama dengan tangki untuk kapasitas fluida yang diinginkan dalam pengadukan dan pencampuran. Diameter tangki ditentukan dengan persamaan (2). Tangki dengan diamter yang lebih kecil dibandingkan ketinggiannya memiliki kecendrungan menambah jumlah pengaduk yang digunakan. dengan D = t Rancangan dasar dimensi dari sebuah tangki berpengaduk dengan perbandingan terhadap komponen-komponen yang menyusunnya ditunjukkan pada gambar 1. Hubungan dari dimensi pada gambar 1 adalah :

5 Geometri dari tangki dirancang untuk menghindari terjadinya dead zone yaitu daerah dimana fluida bisa digerakkan oleh aliran pengaduk. Geometri dimana terjadinya dead zone biasanya berbentuk sudut ataupun lipatan dari dindingdindingnya. Posisi Sumbu Pengaduk Pada umumnya proses pengadukan dan pencampuran dilakukan dengan menempatkan pengaduk pada pusat diameter tangki (Center). Posisi ini memiliki pola aliran yang khas. Pada tangki tidak bersekat dengan pengaduk yang berputar ditengah, energi sentrifugal yang bekerja pada fluida meningkatkan ketinggian fluidapada dinding dan memperendah ketinggian fluida pada pusat putaran. Pola ini biasa disebut dengan pusaran (vortex) dengan pusat pada sumbu pengaduk. Pusaran ini akan menjadi semakin besar seiring dengan peningkatan kecepatan putaran yang juga meningkatkan turbulensi dari fluida yang diaduk. Pada sebuah proses dispersi gas-cair, terbentuknya pusaran tidak diinginkan. Hal ini disebabkan pusaran tersebut bisa menghasilkan dispersi udara yang menghambat dispersi gas ke cairan dan sebaliknya. Gambar 3. (Posisi Center dari sebuah Pengaduk yang menghasilkan Vortex Salah satu upaya untuk menghilangkan pusaran ini adalah dengan merubah posisi sumbu pengaduk. Posisi tersebut berupa posisi sumbu pengaduk tetap tegak lurus namun berjarak dekat dengan dinding tangki (off center) dan posisi sumbu berada pada arah diagonal (incline). Perubahan posisi ini menjadi salah satu variasi dalam penelitian yang dilakukan. Sekat dalam Tangki

6 Sekat (Baffle) adalah lembaran vertikal datar yang ditempelkan pada dinding tangki. Tujuan utama menggunakan sekat dalam tangki adalah memecah terjadinya pusaran saat terjadinya pengadukan dan pencampuran. Oleh karena itu, posisi sumbu pengaduk pada tangki bersekat berada di tengah. Namun, pada umumnya pemakaian sekat akan menambah beban pengadukan yang berakibat pada bertambahnya kebutuhan daya pengadukan. Sekat pada tangki juga membentuk distribusi konsentrasi yang lebih baik di dalam tangki, karena pola aliran yang terjadi terpecah menjadi empat bagian. Penggunaan ukuran sekat yang lebih besar mampu menghasilkan pencampuran yang lebih baik. Gambar 4. (Pemasangan Baffle diharapkan mampu meningkatkan kualitas pencampuran) Pada saat menggunakan empat sekat vertikal seperti pada gambar 4 biasa menghasilkan pola putaran yang sama dalam tangki. Lebar sekat yang digunakan sebaiknya berukuran 1/12 diameter tangki. Pengaduk Pemilihan pengaduk yang tepat menjadi salah satu faktor penting dalam menghasilkan proses dan pencampuran yang efektif. Pengaduk jenis baling-baling (propeller) dengan aliran aksial dan pengaduk jenis turbin dengan aliran radial menjadi pilihan yang lazim dalam pengadukan dan pencampuran. Jenis-jenis Pengaduk Secara umum, terdapat tiga jenis pengaduk yang biasa digunakan secara umum, yaitu pengaduk baling baling (propeller), pengaduk turbin (turbine), pengaduk dayung (paddle) dan pengaduk helical ribbon. Pengaduk jenis baling-baling (propeller)

7 Ada beberapa jenis pengaduk yang biasa digunakan. Salah satunya adalah balingbaling berdaun tiga. Gambar 5. Pengaduk jenis Baling-baling (a), Daun Dipertajam (b), Baling-baling kapal (c) Baling-baling ini digunakan pada kecepatan berkisar antara 400 hingga 1750 rpm (revolutions per minute) dan digunakan untuk cairan dengan viskositas rendah. Pengaduk Dayung (Paddle) Berbagai jenis pengaduk dayung biasanya digunakan pada kesepatan rendah diantaranya 20 hingga 200 rpm. Dayung datar berdaun dua atau empat biasa digunakan dalam sebuah proses pengadukan. Panjang total dari pengadukan dayung biasanya 60-80% dari diameter tangki dan lebar dari daunnya 1/6-1/10 dari panjangnya. Gambar 6. Pengaduk Jenis Dayung (Paddle) berdaun dua Pengaduk dayung menjadi tidak efektif untuk suspensi padatan, karena aliran radial bisa terbentuk namun aliran aksial dan vertikal menjadi kecil. Sebuah dayung jangkar atau pagar, yang terlihat pada gambar 6 biasa digunakan dalam pengadukan. Jenis ini menyapu dan mengeruk dinding tangki dan kadang-kadang bagian bawah tangki. Jenis ini digunakan pada cairan kental dimana endapan pada dinding dapat terbentuk dan juga digunakan untuk meningkatkan transfer panas dari dan ke dinding tangki. Bagaimanapun jenis ini adalah pencampuran yang buruk. Pengaduk dayung sering digunakan untuk proses pembuatan pasn kanji, cat, bahan perekat dan kosmetik. Pengaduk Turbin

8 Pengaduk turbin adalah pengaduk dayung yang memiliki banyak daun pengaduk dan berukuran lebih pendek, digunakan pada kecepatan tinggi untuk cairan dengan rentang kekentalan yang sangat luas. Diameter dari sebuah turbin biasanya antara 30-50% dari diamter tangki. Turbin biasanya memiliki empat atau enam daun pengaduk. Turbin dengan daun yang datar memberikan aliran yang radial. Jenis ini juga berguna untuk dispersi gas yang baik, gas akan dialirkan dari bagian bawah pengadukdan akan menuju ke bagian daun pengaduk lalu tepotong-potong menjadi gelembung gas. Gambar 7. Pengaduk Turbin pada bagian variasi. Pada turbin dengan daun yang dibuat miring sebesar 45 o, seperti yang terlihat pada gambar 8, beberapa aliran aksial akan terbentuk sehingga sebuah kombinasi dari aliran aksial dan radial akan terbentuk. Jenis ini berguna dalam suspensi padatan kerena aliran langsung ke bawah dan akan menyapu padatan ke atas. Terkadang sebuah turbin dengan hanya empat daun miring digunakan dalam suspensi padat. Pengaduk dengan aliran aksial menghasilkan pergerakan fluida yang lebih besar dan pencampuran per satuan daya dan sangat berguna dalam suspensi padatan. Gambar 8. Pengaduk Turbin Baling-baling. Pengaduk Helical-Ribbon Jenis pengaduk ini digunakan pada larutan pada kekentalan yang tinggi dan beroperasi pada rpm yang rendah pada bagian laminer. Ribbon (bentuk seperti pita) dibentuk dalam sebuah bagian helical (bentuknya seperti baling-balling helicopter dan ditempelkan ke pusat sumbu pengaduk). Cairan bergerak dalam sebuah bagian aliran berliku-liku pada bagiam bawah dan naik ke bagian atas pengaduk.

9 Gambar 9. Pengaduk Jenis (a), (b) & (c) Hellical-Ribbon, (d) Semi-Spiral Kecepatan Pengaduk Salah satu variasi dasar dalam proses pengadukan dan pencampuran adalah kecepatan putaran pengaduk yang digunakan. Variasi kecepatan putaran pengaduk bisa memberikan gambaran mengenai pola aliran yang dihasilkan dan daya listrik yang dibutuhkan dalam proses pengadukan dan pencampuran. Secara umum klasifikasi kecepatan putaran pengaduk dibagi tiga, yaitu : kecepatan putaran rendah, sedang dan tinggi. Kecepatan putaran rendah Kecepatan rendan yang digunakan berkisar pada kecepatan 400 rpm. Pengadukan dengan kecepatan ini umumnya digunakan untuk minyak kental, lumpur dimana terdapat serat atau pada cairan yang dapat menimbulkan busa. Jenis pengaduk ini meghasilkan pergerakan batch yang empurna dengan sebuah permukaan fluida yang datar untuk menjaga temperatur atau mencampur larutan dengan viskositas dan gravitasi spesifik yang sama. Kecepatan putaran sedang Kecepatan sedang yang digunakan berkisar pada kecepatan 1150 rpm. Pengaduk dengan kecepatan ini umumnya digunakan untuk larutan sirup kental dan minyak pernis. Jenis ini paling sering digunakan untuk meriakkan permukaan pada viskositas yang rendah, mengurangi waktu pencampuan, mencampuran larutan dengan viskositas yang berbeda dan bertujuan untuk memanaskan atau mendinginkan. Kecepatan putaran tinggi Kecepatan tinggi yang digunakan berkisar pada kecepatan 1750 rpm. Pengaduk dengan kecepatan ini umumnya digunakan untuk fluida dengan viskositas rendah misalnya air. Tingkat pengadukan ini menghasilkan permukaan yang cekung pada viskositas yang rendah dan dibutuhkan ketika waktu pencampuran sangat lama atau perbedaan viskositas sangat besar.

10 Jumlah Pengaduk Penambahan jumlah pengaduk yang digunakan pada dasarnya untuk tetap menjaga efektifitas pengadukan pada kondisi yang berubah. Ketinggian fluida yang lebih besar dari diameter tangki, disertai dengan viskositas fluida yang lebih besar dann diameter pengaduk yang lebih kecil dari dimensi yang biasa digunakan, merupakan kondisi dimana pengaduk yang digunakan lebih dari satu buah, dengan jarak antar pengaduk sama dengan jarak pengaduk paling bawah ke dasar tangki. Penjelasan mengenai kondisi pengadukan dimana lebih dari satu pengaduk yang digunakan dapat dilihat dalam tabel 1. Tabel 1. Kondisi untuk Pemilihan Pengaduk Pemilihan Pengaduk Viskositas dari cairan adalah salah satu dari beberapa faktor yang mempengaruhi pemilihan jenis pengaduk. Indikasi dari rentang viskositas pada setiap jenis pengaduk adalah : 1. Pengaduk jenis baling-baling digunakan untuk viskositas fluida di bawah Pa.s (3000 cp) 2. Pengaduk jenis turbin bisa digunakan untuk viskositas di bawah 100 Pa.s ( cp) 3. Pengaduk jenis dayung yang dimodifikasi seperti pengaduk jangkar bisa digunakan untuk viskositas antara Pa.s ( cp) 4. Pengaduk jenis pita melingkar biasa digunakan untuk viskositas di atas 1000 Pa.s dan telah digunakan hingga viskositas Pa.s. Untuk viskositas lebih dari 2,5-5 Pa.s (5000 cp) dan diatasnya, sekat tidak diperlukan karena hanya terjadi pusaran kecil.

11 Gambar 10. Pola aliran yang dihasilkan oleh jenis-jenis pengaduk yang berbeda, (a) Impeller, (b) Propeller, (c) Paddle dan (d) Helical ribbon Kebutuhan Daya Pengaduk Parameter Hidrodinamika dalam Tangki Berpengaduk Bilangan Reynold Bilangan tak berdimensi yang menyatakan perbandingan antara gaya inersia dan gaya viskositas yang terjadi pada fluida. Sistem pengadukan yang terjadi bisa diketahui bilangan Reynold-nya dengan menggunakan persamaan 3. Dimana : Re = Bilangan Reynold ρ = dnsitas fluida µ = viskositas fluida Dalam sistem pengadukan terdapat 3 jenis bentuk aliran yaitu laminer, transisi dan turbulen. Bentuk aliran laminer terjadi pada bilangan Reynold hingga 10, sedangkan turbulen terjadi pada bilangan Reynold 10 hingga 10 4 dan transisi berada diantara keduanya. Bilangan Fraude Bilangan tak berdimensi ini menunjukkan perbandingan antara gaya inersia dengan gaya gravitasi. Bilangan Fraude dapat dihitung dengan persamaan berikut : dimana : Fr = Bilangan Fraude N = kecepatan putaran pengaduk

12 D = diameter pengaduk g = percepatan grafitasi Bilangan Fraude bukan merupakan variabel yang signifikan. Bilangan ini hanya diperhitungkan pada sistem pengadukan dalam tangki tidak bersekat. Pada sistem ini permukaan cairan dalam tangki akan dipengaruhi gravitasi, sehingga membentuk pusaran (vortex). Vorteks menunjukkan keseimbangan antara gaya gravitasi dengan gaya inersia. Laju dan Waktu Pencampuran Waktu pencampuran (mixing time) adalah waktu yang dibutuhkan sehingga diperoleh keadaan yang homogen untuk menghasilkan campuran atau produk dengan kualitas yang telah ditentukan. Sedangkan laju pencampuran (rate of mixing) adalah laju dimana proses pencampuran berlangsung hingga mencapai kondisi akhir. Pada operasi pencampuran dalam tangki berpengaduk, waktu pencampuran ini dipengaruhi oleh beberapa hal : 1. Yang berkaitan dengan alat, seperti : Ada tidaknya baffle atau cruciform vaffle Bentuk atau jenis pengaduk (turbin, propele, padel) Ukuran pengaduk (diameter, tinggi) Laju putaran pengaduk Ledudukan pengaduk pada tangki, seperti : a. Jarak pengaduk terhadap dasar tangki b. Pola pemasangan : - Center, vertikal - Off center, vertical - Miring (inclined) dari atas - Horisontal Jumlah daun pengaduk Jumlah pengaduk yang terpasang pada poros pengaduk 2. Yang berhubungan dengan cairan yang diaduk : Perbandingan kerapatan atau densitas cairan yang diaduk Perbandingan viskositas cairan yang diaduk Jumlah kedua cairan yang diaduk

13 . Jenis cairan yang diaduk (miscible, immiscible) Faktor-faktor tersebut dapat dijadikan variabel yang dapat dimanipulasi untuk mengamati pengaruh setiap faktor terhadap karakteristik pengadukan, terutama tehadap waktu pencampuran. V. Prosedur Kerja Mepersiapkan alat dan bahan; Mecuci tabung pengadukan; Memasukkan air ke dalam mixing sebanyak ± 8 liter dengan menggunakan gelas kimia plastik; sedangkan 2 liter sisanya aquadest digunakan untuk melarutkan garam dengan konsentrasi 25%; Setelah garam larut dengan aquadest, dimasukkan ke dalam tabung pengadukan; Mengambil sampel awal (sebelum pengadukan) untuk menghitung densitas dan viskositas dari larutan tersebut; Melakukan proses pengadukan selama 60 menit hingga larutan menjadi homogen; setiap 5 menit sampel diambil untuk menghitung densitasnya; Membuat data antara waktu, berat piknometer, serta densitas larutan; Memplotkan data ke dalam grafik Melakukan hal yang sama untuk konsentrasi garam 50%. VI. Data Pengamatan Berat Piknometer kosong = 22,7112 gr Piknometer + Air = 47,8413 gr Volume piknometer = 25,1301 gr Kecepatan pengaduk 25 % = 85 rpm Kecepatan pengaduk 50 % = 87 rpm Waktu alir pada viskometer = 1,02 s Waktu alir sampel untuk 25 % = 1,04 s Waktu alir sampel untuk 50 % = 1,07 s Untuk Konsentrasi 25 %

14 No t (menit) Berat (gr) BJ (g/ml) ,7342 1, ,6905 1, ,7114 1, ,7060 1, ,7051 1, ,7047 1, ,7048 1, ,7050 1, ,7051 1, ,7048 1,03436 Untuk Konsentrasi 50 % No t (menit) Berat (gr) BJ (gr/ml) ,7689 1, ,5586 1, ,5261 1, ,5159 1, ,5119 1, ,5120 1, ,5099 1, ,5045 1, ,5055 1, ,5181 1, ,5110 1, ,5198 1, ,5117 1,06647 VII. Perhitungan

15 Keliling Tangki : 1,06 m K = 2 π r 1,06 m = 2 (3,14) r r = = 0,165 m D tangki = 2 r = 2 0,169 m = 0,338 m D pengaduk = = = 0,133 m Tinggi larutan = 0,35 m Untuk Larutan garam 25 % Konstanta Viskometer Viskositas Sampel sampel = k Sg tsampel

16 = 0, Pa 1,04 1,04 s = 0, Pa. s = 0, kg/m. s Untuk konsentrasi garam 50 % Konstanta Viskometer Viskositas Sampel sampel = k Sg tsampel = 0, Pa 1,0814 1,07 s = 0,00009 Pa. s = 0,00009 kg/m. s Nilai Reynold untuk konsentrasi larutan 25 % = = Nilai Reynold untuk konsentrasi larutan 50 %

17 = = Nilai power, power input, serta Froude s Number untuk konsentrasi larutan 25 % ~ Nilai Power ~ Nilai Power Input ~ Froude s Number Nilai power power input serta Froude s Number untuk konsentrasi larutan 50 % ~ Nilai Power ~ Nilai Power Input

18 ~ Froude s Number VIII. Pembahasan

19 BJ (g/ml) BJ (g/ml) Waktu (t) Series1 Grafik t vs BJ Konsentrasi larutan 25 % Series Waktu (t) Grafik t vs BJ Konsentrasi larutan 50 % Percobaan kali ini adalah pengadukan dan pencampuran (mixing). Sebenarnya antara pengadukan dan pencampuran itu sendiri berbeda, dimana pengadukan menunjukkan gerakan yang terinduksi menurut cara tertentu pada suatu bahan dalam bejana yang gerakan tersebut biasanya mempunyai pola sirkulasi. Sedangkan pencampuran sendiri ialah peristiwa menyebarnya bahan-bahan secara acak, dimana bahan yang satu menyebar ke dalam bahan yang lain dan begitupun sebaliknya, sedangkan bahan-bahan yang belum terpisah dalam dua fase atau lebih. Dalam proses agitation tentulah memerlukan pengaduk (agitator) yang terdapat beberapa jenis, jenis-jenisnya yaitu seperti impeller yang terbagi lagi menjadi dua jenis yaitu impeller

20 aliran aksial atau impeller pengaduk yang membangkitkan arus sejajar dengan sumbu poros impeller juga. Impeller aliran radial atau impeller pengaduk yang membangkitkan arus pada arah tangensial atau radial. Akan tetapi, dalam percobaan ini kami menggunakan agitator jenis propeller berdaun tiga karena arus yang meninggalkan propeller mengalir melalui zat cair menurut arah tertentu sampai dibelokkan oleh lantai atau dinding bejana. Kolom zat cair yang berputar dengan turbulen tersebut membawa ikut serta zat cair yang ada dan dengan daun-daun propeller tersebut merupakan larutan yang dicampurkan dengan zat cair. Propeller yang berputar tersebut membuat pola aliran heliks di dalam zat cair tersebut, satu putaran penuh propeller akan memindahkan zat cair secara longitudinal pada jarak tertentu yang bergantung dari sudut kemiringan daun propeller. Berdasarkan grafik diatas pada konsentrasi larutan garam sebanyak 25 %, proses homogenisasi antara larutan garam dengan air mengalami waktu yang lama serta mengalami fluktuasi. Hingga pada menit ke 50 hingga menit ke 100 proses homogenisasi antara larutan garam dengan air telah tercapai. Sedangkan pada grafik konsentrasi larutan garam sebanyak 50 %, proses homogenisasi antara larutan garam dengan air mengalami waktu yang cukup cepat, namun grafik yang ditunjukkan mengalami penurunan. Namun, hal ini terjadi karena beberapa pengaruh yaitu kondisi dari tangki yang kurang bersih, proses kalibrasi, serta saat proses pengadukan. Dari hasil perhitungan bilangan reynold, Power motor, Power Input, serta Bilangan Froud s pada konsentrasi % lebih tinggi dari pada konsentrasi % hal ini terlihat dari kecepatan pengaduk yang lebih besar, dan juga pengaruh dari konsentrasi serta densitas larutan. Ketiga hal ini memiliki pengaruh yang sangat besar dalam proses mixing ini. IX. Kesimpulan Berdasarkan hasil pengamatan serta perhitungan, maka disimpulkan bahwa : Untuk Konsentrasi Larutan Garam 25 %

21 ~ = 21620,54 ~ Nilai Power (P) = 16,25 W ~ Nilai Power Input (Pi) = 517,7 ~ Froud s Number Nfr) = 0,0231 Untuk Konsentrasi Larutan Garam 25 % ~ = 22150,17 ~ Nilai Power (P) = 18,12 W ~ Nilai Power Input (Pi) = 577,3 ~ Froud s Number Nfr) = 0,0242 X. Daftar Pustaka Buku Job Shet Satuan Operasi I Teknik Kimia Politeknik Negeri Ujung Pandang blogspot.com/catatan_tekimku.html (Tanggal Akses 17 Maret 2013)

LABORATORIUM PERLAKUAN MEKANIK

LABORATORIUM PERLAKUAN MEKANIK LABORATORIUM PERLAKUAN MEKANIK SEMESTER GENAP TAHUN AJARAN 2013 / 2014 MODUL PEMBIMBING : Mixing : Ir. Gatot Subiyanto, M.T. Tanggal Praktikum : 03 Juni 2014 Tanggal Pengumupulan : 10 Juni 2014 (Laporan)

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. dicampur gula merah aren dan santan kelapa. Ketiga bahan baku tersebut. kematangan tertentu. Ketiga komposisi yaitu

BAB IV HASIL DAN PEMBAHASAN. dicampur gula merah aren dan santan kelapa. Ketiga bahan baku tersebut. kematangan tertentu. Ketiga komposisi yaitu BAB IV HASIL DAN PEMBAHASAN 4.1 Komposisi Dodol Dodol sebagai makanan khas biasanya terbuat dari tepung beras ketan dicampur gula merah aren dan santan kelapa. Ketiga bahan baku tersebut kemudian diproses

Lebih terperinci

BAB I PENDAHULUAN 1.1. Dasar Teori

BAB I PENDAHULUAN 1.1. Dasar Teori BAB I PENDAHULUAN 1.1. Dasar Teori 1.1.1 Pengertian Pengadukan Pengadukan (agitation) adalah gerakan yang terinduksi menurut cara tertentu pada suatu bahan di dalam bejana, dimana gerakan itu biasanya

Lebih terperinci

BAB I PENDAHULUAN 1.1 Tujuan Percobaan 1.2 Latar Belakang

BAB I PENDAHULUAN 1.1 Tujuan Percobaan 1.2 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Tujuan Percobaan Tujuan dari percobaan ini adalah : 1. Dapat menjelaskan pola aliran yang terjadi dalam tangki berpengaduk. 2. Dapat menjelaskan pengaruh penggunaan sekat dan tanpa

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Mixer Mixer merupakan salah satu alat pencampur dalam sistem emulsi sehingga menghasilkan suatu dispersi yang seragam atau homogen. Terdapat dua jenis mixer yang

Lebih terperinci

Kata kunci: fluida, impeller, pengadukan, sekat, vorteks.

Kata kunci: fluida, impeller, pengadukan, sekat, vorteks. ABSTRAK Pengadukan (agitation) merupakan suatu operasi yang menimbulkan gerakan pada suatu bahan (fluida) di dalam sebuah tangki, yang mana gerakannya membentuk suatu pola sirkulasi. Salah satu sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Kalorimeter Menurut Nurfauziawati, Nova ( 2010) kalor adalah energi mekanik akibat gerakan partikel materi dan dapat dipindah dari satu tempat ke tempat lain. Pengukuran jumlah

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Percobaan untuk Pola Aliran Dengan dan Tanpa Sekat Ada jenis impeller yang membentuk pola aliran aksial dan ada juga jenis impeller lain yang membentuk pola aliran radial

Lebih terperinci

LAPORAN PRAKTIKUM OPERASI TEKNIK KIMIA WAKTU PENCAMPURAN

LAPORAN PRAKTIKUM OPERASI TEKNIK KIMIA WAKTU PENCAMPURAN LAPORAN PRAKTIKUM OPERASI TEKNIK KIMIA WAKTU PENCAMPURAN DI SUSUN OLEH KELOMPOK : VI (enam) Ivan sidabutar (1107035727) Rahmat kamarullah (1107035706) Rita purianim (1107035609) PROGRAM STUDI TEKNIK KIMIA

Lebih terperinci

Pengadukan dan Pencampuran

Pengadukan dan Pencampuran Pengadukan dan Pencampuran Pengadukan adalah operasi yang menciptakan terjadinya gerakan dari bahan yang diaduk seperti molekul- molekul, zat-zat yang bergerak atau komponennya menyebar (terdispersi).

Lebih terperinci

PRAKTIKUM OPERASI TEKNIK KIMIA SOLID-LIQUID MIXING

PRAKTIKUM OPERASI TEKNIK KIMIA SOLID-LIQUID MIXING PRAKTIKUM OPERASI TEKNIK KIMIA SOLID-LIQUID MIXING I. TUJUAN 1. Mengetahui jenis pola alir dari proses mixing. 2. Mengetahui bilangan Reynolds dari operasi pengadukan campuran tersebut setelah 30 detik

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Keberhasilan suatu proses pengolahan sering amat bergantung pada efektivnya pengadukan dan pencampuran zat cair dalam prose situ. Pengadukan (agitation) menunjukkan

Lebih terperinci

BAB II MIXING APARATUS

BAB II MIXING APARATUS BAB II MIXING APARATUS 2.1. Tujuan Percobaan - Mengetahui pengaruh jenis pengaduk dan baffle terhadap angka Frounde pada air dan minyak kelapa - Mengetahui hubungan antara bilangan Reynold (N Re ) terhadap

Lebih terperinci

I. TUJUAN. Menghitung Nilai Power Number Menjelaskan pengaruh viskositas, densitas, dan rate pengadudukan terhadap Power pengsadukana

I. TUJUAN. Menghitung Nilai Power Number Menjelaskan pengaruh viskositas, densitas, dan rate pengadudukan terhadap Power pengsadukana MIXING I. TUJUAN Menghitung Nilai Power Number Menjelaskan pengaruh viskositas, densitas, dan rate pengadudukan terhadap Power pengsadukana II. PERINCIAN KERJA Menghitung densitas dari larutan garam Menghitung

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Oli Oli atau pelumas (lubricant) atau sering disebut (lube) adalah suatu bahan (biasanya berbentuk cairan) yang berfungsi untuk mereduksi keausan antara dua permukaan benda

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB I PENDAHULUAN 1.1 Latar Belakang Pengadukan adalah suatu operasi kesatuan yang mempunyai sasaran untuk menghasilkan pergerakan tidak beraturan dalam suatu cairan, dengan alat mekanis yang terpasang

Lebih terperinci

TANGKI BERPENGADUK (TGK)

TANGKI BERPENGADUK (TGK) MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA TANGKI BERPENGADUK (TGK) Koordinator LabTK Dr. Dianika Lestari / Dr. Pramujo Widiatmoko PROGRAM STUDI TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Digester Digester merupakan alat utama pada proses pembuatan pulp. Reaktor ini sebagai tempat atau wadah dalam proses delidnifikasi bahan baku industri pulp sehingga

Lebih terperinci

PERANCANGAN MIXER MATERI KULIAH KALKULUS TEP FTP UB RYN MATERI KULIAH KALKULUS TEP FTP UB

PERANCANGAN MIXER MATERI KULIAH KALKULUS TEP FTP UB RYN MATERI KULIAH KALKULUS TEP FTP UB PERANCANGAN MIXER MATERI KULIAH KALKULUS TEP FTP UB RYN - 2012 Mechanical Mixing Tujuan : Sifat 2 baru (rheologi, organoleptik, fisik) untuk melarutkan berbagai campuran Meningkatkan transfer massa dan

Lebih terperinci

PENGARUH DESAIN IMPELLER, BAFFL ve, DAN KECEPATAN PUTAR PADA PROSES ISOLASI MINYAK KELAPA MURNI DENGAN METODE PENGADUKAN

PENGARUH DESAIN IMPELLER, BAFFL ve, DAN KECEPATAN PUTAR PADA PROSES ISOLASI MINYAK KELAPA MURNI DENGAN METODE PENGADUKAN PENGARUH DESAIN IMPELLER, BAFFL ve, DAN KECEPATAN PUTAR PADA PROSES ISOLASI MINYAK KELAPA MURNI DENGAN METODE PENGADUKAN Didik Purwanto Jurusan Teknik Kimia Institut Teknologi Adhi Tama Surabaya (ITATS)

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA FISIKA I VISKOSITAS CAIRAN BERBAGAI LARUTAN

LAPORAN PRAKTIKUM KIMIA FISIKA I VISKOSITAS CAIRAN BERBAGAI LARUTAN LAPORAN PRAKTIKUM KIMIA FISIKA I VISKOSITAS CAIRAN BERBAGAI LARUTAN Oleh : Nama : I Gede Dika Virga Saputra NIM : 0805034 Kelompok : IV.B JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

VI. DASAR PERANCANGAN BIOREAKTOR. Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium

VI. DASAR PERANCANGAN BIOREAKTOR. Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium VI. DASAR PERANCANGAN BIOREAKTOR Kompetensi: Setelah mengikuti kuliah mahasiswa dapat membuat dasar rancangan bioproses skala laboratorium A. Strategi perancangan bioreaktor Kinerja bioreaktor ditentukan

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN Page 1 BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan efflux time dalam dunia industri banyak dijumpai pada pemindahan fluida dari suatu tempat ke tempat yang lain dengan pipa tertutup serta tangki sebagai

Lebih terperinci

Aliran Turbulen (Turbulent Flow)

Aliran Turbulen (Turbulent Flow) Aliran Turbulen (Turbulent Flow) A. Laminer dan Turbulen Laminer adalah aliran fluida yang ditunjukkan dengan gerak partikelpartikel fluidanya sejajar dan garis-garis arusnya halus. Dalam aliran laminer,

Lebih terperinci

PAPER MESIN DAN PERALATAN PENGOLAHAN PANGAN Mesin Pencampuran Bahan Cair-Padat

PAPER MESIN DAN PERALATAN PENGOLAHAN PANGAN Mesin Pencampuran Bahan Cair-Padat PAPER MESIN DAN PERALATAN PENGOLAHAN PANGAN Mesin Pencampuran Bahan Cair-Padat Disusun oleh: Kelompok 3 Shift A1 Rendy Yus Sriyanto (240110110010) Hana Lestari I (240110110012) Farah Nuranjani (240110110027)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB V METODOLOGI. 5.1 Alat dan Bahan yang Digunakan Alat yang Digunakan

BAB V METODOLOGI. 5.1 Alat dan Bahan yang Digunakan Alat yang Digunakan BAB V METODOLOGI 5.1 Alat dan Bahan yang Digunakan 5.1.1 Alat yang Digunakan Tabel 5. Alat yang Digunakan No. Nama Alat Ukuran Jumlah 1. Baskom - 3 2. Nampan - 4 3. Timbangan - 1 4. Beaker glass 100ml,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA POMPA Kriteria pemilihan pompa (Pelatihan Pegawai PUSRI) Pompa reciprocating o Proses yang memerlukan head tinggi o Kapasitas fluida yang rendah o Liquid yang kental (viscous liquid) dan slurrie (lumpur)

Lebih terperinci

Mixing & Agitation in Food Processing (Pencampuran dan Pengadukan dalam Pengolahan Pangan)

Mixing & Agitation in Food Processing (Pencampuran dan Pengadukan dalam Pengolahan Pangan) Mixing & Agitation in Food Processing (Pencampuran dan Pengadukan dalam Pengolahan Pangan) SUHARGO 2000 BAHAN KULIAH TEKNIK PRODUK PERTANIAN I JURUSAN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1 RANCANGAN OBSTACLE Pola kecepatan dan jenis aliran di dalam reaktor kolom gelembung sangat berpengaruh terhadap laju reaksi pembentukan biodiesel. Kecepatan aliran yang tinggi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan energi surya dalam berbagai bidang telah lama dikembangkan di dunia. Berbagai teknologi terkait pemanfaatan energi surya mulai diterapkan pada berbagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu alat atau mesin yang digunakan untuk memindahkan cairan dari suatu tempat ke tempat yang lain melalui suatu media perpipaan

Lebih terperinci

Simulasi Pola Aliran dalam Tangki Berpengaduk menggunakan Side-Entering Impeller untuk Suspensi Padat-Cair

Simulasi Pola Aliran dalam Tangki Berpengaduk menggunakan Side-Entering Impeller untuk Suspensi Padat-Cair Simulasi Pola Aliran dalam Tangki Berpengaduk menggunakan Side-Entering Impeller untuk Suspensi Padat-Cair Oleh : 1. Brilliant Gustiayu S. (2308 100 074) 2. Ayu Ratna Sari (2308 100 112) Pembimbing : Prof.Dr.Ir.Sugeng

Lebih terperinci

Teori Koagulasi-Flokulasi

Teori Koagulasi-Flokulasi MIXING I. TUJUAN 1. Mengetahui 2. Mengetahui 3. Memahami II. TEORI DASAR Pengadukan (mixing) merupakan suatu aktivitas operasi pencampuran dua atau lebih zat agar diperoleh hasil campuran yang homogen.

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

VISKOSITAS DAN TENAGA PENGAKTIFAN ALIRAN

VISKOSITAS DAN TENAGA PENGAKTIFAN ALIRAN VISKOSITAS DAN TENAGA PENGAKTIFAN ALIRAN I. TUJUAN 1. Menentukan viskositas cairan dengan metoda Ostwald 2. Mempelajari pengaruh suhu terhadap viskositas cairan II. DASAR TEORI Viskositas diartikan sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Teori Pompa Sentrifugal 2.1.1. Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Oil Oli atau pelumas (lubricant atau sering disebut lube) adalah suatu bahan (biasanya berbentuk cairan) yang berfungsi untuk mereduksi kehausan antara dua permukaan benda

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA 4.1 DATA Selama penelitian berlangsung, penulis mengumpulkan data-data yang mendukung penelitian serta pengolahan data selanjutnya. Beberapa data yang telah terkumpul

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Perpindahan Kalor Perpindahan kalor terjadi karena adanya perbedaan suhu, kalor akan mengalir dari tempat yang suhunya tinggi ke tempat suhu rendah. Perpindahan

Lebih terperinci

LAMPIRAN 1 METODOLOGI PENELITIAN

LAMPIRAN 1 METODOLOGI PENELITIAN LAMPIRAN 1 METODOLOGI PENELITIAN L1.1 Flowchart Prosedur Penelitian L1.1.1 Flowchart Prosedur Analisa M-Alkalinity Mulai Dimasukkan 5 ml sampel ke dalam beaker glass Ditambahkan aquadest hingga volume

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI

Laporan Tugas Akhir Pembuatan Modul Praktikum Penentuan Karakterisasi Rangkaian Pompa BAB II LANDASAN TEORI 3 BAB II LANDASAN TEORI II.1. Tinjauan Pustaka II.1.1.Fluida Fluida dipergunakan untuk menyebut zat yang mudah berubah bentuk tergantung pada wadah yang ditempati. Termasuk di dalam definisi ini adalah

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian ini dilakukan di Laboraturium Riset Kimia Lingkungan,

BAB III METODE PENELITIAN. Penelitian ini dilakukan di Laboraturium Riset Kimia Lingkungan, BAB III METODE PENELITIAN 3.1. Tempat Penelitian Penelitian ini dilakukan di Laboraturium Riset Kimia Lingkungan, Laboratorium Kimia Instrumen Jurusan Pendidikan Kimia Fakultas Pendidikan Matematika dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1. MESIN-MESIN FLUIDA Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI II-1 BAB II LANDASAN TEORI 2.1 Pengairan Tanah Pertambakan Pada daerah perbukitan di Atmasnawi Kecamatan Gunung Sindur., terdapat banyak sekali tambak ikan air tawar yang tidak dapat memelihara ikan pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Solar Menurut Syarifuddin (2012), solar sebagai bahan bakar yang berasal dari minyak bumi yang diproses di tempat pengilangan minyak dan dipisah-pisahkan hasilnya berdasarkan

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA FISIK

LAPORAN PRAKTIKUM KIMIA FISIK LAPORAN PRAKTIKUM KIMIA FISIK MODUL PRAKTIKUM NAMA PEMBIMBING NAMA MAHASISWA : MASSA JENIS DAN VISKOSITAS : RISPIANDI,ST.MT : SIFA FUZI ALLAWIYAH TANGGAL PRAKTEK : 25 September 2013 TANGGAL PENYERAHAN

Lebih terperinci

UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI

UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI ANALISIS PERUBAHAN KELENGKUNGAN PARABOLOID PADA FLUIDA YANG DIPUTAR http://www.gunadarma.ac.id/ Disusun Oleh: Yatiman (21401472) Jurusan Teknik Mesin Pembimbing:

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Proses Pengadukan dan Pencampuran. Proses pengadukan dan pencampuran material biasanya terjadi dibanyak proses kimia seperti di dalam proses pembuatan cat, dimana bahan ataupun

Lebih terperinci

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013 Edy Sriyono Jurusan Teknik Sipil Universitas Janabadra 2013 Aliran Pipa vs Aliran Saluran Terbuka Aliran Pipa: Aliran Saluran Terbuka: Pipa terisi penuh dengan zat cair Perbedaan tekanan mengakibatkan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1. KLASIFIKASI FLUIDA Fluida dapat diklasifikasikan menjadi beberapa bagian, tetapi secara garis besar fluida dapat diklasifikasikan menjadi dua bagian yaitu :.1.1 Fluida Newtonian

Lebih terperinci

FIsika KTSP & K-13 FLUIDA STATIS. K e l a s. A. Fluida

FIsika KTSP & K-13 FLUIDA STATIS. K e l a s. A. Fluida KTSP & K-13 FIsika K e l a s XI FLUID STTIS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi fluida statis.. Memahami sifat-sifat fluida

Lebih terperinci

BAB I PENDAHULUAN. Analisa efek secondary..., Paian Oppu Torryselly, FT UI, 2008

BAB I PENDAHULUAN. Analisa efek secondary..., Paian Oppu Torryselly, FT UI, 2008 BAB I PENDAHULUAN 1.1 LATAR BELAKANG MASALAH Penggunaan pompa sentrifugal untuk memindahkan fluida air dari satu wadah ke wadah yang lain, lazim kita temui dalam dunia industri maupun kehidupan sehari-hari.

Lebih terperinci

INDUSTRI PENGOLAHAN BATUBARA

INDUSTRI PENGOLAHAN BATUBARA (Indra Wibawa Dwi Sukma_Teknik Kimia_Universitas Lampung) 1 INDUSTRI PENGOLAHAN BATUBARA Adapun berikut ini adalah flowsheet Industri pengolahan hasil tambang batubara. Gambar 1. Flowsheet Industri Pengolahan

Lebih terperinci

MODUL PRAKTIKUM MEKANIKA FLUIDA

MODUL PRAKTIKUM MEKANIKA FLUIDA MODUL PRAKTIKUM MEKANIKA FLUIDA LABORATORIUM TEKNIK SUMBERDAYA ALAM dan LINGKUNGAN JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG 2013 MATERI I KALIBRASI SEKAT UKUR

Lebih terperinci

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari

2 a) Viskositas dinamik Viskositas dinamik adalah perbandingan tegangan geser dengan laju perubahannya, besar nilai viskositas dinamik tergantung dari VARIASI JARAK NOZEL TERHADAP PERUAHAN PUTARAN TURIN PELTON Rizki Hario Wicaksono, ST Jurusan Teknik Mesin Universitas Gunadarma ASTRAK Efek jarak nozel terhadap sudu turbin dapat menghasilkan energi terbaik.

Lebih terperinci

Gambar 1 Open Kettle or Pan

Gambar 1 Open Kettle or Pan JENIS-JENIS EVAPORATOR 1. Open kettle or pan Prinsip kerja: Bentuk evaporator yang paling sederhana adalah bejana/ketel terbuka dimana larutan didihkan. Sebagai pemanas biasanya steam yang mengembun dalam

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. WAKTU DAN LOKASI PENELITIAN Penelitian ini dilaksanakan mulai bulan Februari 2012 sampai dengan Juni 2012 di Laboratorium Energi dan Elektrifikasi Pertanian, Departemen Teknik

Lebih terperinci

Bab III Aliran Putar

Bab III Aliran Putar Bab III Aliran Putar Ada banyak jenis aliran fluida dalam dunia teknik, dimana komponen rotasi dari nilai rata-rata deformasi memberikan kontribusi lebih besar terhadap pola aliran yang terjadi. Memperhatikan

Lebih terperinci

PEMISAHAN MEKANIS (mechanical separations)

PEMISAHAN MEKANIS (mechanical separations) PEMISAHAN MEKANIS (mechanical separations) sedimentasi (pengendapan), pemisahan sentrifugal, filtrasi (penyaringan), pengayakan (screening/sieving). Pemisahan mekanis partikel fluida menggunakan gaya yang

Lebih terperinci

PENENTUAN VISKOSITAS ZAT CAIR

PENENTUAN VISKOSITAS ZAT CAIR PENENTUAN VISKOSITAS ZAT CAIR A. Judul Percobaan : PENENTUAN VISKOSITAS ZAT CAIR B. Prinsip Percobaan Mengalirkan cairan pipa ke dalam pipa kapiler dari Viskometer Oswald dengan mencatat waktunya. C. Tujuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

MODUL II VISKOSITAS. Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum.

MODUL II VISKOSITAS. Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum. MODUL II VISKOSITAS Pada modul ini akan dijelaskan pendahuluan, tinjauan pustaka, metodologi praktikum, dan lembar kerja praktikum. I. PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang praktikum

Lebih terperinci

Fisika Umum (MA101) Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida

Fisika Umum (MA101) Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida Fisika Umum (MA101) Topik hari ini: Zat Padat dan Fluida Kerapatan dan Tekanan Gaya Apung Prinsip Archimedes Gerak Fluida Zat Padat dan Fluida Pertanyaan Apa itu fluida? 1. Cairan 2. Gas 3. Sesuatu yang

Lebih terperinci

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving

Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving PERPINDAHAN PANAS Panas berpindah dari objek yang bersuhu lebih tinggi ke objek lain yang bersuhu lebih rendah Driving force perbedaan suhu Laju perpindahan = Driving force/resistensi Proses bisa steady

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Teknologi dispenser semakin meningkat seiring perkembangan jaman. Awalnya hanya menggunakan pemanas agar didapat air dengan temperatur hanya hangat dan panas menggunakan heater, kemudian

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

2. TINJAUAN PUSTAKA. Pelapisan massa air merupakan sebuah kondisi yang menggambarkan

2. TINJAUAN PUSTAKA. Pelapisan massa air merupakan sebuah kondisi yang menggambarkan 2. TINJAUAN PUSTAKA 2.1 Kestabilan Massa Air Pelapisan massa air merupakan sebuah kondisi yang menggambarkan bahwa dalam kolom air massa air terbagi secara vertikal kedalam beberapa lapisan. Pelapisan

Lebih terperinci

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA

MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA MEKANIKA FLUIDA DI SUSUN OLEH : ADE IRMA 13321070 4 Konsep Dasar Mekanika Fluida Fluida adalah zat yang berdeformasi terus menerus selama dipengaruhi oleh suatutegangan geser.mekanika fluida disiplin ilmu

Lebih terperinci

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI BAB VI FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI VI.1 Pendahuluan Sebelumnya telah dibahas pengetahuan mengenai konversi reaksi sintesis urea dengan faktor-faktor yang mempengaruhinya.

Lebih terperinci

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida MEKANIKA FLUIDA Zat dibedakan dalam 3 keadaan dasar (fase), yaitu:. Fase padat, zat mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar dikerjakan pada benda padat. 2. Fase

Lebih terperinci

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah

Ciri dari fluida adalah 1. Mengalir dari tempat tinggi ke tempat yang lebih rendah Fluida adalah zat aliar, atau dengan kata lain zat yang dapat mengalir. Ilmu yang mempelajari tentang fluida adalah mekanika fluida. Fluida ada 2 macam : cairan dan gas. Ciri dari fluida adalah 1. Mengalir

Lebih terperinci

APLIKASI METODE PENGADUKAN PADA PROSES PEMBUATAN VIRGIN COCONUT OIL

APLIKASI METODE PENGADUKAN PADA PROSES PEMBUATAN VIRGIN COCONUT OIL APLIKASI METODE PENGADUKAN PADA PROSES PEMBUATAN VIRGIN COCONUT OIL Didik Purwanto Jurusan Teknik Kimia Institut Teknologi Adhi Tama Surabaya (ITATS) Jl. Arief Rahman Hakim 100 Surabaya, email: didikitats@plasa.com

Lebih terperinci

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan

Tegangan Permukaan. Fenomena Permukaan FLUIDA 2 TEP-FTP UB. Beberapa topik tegangan permukaan Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas Beberapa topik tegangan permukaan Fenomena permukaan sangat mempengaruhi : Penetrasi melalui membran

Lebih terperinci

Rumus Minimal. Debit Q = V/t Q = Av

Rumus Minimal. Debit Q = V/t Q = Av Contoh Soal dan tentang Fluida Dinamis, Materi Fisika kelas 2 SMA. Mencakup debit, persamaan kontinuitas, Hukum Bernoulli dan Toricelli dan gaya angkat pada sayap pesawat. Rumus Minimal Debit Q = V/t Q

Lebih terperinci

BAB V METODOLOGI. 5.1 Alat yang digunakan: Tabel 3. Alat yang digunakan pada penelitian

BAB V METODOLOGI. 5.1 Alat yang digunakan: Tabel 3. Alat yang digunakan pada penelitian 14 BAB V METODOLOGI 5.1 Alat yang digunakan: Tabel 3. Alat yang digunakan pada penelitian No. Nama Alat Jumlah 1. Oven 1 2. Hydraulic Press 1 3. Kain saring 4 4. Wadah kacang kenari ketika di oven 1 5.

Lebih terperinci

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK

BAB II PRINSIP-PRINSIP DASAR HIDRAULIK BAB II PRINSIP-PRINSIP DASAR HIDRAULIK Dalam ilmu hidraulik berlaku hukum-hukum dalam hidrostatik dan hidrodinamik, termasuk untuk sistem hidraulik. Dimana untuk kendaraan forklift ini hidraulik berperan

Lebih terperinci

KATA PENGANTAR DAFTAR ISI

KATA PENGANTAR DAFTAR ISI KATA PENGANTAR Puji dan syukur penulis panjatkan atas kehadirat Allah SWT Tuhan Yang Maha Esa yang telah member petunjuk dan kekuatan sehingga penulis dapat menyelesaikan makalah ini yang berjudul MAKALAH

Lebih terperinci

Bab II Ruang Bakar. Bab II Ruang Bakar

Bab II Ruang Bakar. Bab II Ruang Bakar Bab II Ruang Bakar Sebelum berangkat menuju pelaksanaan eksperimen dalam laboratorium, perlu dilakukan sejumlah persiapan pra-eksperimen yang secara langsung maupun tidak langsung dapat dijadikan pedoman

Lebih terperinci

PERANCANGAN DAN SIMULASI MESIN MIXER KAPASITAS 6,9 LITER PUTARAN 280 RPM MENGGUNAKAN ANSYS FLUENT 14.0 DAN PENGUJIAN

PERANCANGAN DAN SIMULASI MESIN MIXER KAPASITAS 6,9 LITER PUTARAN 280 RPM MENGGUNAKAN ANSYS FLUENT 14.0 DAN PENGUJIAN PERANCANGAN DAN SIMULASI MESIN MIXER KAPASITAS 6,9 LITER PUTARAN 280 RPM MENGGUNAKAN ANSYS FLUENT 14.0 DAN PENGUJIAN SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

PERANCANGAN DAN KONSTRUKSI INSULATION MATERIAL PADA ELEMEN PEMANASMESIN MIXER KAPASITAS 6,9 LITER DAN PUTARAN 280 Rpm

PERANCANGAN DAN KONSTRUKSI INSULATION MATERIAL PADA ELEMEN PEMANASMESIN MIXER KAPASITAS 6,9 LITER DAN PUTARAN 280 Rpm PERANCANGAN DAN KONSTRUKSI INSULATION MATERIAL PADA ELEMEN PEMANASMESIN MIXER KAPASITAS 6,9 LITER DAN PUTARAN 280 Rpm SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.. Dasar Teori Pompa Sentrifugal... Definisi Pompa Sentrifugal Pompa sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik menjadi energi fluida menggunakan gaya sentrifugal.

Lebih terperinci

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Perpindahan Panas Konveksi Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola Pengantar KONDUKSI PERPINDAHAN PANAS KONVEKSI RADIASI Perpindahan Panas Konveksi Konveksi

Lebih terperinci