2. TINJAUAN PUSTAKA. Gambar 1 Rajungan (Portunus pelagicus) (Dokumentasi pribadi 2011)

Ukuran: px
Mulai penontonan dengan halaman:

Download "2. TINJAUAN PUSTAKA. Gambar 1 Rajungan (Portunus pelagicus) (Dokumentasi pribadi 2011)"

Transkripsi

1 5 2. TINJAUAN PUSTAKA 2.1. Sumberdaya Rajungan Rajungan (Gambar 1) merupakan salah satu famili dari seksi kepiting yang banyak diperjualbelikan. Mosa (1980) in Suadela (2004) menyebutkan bahwa di Indo Pasifik Barat jenis kepiting dan rajungan diperkirakan ada 234 jenis, sedangkan di Indonesia ada sekitar 124 jenis. Empat jenis rajungan diantaranya yang dapat dimakan (edible crab) selain tubuhnya berukuran besar juga tidak menimbulkan keracunan, yaitu jenis Portunus pelagicus (rajungan), Portunus sanguinolentus (rajungan bintang), Charybdis feriatus (rajungan karang) dan Podopthalmus vigil (rajungan angin). Klasifikasi rajungan menurut Kangas (2000) adalah sebagai berikut: Filum : Arthropoda Kelas : Crustacea Sub kelas : Malacostraca Ordo : Decapoda Famili : Portunidae Genus : Portunus Spesies : Portunus pelagicus (Linnaeus 1766) Nama lokal : Rajungan Nama FAO : Blue swimmer crab, blue manna crab, sand crab, blue crab Gambar 1 Rajungan (Portunus pelagicus) (Dokumentasi pribadi 2011)

2 6 Rajungan hidup di perairan dangkal (mencapai 50 meter) dengan substrat berpasir sampai berpasir lumpur. Portunus pelagicus banyak berada di area perairan dekat karang, mangrove dan padang lamun. Juvenilnya banyak ditemukan di daerah intertidal. Rajungan dewasa pada umur 1 tahun. Sumberdaya rajungan banyak ditangkap oleh nelayan dengan menggunakan perangkap buatan, trawl, pukat pantai dan jaring lingkar. Rajungan ditangkap dalam jumlah yang sangat banyak untuk dijual dalam bentuk segar dan beku di pasaran lokal. Adapula yang diolah di industri pengolahan dan pengalengan rajungan. Jika dibandingkan dengan tiga spesies rajungan yang lainnya, jenis Portunus pelagicus paling banyak dipasarkan di pasar internsional seperti Asia Tenggara. Harga pasaran berkisar antara US$3-5/kg untuk rajungan segar, sedangkan rajungan hidup harga jualnya berkisar antara US$5-8/kg. Penyebaran rajungan meliputi wilayah barat pasifik dan hindia. Portunus pelagicus secara morfologi paling mirip dengan jenis Portunus trituberculatus. Namun, secara spesifk dapat dilihat dari jumlah duri frontal. Jenis P. pelagicus berjumlah empat, sedangkan P. trituberculatus berjumlah tiga buah. Jenis P. pelagicus karapasnya bercorak totol-totol, jantan berwarna biru sedangkan betina berwarna hijau pudar (FAO 1998). Tingkah laku rajungan (Portunus pelagicus) dipengaruhi oleh beberapa faktor alami dan buatan. Faktor alami diantaranya adalah perkembangan hidup, kebiasaan makan, pengaruh siklus bulan dan reproduksi. Sedangkan faktor buatan utama yang mempengaruhi tingkah laku rajungan adalah penggunaan umpan pada penangkapan rajungan dengan menggunakan crab poots. Rajungan adalah perenang aktif, tetapi saat tidak aktif mereka mengubur diri dalam sedimen dengan ruang insang terbuka serta menyisakan mata dan antena di permukaan dasar laut (FishSA 2000 in Suadela 2004). Susilo (1993) in Suadela (2004) menyebutkan bahwa perbedaan fase bulan memberikan pengaruh nyata terhadap tingkah laku rajungan (Portunus pelagicus), yaitu ruaya dan makan. Fase bulan gelap, cahaya bulan yang masuk ke dalam perairan relatif tidak ada, sehingga perairan menjadi gelap. Hal ini mengakibatkan rajungan tidak melakukan ruaya serta aktivitas pemangsaannya berkurang. Hal tersebut ditunjukkan dengan perbedaan jumlah hasil tangkapan antara fase bulan gelap dan bulan terang, dimana rajungan cenderung lebih banyak tertangkap saat

3 7 fase bulan terang, sedangkan fase bulan gelap rajungan lebih sedikit tertangkap. Oleh sebab itu, waktu yang paling baik untuk menangkap rajungan adalah malam hari saat fase bulan terang (Kangas 2000) Pengkajian Stok Ikan Sparre dan Venema (1999) mengemukakan bahwa maksud dari pengkajian stok ikan adalah memberikan saran tentang pemanfaatan optimum sumberdaya hayati perairan seperti ikan dan udang. Sumberdaya hayati bersifat terbatas tetapi dapat memperbaharui dirinya. Pengkajian stok ikan dapat diartikan sebagai upaya pencarian tingkat pemanfaatan yang dalam jangka panjang memberikan hasil tangkapan maksimum perikanan dalam bentuk bobot. Tujuan dasar dari pengkajian stok ikan dilukiskan pada Gambar 2. Sumbu mendatar adalah upaya penangkapan yang diukur, misalnya jumlah hari kapal penangkap. Sumbu yang lain adalah hasil tangkapan, yakni ikan yang didaratkan dalam satuan bobot. Sampai pada tingkat tertentu akan diperoleh hasil tangkapan yang sejalan dengan peningkatan upaya penangkapan. Akan tetapi setelah tingkat tersebut, pembaharuan sumberdaya (reproduksi dan pertumbuhan tubuh) tidak dapat mengimbangi penangkapan, sehingga peningkatan tingkat ekspoitasi yang lebih jauh akan mengarah kepada pengurangan hasil tangkapan. Tingkat upaya penangkapan yang dalam jangka panjang memberikan hasil tertinggi dicirikan oleh F MSY dan hasil tangkapannya dicirikan oleh MSY (Maximum Sustainable Yield). Ungkapan dalam jangka panjang digunakan karena seseorang dapat memperoleh hasil yang tinggi dalam tahun tertentu. Namun, jika upaya penangkapan terus ditingkatkan, hasil tangkapan akan makin berkurang pada tahuntahun berikutnya. Hal ini karena sumber dayanya telah tertangkap (Sparre dan Venema 1999). Konsep dasar dalam mendeskripsikan dinamika suatu sumber daya perairan yang dieksploitasi adalah stok. Suatu stok adalah sub gugus suatu spesies yang umumnya dianggap sebagai unit taksonomi dasar. Prasarat untuk identifikasi stok adalah kemampuan untuk memisahkan spesies yang berbeda. Banyaknya spesies ikan yang ditemukan di perairan tropis dan seiring mirip satu sama lain, menimbulkan masalah dalam identifikasinya. Karena itu, ilmuwan perikanan harus

4 8 menguasai teknik-teknik identifikasi spesies jika harus menghasilkan pengkajian stok yang bermanfaat dari data yang dikumpulkan. Dalam konteks pengkajian stok ikan, sekelompok hewan dimana batas-batas sebaran geografisnya dapat ditentukan bisa dianggap sebagai suatu stok. Kelompok hewan tersebut terdiri dari ras yang sama dari satu spesies, yakni memiliki kumpulan gen yang sama. Lebih mudah untuk menentukan spesies yang kebiasaan ruayanya dekat sebagai satu stok daripada spesies yang beruaya jauh seperti tuna. Bagaimanapun, tidak ada bukti untuk menerima atau menolak hipotesis ini. Klarifikasi yang dapat dilakukan adalah dengan melakukan studi identifikasi menggunakan teknik molekular, misalnya analisis DNA (Wu et al. 2010). Gambar 2 Tujuan dasar pengkajian stok (Sparre dan Venema 1999) Pengkajian stok ikan harus dilakukan secara terpisah bagi setiap unit stok. Oleh karena itu, data masukan untuk tiap stok dari spesies yang dikaji harus tersedia. Konsep stok berkaitan erat dengan konsep parameter pertumbuhan dan mortalitas. Parameter pertumbuhan merupakan nilai numerik dalam persamaan. Parameter ini dapat diprediksi melalui ukuran badan ikan setelah mencapai umur tertentu. Parameter mortalitas mencerminkan suatu laju kematian hewan, yakni jumlah kematian per satuan waktu. Mortalitas penangkapan mencerminkan kematian yang dikarenakan oleh penangkapan. Adapun mortalitas alami merupakan kematian

5 9 karena pemangsaan, penyakit, predator dan faktor alam lain (Sparre dan Venema 1999). Pengkajian stok ikan bertujuan untuk mendeskripsikan proses-proses, hubungan antara masukan dan luaran serta alat yang digunakan. Hubungan tersebut disebut model-model. Suatu model adalah deskripsi yang disederhanakan dari hubungan antara data masukan dan data luaran. Model terdiri atas sederetan instruksi tentang bagaimana melakukan perhitungan dan bagaimana model-model tersebut dirancang berdasarkan hasil amatan atau hasil pengukuran (Sparre dan Venema 1999). Memproses data masukan dengan bantuan model-model dapat meramalkan luarannya secara sederhana adalah: Suatu model dikatakan baik jika model tersebut dapat meramalkan luaran dengan ketepatan yang masuk akal. Tetapi, karena model tersebut merupakan penyederhanaan dari keadaan sebenarnya, maka akan jarang memperoleh luaran yang tepat. Instruksi untuk perhitungan-perhitungan yang membentuk model diberikan dalam bentuk persamaan matematik, yaitu peubah, parameter dan operator (Sparre dan Venema 1999). Suadi dan Widodo (2008) menyatakan bahwa pengakajian stok mencakup suatu estimasi tentang jumlah atau kelimpahan dari sumber daya. Selain itu, mencakup pula pendugaan terhadap laju penurunan sumberdaya yang diakibatkan oleh penangkapan serta tingkat kelimpahan dimana stok dapat menjaga dirinya dalam jangka panjang Model Produksi Surplus Model sangat penting untuk menduga konsekuensi dari bentuk pengelolaan dan dapat digunakan untuk membentuk dan memantau kebijakan (Beattie et al. 2002). Produksi surplus sebagai perbedaan antara produksi (rekruitmen dan

6 10 pertumbuhan) dengan kematian alami. Produksi surplus dapat dituliskan sebagai berikut: artinya biomassa pada tahun tertentu, adalah biomassa tahun sebelumnya ditambahkan dengan produksi surplus tahun sebelumnya dikurangi dengan tangkapan tahun sebelumnya (Masters 2007). Widodo dan Suadi (2008) mengemukakan bahwa pertambahan netto dalam ukuran populasi akan kecil, baik pada tingkat populasi tinggi maupun rendah. Karena itu sebagai konsekuensinya pertambahan tersebut akan mencapai maksimum pada tingkat populasi intermediate. Hukum umum dari pertumbuhan populasi dapat dinyatakan dalam bentuk persamaan deferensial sebagai berikut : dimana B merupakan biomassa populasi. Hukum pertumbuhan populasi ini dipergunakan untuk menggambarkan banyak organisme. Suatu fungsi yang telah terbukti sangat cocok untuk berbagai data eksperimen yaitu: dimana r dan K adalah konstanta. Ini dikenal dengan persamaan pertumbuhan logistik Verhultst-Pearl. Paramter r adalah laju pertumbuhan intrinsik, karena untuk B kecil, maka laju pertumbuhan kira-kira sama dengan r. Adapun K adalah daya dukung lingkungan dan mewakili populasi maksimum yang dapat ditopang oleh lingkungan. Fungsi ini bersifat parabolik yang simetrik dengan laju pertumbuhan maksimum pada tingkat K. Kurva selengkapnya dapat dilihat pada Gambar 3. Beberapa asumsi yang mendasari hukum umum pertumbuhan populasi pada Gambar 3 dapat dikemukakan sebagai berikut: a) Setiap populasi dan ekosistem tertentu akan tumbuh dalam berat sampai mendekati daya dukung maskimum dari ekosistem (terutama dalam kaitannya dengan ketersediaan makanan). Kenaikan dalam berat total perlahan-lahan berhenti manakala ukuran stok semakin mendekati, secara asimtotik, daya dukung dari lingkungan K secara asimtotik. b) Nilai K kira-kira berkaitan erat dengan nilai biomassa dari stok perawan atau yang belum dimanfaatkan (virgin stock).

7 11 c) Pertumbuhan menurut waktu dari biomassa populasi dapat dilukiskan dengan suatu kurva logistik, turunan pertama dari kurva ini ( ) mencapai maksimum pada dan bernilai 0 pada B=0 dan B=K. d) Upaya penangkapan yang menurunkan K sampai dengan setengah dari nilai originalnya akan menghasilkan pertumbuhan netto yang tertinggi dari stok, yakni produksi surplus maksimum (Maximum Surplus Yield) yang tersedia dalam suatu populasi e) Produksi surplus maksimum pada butir (d) akan dipertahankan secara lestari (di sinilah berawal yang disebut Maximum Sustainable Yield, MSY) manakala biomassa dari stok yang dieksploitasi dipertahankan pada tingkat Gambar 3 Hubungan antara biomassa tangkapan (B) dengan turunan pertama biomassa ( (Sparre dan Venema 1999) Terdapat beberapa alasan biologi yang membuat beberapa asumsi tersebut masuk akal. Beberapa alasan tentang rendahnya produksi surplus pada tingkat ukuran stok lebih besar dari antara lain dikemukakan oleh Ricker (1975) in Widodo dan Suadi (2008) sebagai berikut: a) Dekat densitas stok maksimum, efisiensi reproduksi dan kadang-kadang jumlah aktual dari rekrut, lebih rendah dari pada densitas stok ikan yang lebih kecil. Meningkatkan rekruitmen dapat dicapai melalui pengurangan penangkapan stok ikan.

8 12 b) Bila suplai makanan terbatas, makanan kurang dikonversikan ke dalam bentuk daging ikan oleh stok yang besar dibandingkan dengan stok yang kecil. Masingmasing individu pada stok ikan besar akan mengkonversi makanan untuk biomassa dalam jumlah sedikit karena makanan akan digunakan untuk bertahan hidup, sedangkan stok ikan kecil memanfaatkan makanan untuk pertumbuhan. c) Suatu stok yang belum dieksploitasi secara relatif akan terdiri dari individuindividu berumur tua dibandingkan dengan stok yang telah dieksploitasi. Hal ini akan menyebabkan produksi menurun, paling tidak melalui dua cara. Pertama, ikan yang lebih besar cenderung makan banyak, konsekuensinya adalah menurunnya efisiensi pemanfaatan dari produsen dasar makanan dalam piramida makanan. Kedua, ikan yang lebih tua akan mengkonversikan makanan yang mereka makan ke dalam bentuk daging baru (berat badan yang lebih tinggi) dalam jumlah yang lebih kecil, sebab ikan yang matang gonad akan memanfaatkan makanan untuk pertumbuhan telur dan sperma. Konsep produksi surplus merupakan konsep dasar dalam ilmu perikanan. Konsep ini berawal dari beberapa karya, antara lain dalam karya-karya Russell dan Schaefer. Schaefer (1954) in Tserpes (2008) menyebutkan bahwa salah satu cara untuk menduga stok didasarkan pada model produksi surplus logistik. Dasar pemikirannya adalah bahwa peningkatan (increment) populasi ikan akan diperoleh dari sejumlah ikan-ikan muda yang dihasilkan setiap tahun, sedang penurunan dari populasi tersebut (decrement) merupakan akibat dari mortalitas baik karena faktor alam (predasi, penyakit dan lain lain) maupun mortalitas yang disebabkan eksploitasi oleh manusia. Oleh karena itu, populasi akan berada dalam keadaan ekuilibrium bila increment sama dengan decrement. Sparre dan Venema (1999) mengemukakan bahwa model produksi surplus berkaitan dengan suatu stok secara keseluruhan, upaya total dan hasil tangkapan total yang diperoleh dari stok tanpa memasukkan secara rinci beberapa hal seperti parameter pertumbuhan dan mortalitas atau pengaruh ukuran mata jaring terhadap umur ikan yang tertangkap. Model-model holistik lebih sederhana bila dibandingkan dengan model analitik, karena data yang diperlukan juga menjadi lebih sedikit. Sebagai contoh, model-model ini tidak perlu menentukan kelas umur, sehingga dengan demikian tidak perlu melakukan perhitungan penentuan umur. Hal ini

9 13 merupakan salah satu alasan model produksi surplus banyak digunakan di dalam mengkaji stok ikan di perairan tropis. Model produksi surplus dapat diterapkan bila dapat diperkirakan dengan baik tentang hasil tangkapan total dan hasil tangkapan per unit upaya (CPUE) berdasarkan spesies serta upaya penangkapannya dalam beberapa tahun. Upaya penangkapan harus mengalami perubahan substansial selama waktu yang dicakup Model Schaefer (1954) Model Schaefer menyatakan bahwa pertumbuhan dari suatu stok merupakan suatu fungsi dari besarnya stok tersebut. Jelas bahwa asumsi suatu stok bereaksi seketika terhadap perubahan besarnya stok tidaklah realistik. Oleh karena itu dipergunakan konsep ekuilibrium, dan ini mengacu pada keadaan yang timbul bila suatu mortalitas penangkapan tertentu telah ditanamkan cukup lama ke dalam suatu stok, sehingga memungkinkan stok tersebut menyesuaikan ukuran serta laju pertumbuhannya sedemikian rupa sehingga persamaan yang dikemukakan oleh Schaefer terpenuhi (Suadi dan Widodo 2008). Tinungki (2005) menyatakan pula bahwa perluasan pertama penggunaan model yang dikembangkan oleh Schaefer (1954) didasarkan pada pekerjaan terdahulu Graham (1935). Model Schaefer dapat dirumuskan sebagai berikut: Dimisalkan B menyatakan biomassa stok (ukuran berat dari populasi ikan dalam ton), r dapat dinyatakan sebagai laju pertumbuhan alami dari populasi (intrinsic growth rate) dan K adalah daya dukung lingkungan (environmental carrying capacity) atau keseimbangan alamiah dari ukuran stok. Ini didefenisikan sebagai tingkat stok maksimum dari perairan dan lingkungan yang dapat didukung Schaefer (1954) in Tinungki (2005) menyatakan bahwa pertumbuhan (dalam berat biomassa) dari suatu populasi (B t ) dari waktu ke waktu merupakan fungsi dari populasi awal. Schaefer dalam mengembangkan konsepnya mengasumsikan bahwa stok perikanan bersifat homogeni, fungsi pertumbuhannya adalah fungsi logistik dengan area terbatas. Asumsi-asumsi model Schaefer adalah: a) Terdapat batas tertinggi dari biomassa (K) b) Laju pertumbuhan adalah relatif dan merupakan fungsi linear dari biomassa c) Stok dalam keadaan seimbang (equilibrium condition)

10 14 d) Kematian akibat penangkapan (C t ) sebanding dengan upaya (f t ) dan koefisien penangkapan (q) e) Meramalkan MSY adalah 50% dari tingkat populasi maksimum Metode keseimbangan sebagai dasar analisis model Schaefer dalam keseimbangan atau steady state. Metode keseimbangan berdasarkan pada asumsi perubahan upaya sedikit demi sedikit sehingga ukuran stok selalu menuju keseimbangan. Itu merupakan kondisi ekologis yang stabil dan hubungan biologi. Dengan asumsi ini, laju pertumbuhan populasi akan menuju nol. Dalam hal ini perlu memperoleh bentuk yang paling sederhana untuk model hasil surplus dari prinsip-prinsip awal. Tingkat perubahan biomassa dalam populasi yang terkait, diberikan oleh f(b), fungsi biomassa apapun yang sesuai. Dalam keadaan tidak ada aktivitas penangkapan laju perubahan stok sepanjang waktu dimodelkan sebagai: (2.4.1) dimana f(b) dalah fungsi pertumbuhan dan kematian. Laju pertumbuhan populasi ikan dapat terjadi secara eksponensial, namun karena keterbatasan daya dukung lingkungan terdapat titik maksimum sehingga laju pertumbuhan akan menurun bahkan berhenti. Adapun dalam model kuadratik (logistik), dapat diasumsikan bahwa laju pertumbuhan populasi ikan adalah proporsi perbedaan antara daya dukung lingkungan dan populasi. Salah satu fungsi pertumbuhan yang sering digunakan adalah fungsi pertumbuhan logistik. Menangkap ikan di populasi tertentu akan mengurangi f(b) dengan fungsi usaha penangkapan ikan, yang akan dinyatakan pada persamaan berikut:..... (2.4.2) Apabila jumlah populasi relatif kecil dibandingkan dengan luas wilayahnya maka dapat diasumsikan bahwa populasi ikan tersebut tumbuh secara proporsional terhadap populasi asal, atau secara matematis dapat ditulis sebagai:.... (2.4.3) Persamaan secara grafik persamaan (2.4.3) dapat dilihat pada Gambar 4:

11 15 Gambar 4 Kurva hubungan kuadratik antara biomassa (B t ) dengan turunan pertama biomassa terhadap waktu (db t /dt) Wu et. al. (2010) menyatakan bahwa tangkapan maksimum lestari (MSY), upaya penangkapan untuk mencapai MSY (F MSY ) dan biomassa MSY dapat diduga dengan mengasumsikan laju perubahan biomassa adalah nol sepanjang tahun. Gambar 4 di atas memperlihatkan pada saat pertumbuhan f(b)=0, maka pada titik sehingga mengakibatkan B t =K, namun pada saat K cukup besar maka maka. Laju pertumbuhan alami merupakan pertumbuhan alamiah, atau biasa juga disebut sebagai laju pertumbuhan tercepat yang dimiliki oleh suatu jenis ikan. Pertumbuhan biomassa ikan di atas diasumsikan berlaku tanpa adanya gangguan atau penangkapan oleh manusia. Jika kemudian produksi perikanan diasumsikan tergantung dari input (upaya, F t ) dan jumlah biomassa ikan yang tersedia B t serta kemampuan teknologi yang digunakan q (yang disebut koefisian penangkapan), maka hasil tangkapan adalah sebagai berikut: (2.4.4) Persamaan (2.4.4) umumnya digunakan sebagai fungsi produksi panen ikan. Menyelesaikan model produksi surplus, diperlukan bentuk yang layak untuk dua fungsi yang cocok dengan data yang tersedia. Jika penangkapan C t dimasukkan ke dalam model, dan diasumsikan bahwa penangkapan berkorelasi linear terhadap biomassa (B t ) dan input atau effort (F t ), maka laju pertumbuhan biomassa menjadi:

12 (2.4.5) Asumsi keseimbangan dimana laju pertumbuhan mendekati nol, dalam hal ini masalah yang dihadapi oleh pengelola perikanan adanya peubah biomassa yang teramati, dimana hanya data produksi C t dan jumlah input F t yang digunakan seperti jumlah kapal, jumlah trip atau hari melaut. Sehingga persamaan (2.4.5) dapat dipecahkan untuk mencari nilai biomassa B diperoleh hubungan antara hasil tangkapan lestari dan input digunakan sebagai berikut: (2.4.6) dengan mensubsitusi persamaan (2.4.6) ke dalam persamaan (2.4.4) diperoleh: (2.4.7) Persamaan (2.4.7) dengan q sebuah konstanta, disebut sebagai koefisien penangkapan. Bagaimana ukuran penangkapannya (atau peluang tertangkap satu unit dari stok) per unit dari stok akan berubah jika upaya berubah satu satuan. F t adalah variabel upaya penangkapan. Persamaan (2.4.7) dapat juga digunakan untuk menyatakan hubungan antara penangkapan per satuan upaya (CPUE) dan level stok. Persamaan (2.4.7) akan menjadi linear jika dibagi dengan F t : (2.4.8) (2.4.9) Jika, maka (2.4.10) Persamaan (2.4.10) dikatakan dibawah asumsi model Schaefer, pada hubungan keseimbangan antara CPUE t (catcth per unit effort) dan F t (effort) adalah linear. Persamaan ini dapat dituliskan sebagai berikut:.... (2.4.11) Sehingga hubungan antara effort ( ) dan catch ( ) dapat dinyatakan sebagai berikut: (2.4.12) Upaya optimum (f opt ) diperoleh dengan cara menyamakan turunan pertama tangkapan per satuan upaya (CPUE) sama dengan nol:

13 (2.4.13) (2.4.14) Nilai tangkapan optimum atau jumlah tangkapan maksimum lestari (MSY) diperoleh dengan mensubsitusi nilai upaya optimum perasamaan (2.4.14) ke dalam persamaan (2.4.12): (2.4.15) Penggunaan satu persamaan ini dapat menduga parameter-parameter fungsi produksi surplus dengan meregresikan data runtun waktu (time series) jumlah tangkapan (catch) dan upaya (effort). Tinungki (2005) menyebutkan bahwa salah satu keuntungan model Schaefer adalah dapat digunakan dengan tidak tergantung pada adanya data kelimpahan stok. Jika data runtun waktu untuk data penangkapan dan upaya tersedia, maka pendugaan parameter-parameter dengan menggunakan metode regresi linear sederhana dapat dilakukan. Model Schaefer mengasumsikan populasi pertumbuhan logistik yakni tangkapan meningkat secara cepat di awal, namun kemudian laju perubahannya melambat dengan peningkatan upaya (Coppola dan Pascoe 1998 in Tinungki 2005). Model ini menetapkan dua hasil dasar, yaitu: a) Upaya penangkapan adalah suatu fungsi linear dari ukuran populasi (atau tangkapan per satuan upaya) b) Jumlah tangkapan adalah suatu fungsi parabola dari upaya penangkapan (Widodo 1986 in Tinungki 2005) 2.5. Model Gulland (1961) Model Gulland digunakan untuk meneliti hubungan antara kondisi-kondisi stok pada saat ini dan peristiwa-peristiwa masa lalu. Metode ini bukan hanya lebih layak namun juga pada prinsipnya mengatasi kehadiran upaya penangkapan sebagai peubah bebas pada kedua sumbu analisis regresi yang membuat penyimpangan pada plot ke arah suatu korelasi terbalik, dengan mengganti upaya dengan rata-rata

14 18 bergerak dari nilai yang diamati sebelumnya dan nilai saat ini. Metode ini mengasumsikan bahwa terdapat suatu hubungan antara kelimpahan stok dan upaya masa lalu. Bila rekruitmen tetap stabil dengan berkembangnya penangkapan besarbesaran, ukuran rata-rata individu yang ditangkap akan menurun. Sebaliknya bila ukuran rata-rata ikan ditangkap tetap tidak berubah sedangkan kelimpahan atau CPUE t menurun, terdapat beberapa indikasi bahwa rekruitmen berpengaruh (Gulland 1961 in Tinungki 2005). Hubungan yang diperoleh antara CPUE t dan upaya rata-rata bergerak kadang-kadang lurus, kadang-kadang melengkung. Apapun hubungannya, Gulland (1961) in Tinungki (2005) menyebutkan bahwa perikanan dalam keadaan tetap. Garisnya akan sangat dekat dengan hubungan antara CPUE t sebagai indeks dari kelimpahan relatif dan upaya penangkapan. Hubungan linear model Gulland dapat dinyatakan sebagai berikut: (2.5.1) adalah upaya rata-rata tahun sebelumnya ke t-1 dengan tahun ke t yang merupakan rentang hidup rata-rata individu dalam stok yang dieksploitasi; a adalah perkiraan rentang hidup untuk q, parameter daya dukung lingkungan (K) dan pertumbuhan alami (r), serta nilai koefisien regresi b menjadi atau adalah perkiraan untuk hasil ekuilibrium maksimum (MSY). Beberapa asumsi model produksi surplus Gulland (1983) in Aminah (2010) adalah kelimpahan populasi merupakan faktor yang hanya menyebabkan perbedaan dalam laju pertumbuhan populasi alami, keseluruhan parameter populasi yang pokok dapat dikombinasikan untuk menghasilkan fungsi sederhana yang ada hubungannya dengan laju pertumbuhan stok, laju mortaliatas penangkapan seketika sama dengan upaya penangkapan, hasil tangkapan per upaya sepadan dengan ukuran stok ikan, lama antara pemijahan dengan rektuitmen tidak berpengaruh terhadap populasi, ada hubungan antara hasil tangkapan dengan upaya penangkapan Model Pella dan Tomlimson (1969) Model Pella dan Tomlimson (1969) digunakan secara luas dan praktis. Program-program komputer dapat ditambahkan untuk menduga parameter-

15 19 parameternya. Empat parameter yang harus diduga dalam model ini adalah pertumbuhan intrinsik r,daya dukung lingkungan K, koefisien penangkapan q, dan parameter m. Keistimewaan dari model iniadalah serupa dengan model Schaefer namun sedikit modifikasi. Model Pella dan Tomlimson (1969) dapat dituliskan sebagai berikut:.... (2.6.1) dimana nilai m>1 adalah ukuran parameter tambahan. Jika m=2 maka model ini sama dengan model Schaefer. Pengenalan dari parameter m tidak hanya merubah kecekungan dari fungsi produksi. Kondisi kurva hubungan produksi akan cenderung miring ke sebelah kanan, bilamana m>2 atau miring ke arah kiri bilamana m<2. Hasil ekuilibrium sebagai suatu fungsi dari biomassa dalam model Graham- Schaefer dapat dinyatakan sebagai:..... (2.6.2) yang merupakan suatu parabola simetris. Pella dan Tomlimson (1969) dinyatakan dalam bentuk yang lebih umum, dimana eksponen 2 pada persamaan (2.6.2) digantikan oleh peubah m (Ricker 1975 in Tinungki 2005) sebagai berikut:......(2.6.3) Model Pella dan Tomlimson (1969) sebagaimana diperlihatkan pada persamaan (2.6.3) memberikan hasil bahwa MSY atau C t dapat menyertai setiap nilai B t yang dibatasai dengan sebagaimana halnya dengan model Graham- Schaefer. Bila m=2 maka akan diperoleh model Graham-Schaefer, yaitu plot hasil pada biomassa dengan parabola simetris. Bila m<2, kurva hasil semacam itu merupakan parabola asimetris dengan maksimum dipindahkan ke arah asalnya, bila m>2 maksimum dari kurva asimetris dipindahkan dari asalnya (Widodo 1986 in Tinungki 2005). Dengan kata lain, memplotkan baik hasil dan biomassa ataupun hasil dan upaya penangkapan akan menghasilkan parabola, dengan letak titik maksimumnya bergantung pada nilai m. MSY dan f opt akan ditetapkan dalam kaitannya dengan K. Sehingga satusatunya hal umum mengenaii model Pella dan Tomlimson (1969) adalah bahwa fungsi regenerasi biomassa dapat mengasumsikan berbagai bentuk, namun bukan

16 20 semua bentuk yang mungkin, dengan mempertimbangkan misalnya ukuran stok aktif minimum dan kendala-kendala internal lain pada nilai-nilai parameter (Pitcher dan Hart 1982 in Tinungki 2005). Sehingga jika CPUE= pada kondisi setimbang diperoleh persamaan Pella dan Tomlimson (1969) sebagai berikut: (untuk m=2 merupakan model Schaefer) (untuk m=3) (untuk m=4) (2.6.4) dan seterusnya untuk berbagai nilai m Model Fox (1970) Model Fox (1970) memiliki karakter bahwa pertumbuhan biomassa mengikuti model pertumbuhan Gompertz, dan penurunan tangkapan per satuan upaya (CPUE t ) terhadap upaya penangkapan (F t ) mengikuti pola eksponensial negatif, yang lebih masuk akal dibandingkan dengan pola regresi linier. Asumsi yang digunakan dalam model Fox (1970) adalah: a) Populasi dianggap tidak akan punah b) Populasi sebagai jumlah dari individu ikan Model ini memperlihatkan grafik lengkung bila secara langsung diplot terhadap upaya f t akan tetapi bila diplot dalam bentuk logaritma terhadap upaya, maka akan menghasilkan garis lurus: (2.7.1) Model tersebut mengikuti asumsi bahwa menurun dengan meningkatnya upaya. Model Fox dan Schaefer berbeda dalam hal dimana model Schaefer menyatakan satu tingkatan upaya dapat dicapai pada nilai yaitu bila, sedangkan pada model Fox, adalah selalu lebih besar dari nol untuk seluruh nilai.

17 21 Bila diplotkan terhadap f t akan menghasilkan garis lurus, pada model Schaefer, namun menghasilkan lengkung yang mendekati nol hanya pada tingkatan upaya yang tinggi, tanpa pernah menyentuh sumbu pada model Fox. Gambar 5 memperlihatkan perbandingan antara kurva model Schaefer dan model Fox. Gambar 5 Kurva model Schaefer ( ) dan Fox ( ) Fox menyatakan bahwa hubungan antara effort (f t ) dan catch (C t ) adalah bentuk eksponensial dengan kurva yang tidak simetris, dan dinyatakan bahwa hubungan antara effort (f t ) dan catch per unit effort (CPUE t ) adalah sebagai berikut: (2.7.2) hubungan antara effort dan catch adalah: (2.7.3) Upaya optimum (f opt ) diperoleh dengan cara menyamakan turunan pertama catch (C t ) terhadap effort (f t ) sama dengan nol:.... (2.7.4) sehingga:.. (2.7.5) Produksi maksimum lestari (MSY) diperoleh dengan mensubsitusikan nilai upaya optimum ke dalam persamaan (2.7.3) sehingga:

18 22 besarnya parameter a dan b secara sistematis dapat dicari dengan mempergunakan persamaan regresi. Rumus-rumus untuk model produksi surplus ini hanya berlaku bila parameter slope (b) bernilai negatif, artinya penambahan jumlah effort akan menyebabkan penurunan CPUE. Bila dalam perhitungan diperoleh nilai b positif maka tidak dapat dilakukan pendugaan stok maksimum maupun besarnya effort minimum, tetapi hanya dapat disimpulkan bahwa penambahan jumlah effort masih menambah hasil tangkapan. Penelitian komponen-komponen sumberdaya perikanan dan potensinya dilakukan terhadap kondisi perikanan yang sekarang ada. Informasi ini diperlukan untuk perencanaan pengembangan perikanan masa yang akan datang (Tinungki 2005) Model Walter dan Hilborn (1976) Model ini dikenal sebagai suatu model yang berbeda dari model Schaefer. Perbedaannya adalah, model ini dapat memberikan dugaan masing-masing untuk parameter fungsi produksi surplus r, q dan K dari tiga koefisien regresi. Persamaannya sebagai berikut:..... (2.8.1) Prosedur model Walter-Hilborn adalah sebagai berikut:, jika... (2.8.2) maka diperoleh: yang menyatakan CPUE (catch per unit effort) Persamaan dasar model produksi surplus dapat diformulasikan kembali sebagai berikut: (2.8.3) Penyusunan kembali persamaan (2.8.3) dengan memindahkan ke sisi kiri dan mengalikan persamaan dengan sehingga diperoleh persamaan:

19 (2.8.4) Persamaan di atas diregresikan dengan laju perubahan biomassa sebagai peubah tidak bebas dan upaya penangkapan sebagai peubah bebas. Persamaan regresinya menjadi:.... (2.8.5) dimana: error dari persamaan regresi 2.9. Model Schnute (1977) Schnute mengetengahkan versi lain dari model surplus produksi yang bersifat dinamik, discrete in time, serta deterministik dari cara Graham-Schaefer. Di sisi lain, memberikan model waktu dinamis, stokastik, dan khusus untuk model produksi surplus yang bertentangan dengan model statis, deterministik, dan kontinyu dari model Graham-Schaefer yang lain. Model Schnute dipandang sebagai modifikasi model Schaefer dalam bentuk diskrit (Roff 1983 in Tinungki 2005). Dasar dari model Schnute adalah:..... (2.9.1) dimana sehingga: (2.9.2) jika persamaan (2.9.2) diintegrasikan dan dilakukan satu langkah setahun ke depan diperoleh: (2.9.3) dimana dan

20 24 Persamaan (2.9.3), selanjutnya disederhanakan dimana dan masing-masing adalah rata-rata catch per unit effort dan rata-rata upaya penangkapan per tahun. Ini memberikan persamaan: (2.9.4) Beberapa manipulasi aljabar persamaan (2.9.4) dimodifikasi, sehingga Schnute (1977) in Masters (2007) menunjukkan bahwa persamaan produksi surplus Schaefer dapat ditransformasi ke dalam bentuk linear berganda sebagai berikut: dimana: Persamaan ini dapat menduga parameter-parameter q, K dan r sebagai berikut: ; Keuntungan dari model Schnute disamping secara teori lebih masuk akal. Model ini juga mempunyai beberapa keuntungan praktis. Salah satu keuntungan adalah untuk data tangkapan dan upaya yang nilainya dimulai dari periode tahun tertentu dapat digunakan untuk memprediksi tangkapan dan upaya optimum periode tahun yang akan datang dari data yang periode sebelumnya Model Clarke Yoshimoto Pooley (1992) Mengestimasi parameter biologi dari model produksi surplus adalah melalui pendugaan koefisien yang dikembangkan oleh Clarke, Yoshimoto dan Pooley. Parameter-parameter r (laju pertumbuhan alami), q (koefisien kemampuan penangkapan), dan K (daya dukung lingkungan) yang dapat menggunakan model Clarke Yoshimoto Pooley (CYP) yang dinyatakan sebagai berikut:..(2.10.1) Sehingga persamaan (2.10.1) dapat ditulis dalam bentuk persamaan linear berganda sebagai berikut: (2.10.2) dengan:

21 25 Perhitungan parameter r, q, dan K akan didapatkan kesulitan sehingga dibuat algoritma (Fauzi 2002 in Tinungki 2005). Koefisien regresi a, b, c diperlukan dalam menentukan:.... (2.10.3) (2.10.4).... (2.10.5) nilai Q diperlukan dalam menghitung nilai K......(2.10.6) Kondisi Umum Perairan Teluk Banten Letak geografis Teluk Banten berada dalam koordinat 05 o o LS dan 106 o o BT. Teluk Banten berbentuk setengah lingkaran (Suadela 2004). Teluk Banten terletak di Pantai Utara Jawa pada jarak 60 km di sebelah barat kota Jakarta, termasuk wilayah administrasi Kabupaten Serang di Provinsi Banten yang sebelumnya mejadi bagian barat dari provinsi Jawa Barat. Kawasan ini mempunyai panjang pantai sekitar 22 km dengaan variasi kedalaman 0.2 sampai 9 meter. Sebagian besar kawasan teluk bagian barat dimanfaatkan untuk kawasan industri dan pelabuhan Bojonegara. Kawasan teluk bagian selatan dimanfaatkan untuk industri, perumahan nelayan, pertambakan dan Pelabuhan Perikanan Nusantara Karangantu. Bagian timur meliputi kawasan pertambakan serta bagian dari kawasan lindung Cagar Alam Pulau Dua (Tiwi 2004). Pasang surut perairan Teluk Banten sangat dipengaruhi oleh kondisi peraian Selat Sunda, dengan tinggi air pasangnya mencapai 90 cm. Berg juga menyatakan bahwa endapan yang membentuk dasar perairan Teluk Banten berasal dari berbagai proses alam. Lapisan paling atas terutama berasal dari proses erosi Sungai Ciujung Lama yang dibawa ke barat oleh arus dari Laut Jawa. Sebagian kecil endapan berasal dari Sungai Cibanten, dimana endapan inilah yang menyebabkan proses pendangkalan di Pulau Dua mulai tahun 1970an. Lapisan di bawahnya berupa

22 26 endapan yang berasal dari tsunami sebagai akibat dari letusan Gunung Karakatau tahun 1883 (Tiwi 2004). Teluk Banten mempunyai kawasan perairan seluas sekitar 150 km 2 yang termasuk perairan dangkal dengan turbiditas tinggi. Terdapat beberapa pulau di kawasan ini yaitu Pulau Panjang, Pulau Pamujan Kecil, Pulau Pamujan Besar, Pulau Semut, Pulau Tarahan, Pulau Pisang, Pulau Gosong Dadapan, Pulau Kubur, Pulau Tanjung Gundul, Pulau Lima dan Pulau Dua. Kawasan perairan terutama di sekitar pulau kecil mempunyai kekayaan ekosistem dan biodiversitas yang bernilai tinggi. Padang lamun, terumbu karang, hutan bakau dan kawasan konservasi burung Pulau Dua yang ada di kawasan ini terkenal sampai tingkat internasional. Kawasan padang lamun mempunyai luasan 365 hektar, dimana 100 hektar diantaranya berada di kawasan barat Teluk Banten yang merupakan kawasan padang lamun terbesar di Indonesia. Kawasan terumbu karang diperkirakan meliputi luasan 2.5 km 2, dimana 22% nya merupakan karang hidup. Ekosistem bakau lebih mendominasi kawasan teluk bagian timur selatan terutama di sekitar Pulau Dua. Pengamatan faktor hidrologi perairan Teluk Banten secara keseluruhan sangat dipengaruhi oleh Laut Jawa. Salinitas menurun pada musim hujan, kecuali pada perairan muara sungai dan sekitarnya. Pengamatan pada tahun menunjukkan bahwa suhu air berkisar C. Salinitas di daerah penangkapan ikan sekitar ppm. Salinitas rendah (< 20 ppm) di perairan dekat muara sungai terjadi pada musim hujan. Rendahnya salinitas karena masukan air hujan dari sungai yang bermuara di Teluk Banten. Kecerahan di sekitar pulau-pulau karang di tengah Teluk Banten hingga utara Pulau Panjang bervariasi berkisar 2-10 meter. Kecerahan pada musim hujan di kawasan pantai dapat mencapai 10 cm (Nuraini 2004). Hamparan lumpur di Teluk Banten terdapat di pantai timur dan selatan. Terbentuknya lahan ini sebagai akibat tingginya sedimentasi yang berasal dari penggundulan hutan dan penambangan batu. Lahan timbul ini terbentuk di kawasan pantai sekitar muara Sungai Cibanten dan Ciujung, Pontang. Selain itu, kawasan pantai dan sungai menjadi dangkal akibat dari proses sedimentasi yang tinggi. Tanah

23 27 timbul banyak dimanfaatkan oleh masyarakat nelayan sebagai tambak ikan atau udang.

2. TINJAUAN PUSTAKA. Gambar 2. Rajungan (Portunus pelagicus) (Dokumentasi Pribadi 2012)

2. TINJAUAN PUSTAKA. Gambar 2. Rajungan (Portunus pelagicus) (Dokumentasi Pribadi 2012) 4 2. TINJAUAN PUSTAKA 2.1. Karakteristik Rajungan (Portunus pelagicus) Jenis kepiting dan rajungan diperkirakan sebanyak 234 jenis yang ada di Indo Pasifik Barat, di Indonesia ada sekitar 124 jenis (Moosa

Lebih terperinci

MODEL PRODUKSI SURPLUS UNTUK PENGELOLAAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN

MODEL PRODUKSI SURPLUS UNTUK PENGELOLAAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN MODEL PRODUKSI SURPLUS UNTUK PENGELOLAAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN NURALIM PASISINGI SKRIPSI DEPARTEMEN MANAJEMEN SUMBERDAYA PERAIRAN FAKULTAS

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 6 0'0"S 6 0'0"S 6 0'0"S 5 55'0"S 5 50'0"S 28 3. METODE PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian dilakukan pada Maret 2011. Penelitian dilakukan di Pelabuhan Perikanan Nusantara Karangantu

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 31 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Kondisi Umum Perairan Teluk Banten Letak geografis Teluk Banten berada dalam koordinat 05 o 49 45-06 o 02 00 LS dan 106 o 03 20-106 o 16 00 BT. Teluk Banten

Lebih terperinci

Gambar 7. Peta kawasan perairan Teluk Banten dan letak fishing ground rajungan oleh nelayan Pelabuhan Perikanan Nusantara Karangantu

Gambar 7. Peta kawasan perairan Teluk Banten dan letak fishing ground rajungan oleh nelayan Pelabuhan Perikanan Nusantara Karangantu 24 3. METODE PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian dilaksanakan pada bulan Mei sampai dengan Juni 2012 yang meliputi: observasi lapang, wawancara, dan pengumpulan data sekuder dari Dinas

Lebih terperinci

ANALISIS BIOEKONOMI UNTUK PEMANFAATAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN

ANALISIS BIOEKONOMI UNTUK PEMANFAATAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN ANALISIS BIOEKONOMI UNTUK PEMANFAATAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN FITRIA NUR INDAH SARI SKRIPSI DEPARTEMEN MANAJEMEN SUMBERDAYA PERAIRAN

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Palabuhanratu merupakan salah satu daerah yang memiliki potensi sumberdaya perikanan laut yang cukup tinggi di Jawa Barat (Oktariza et al. 1996). Lokasi Palabuhanratu

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 32 4. HASIL DAN PEMBAHASAN 4.1. Kondisi Ikan Kurisi di Perairan Teluk Banten Penduduk di sekitar Teluk Banten kebanyakan memiliki profesi sebagai nelayan. Alat tangkap yang banyak digunakan oleh para nelayan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. 2.1 Ikan Peperek Klasifikasi dan Morfologi Menurut Saanin (1984) klasifikasi dari ikan peperek adalah sebagai berikut:

BAB II TINJAUAN PUSTAKA. 2.1 Ikan Peperek Klasifikasi dan Morfologi Menurut Saanin (1984) klasifikasi dari ikan peperek adalah sebagai berikut: BAB II TINJAUAN PUSTAA 2.1 Ikan Peperek 2.1.1 lasifikasi dan Morfologi Menurut Saanin (1984) klasifikasi dari ikan peperek adalah sebagai berikut: Filum : Chordata elas : Pisces Subkelas : Teleostei Ordo

Lebih terperinci

spesies yaitu ikan kembung lelaki atau banyar (Rastrelliger kanagurta) dan kembung perempuan (Rastrelliger brachysoma)(sujastani 1974).

spesies yaitu ikan kembung lelaki atau banyar (Rastrelliger kanagurta) dan kembung perempuan (Rastrelliger brachysoma)(sujastani 1974). 7 spesies yaitu ikan kembung lelaki atau banyar (Rastrelliger kanagurta) dan kembung perempuan (Rastrelliger brachysoma)(sujastani 1974). Ikan kembung lelaki terdiri atas ikan-ikan jantan dan betina, dengan

Lebih terperinci

BAB III BAHAN DAN METODE

BAB III BAHAN DAN METODE 3 BAB III BAHAN DAN METODE 3.1 Tempat dan Waktu Penelitian Penelitian ini dilaksanakan di Teluk Palabuhanratu, Kabupaten Sukabumi, Jawa Barat dari tanggal 17 April sampai 7 Mei 013. Peta lokasi penelitian

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 3. METODE PENELITIAN 3.1. Lokasi dan Waktu Penelitian mengenai dinamika stok ikan peperek (Leiognathus spp.) dilaksanakan di Pelabuhan Perikanan Nusantara (PPN) Palabuhanratu, Kabupaten Sukabumi, Provinsi

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 25 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Kondisi umum perairan Teluk Banten Perairan Karangantu berada di sekitar Teluk Banten yang secara geografis terletak pada 5 0 49 45 LS sampai dengan 6 0 02

Lebih terperinci

Gambar 5 Peta daerah penangkapan ikan kurisi (Sumber: Dikutip dari Dinas Hidro Oseanografi 2004).

Gambar 5 Peta daerah penangkapan ikan kurisi (Sumber: Dikutip dari Dinas Hidro Oseanografi 2004). 24 3 METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian ini dilakukan pada bulan Maret 2011 sampai dengan bulan Oktober 2011. Lokasi penelitian berada di Selat Sunda, sedangkan pengumpulan data dilakukan

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang 1 I PENDAHULUAN 1.1 Latar Belakang Ekosistem mangrove merupakan ekosistem pesisir yang terdapat di sepanjang pantai tropis dan sub tropis atau muara sungai. Ekosistem ini didominasi oleh berbagai jenis

Lebih terperinci

VI. ANALISIS BIOEKONOMI

VI. ANALISIS BIOEKONOMI 111 VI. ANALISIS BIOEKONOMI 6.1 Sumberdaya Perikanan Pelagis 6.1.1 Produksi dan Upaya Penangkapan Data produksi yang digunakan dalam perhitungan analisis bioekonomi adalah seluruh produksi ikan yang ditangkap

Lebih terperinci

3 METODE PENELITIAN. Gambar 4 Peta lokasi penelitian.

3 METODE PENELITIAN. Gambar 4 Peta lokasi penelitian. 14 3 METODE PENELITIAN 3.1 Lokasi dan Waktu Penelitian ini dilakukan di PPI Labuan, Provinsi Banten. Ikan contoh yang diperoleh dari PPI Labuan merupakan hasil tangkapan nelayan disekitar perairan Selat

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Pemetaan Partisipatif Daerah Penangkapan Ikan kurisi dapat ditangkap dengan menggunakan alat tangkap cantrang dan jaring rampus. Kapal dengan alat tangkap cantrang memiliki

Lebih terperinci

2. TINJAUAN PUSTAKA Rajungan (Portunus pelagicus)

2. TINJAUAN PUSTAKA Rajungan (Portunus pelagicus) 4 2. TINJAUAN PUSTAKA 2.1. Rajungan (Portunus pelagicus) Menurut www.zipcodezoo.com klasifikasi dari rajungan adalah sebagai berikut: Kingdom : Animalia Filum : Arthropoda Kelas : Malacostrata Ordo : Decapoda

Lebih terperinci

3 METODOLOGI. Gambar 2 Peta Selat Bali dan daerah penangkapan ikan lemuru.

3 METODOLOGI. Gambar 2 Peta Selat Bali dan daerah penangkapan ikan lemuru. 3 3 METODOLOGI 3.1 Waktu dan Tempat Penelitian dilaksanakan selama bulan Juli 009 di Pelabuhan Perikanan Pantai Muncar - Perairan Selat Bali, Kabupaten Banyuwangi, Jawa Timur. Perairan Selat Bali terletak

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 30 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Kondisi perairan Teluk Jakarta Teluk Jakarta terletak di utara kota Jakarta dengan luas teluk 285 km 2, dengan garis pantai sepanjang 33 km, dan rata-rata kedalaman

Lebih terperinci

3 HASIL DAN PEMBAHASAN

3 HASIL DAN PEMBAHASAN 9 dan MSY adalah: Keterangan : a : Perpotongan (intersept) b : Kemiringan (slope) e : Exponen Ct : Jumlah tangkapan Ft : Upaya tangkap (26) Model yang akan digunakan adalah model yang memiliki nilai korelasi

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Distribusi Cumi-Cumi Sirip Besar 4.1.1. Distribusi spasial Distribusi spasial cumi-cumi sirip besar di perairan Karang Congkak, Karang Lebar, dan Semak Daun yang tertangkap

Lebih terperinci

3. METODOLOGI 3.1 Waktu dan Tempat Penelitian 3.2 Peralatan 3.3 Metode Penelitian

3. METODOLOGI 3.1 Waktu dan Tempat Penelitian 3.2 Peralatan 3.3 Metode Penelitian 21 3. METODOLOGI 3.1 Waktu dan Tempat Penelitian Pengambilan dan pengumpulan data di lapangan dilakukan pada Bulan Maret sampai dengan April 2009. Penelitian dilakukan di Pulau Pramuka, Kepulauan Seribu,

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Kegiatan penangkapan ikan merupakan aktivitas yang dilakukan untuk mendapatkan sejumlah hasil tangkapan, yaitu berbagai jenis ikan untuk memenuhi permintaan sebagai sumber

Lebih terperinci

PENGELOLAAN SUMBERDAYA IKAN KURISI (Nemipterus furcosus) BERDASARKAN MODEL PRODUKSI SURPLUS DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN

PENGELOLAAN SUMBERDAYA IKAN KURISI (Nemipterus furcosus) BERDASARKAN MODEL PRODUKSI SURPLUS DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN i PENGELOLAAN SUMBERDAYA IKAN KURISI (Nemipterus furcosus) BERDASARKAN MODEL PRODUKSI SURPLUS DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN ENDAH TRI SULISTIYAWATI SKRIPSI DEPARTEMEN MANAJEMEN SUMBERDAYA

Lebih terperinci

2 TINJAUAN PUSTAKA. Gambar 2 Ikan kuniran (Upeneus moluccensis).

2 TINJAUAN PUSTAKA. Gambar 2 Ikan kuniran (Upeneus moluccensis). 5 2 TINJAUAN PUSTAKA 2.1 Ikan Kuniran 2.1.1 Klasifikasi Ikan Kuniran Upeneus moluccensis, Bleeker 1855 Dalam kaitan dengan keperluan pengkajian stok sumberdaya ikan, kemampuan untuk mengidentifikasi spesies

Lebih terperinci

I. PENDAHULUAN 1.1 Latar Belakang

I. PENDAHULUAN 1.1 Latar Belakang I. PENDAHULUAN 1.1 Latar Belakang Indonesia memiliki keanekaragaman hayati laut yang sangat tinggi dan dapat dimanfaatkan sebagai bahan pangan dan bahan industri. Salah satu sumberdaya tersebut adalah

Lebih terperinci

PENDUGAAN STOK IKAN LAYUR

PENDUGAAN STOK IKAN LAYUR 1 PENDUGAAN STOK IKAN LAYUR (Trichiurus sp.) DI PERAIRAN TELUK PALABUHANRATU, KABUPATEN SUKABUMI, PROPINSI JAWA BARAT Adnan Sharif, Silfia Syakila, Widya Dharma Lubayasari Departemen Manajemen Sumberdaya

Lebih terperinci

PENDUGAAN STOK IKAN TONGKOL DI SELAT MAKASSAR SULAWESI SELATAN

PENDUGAAN STOK IKAN TONGKOL DI SELAT MAKASSAR SULAWESI SELATAN PENDUGAAN STOK IKAN TONGKOL DI SELAT MAKASSAR SULAWESI SELATAN Edy H.P. Melmambessy Staf Pengajar Univ. Musamus-Merauke, e-mail : edymelmambessy@yahoo.co.id ABSTRAK Ikan tongkol termasuk dalam golongan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 17 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Kondisi umum perairan selat sunda Selat Sunda merupakan selat yang membujur dari arah Timur Laut menuju Barat Daya di ujung Barat Pulau Jawa atau Ujung Selatan

Lebih terperinci

VII. POTENSI LESTARI SUMBERDAYA PERIKANAN TANGKAP. Fokus utama estimasi potensi sumberdaya perikanan tangkap di perairan

VII. POTENSI LESTARI SUMBERDAYA PERIKANAN TANGKAP. Fokus utama estimasi potensi sumberdaya perikanan tangkap di perairan VII. POTENSI LESTARI SUMBERDAYA PERIKANAN TANGKAP Fokus utama estimasi potensi sumberdaya perikanan tangkap di perairan Kabupaten Morowali didasarkan atas kelompok ikan Pelagis Kecil, Pelagis Besar, Demersal

Lebih terperinci

MODEL PRODUKSI SURPLUS UNTUK PENGELOLAAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN

MODEL PRODUKSI SURPLUS UNTUK PENGELOLAAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN i MODEL PRODUKSI SURPLUS UNTUK PENGELOLAAN SUMBERDAYA RAJUNGAN (Portunus pelagicus) DI TELUK BANTEN, KABUPATEN SERANG, PROVINSI BANTEN NURALIM PASISINGI SKRIPSI DEPARTEMEN MANAJEMEN SUMBERDAYA PERAIRAN

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Pulau Semak Daun merupakan salah satu pulau yang berada di Kelurahan Pulau Panggang, Kecamatan Kepulauan Seribu Utara. Pulau ini memiliki daratan seluas 0,5 ha yang dikelilingi

Lebih terperinci

PENDAHULUAN. Common property & open acces. Ekonomis & Ekologis Penting. Dieksploitasi tanpa batas

PENDAHULUAN. Common property & open acces. Ekonomis & Ekologis Penting. Dieksploitasi tanpa batas 30 mm 60 mm PENDAHULUAN Ekonomis & Ekologis Penting R. kanagurta (kembung lelaki) ~ Genus Rastrelliger spp. produksi tertinggi di Provinsi Banten, 4.856,7 ton pada tahun 2013, menurun 2.5% dari tahun 2010-2013

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1. 1.Kondisi umum Perairan Utara Jawa Perairan Utara Jawa dulu merupakan salah satu wilayah perikanan yang produktif dan memilki populasi penduduk yang padat. Panjang

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 15 3. METODE PENELITIAN 3.1. Waktu dan Lokasi Penelitian Penelitian ini dilaksanakan di TPI Cilincing, Jakarta Utara. Pengambilan data primer berupa pengukuran panjang dan bobot ikan contoh yang ditangkap

Lebih terperinci

PERLUNYA STATISTIK/MATEMATIKA, PADA DINAPOPKAN

PERLUNYA STATISTIK/MATEMATIKA, PADA DINAPOPKAN PERLUNYA STATISTIK/MATEMATIKA, PADA DINAPOPKAN Tim MK Dinamika Populasi Ikan FAKULTAS PERIKANAN DAN ILMU KELAUTAN UNIVERSITAS BRAWIJAYA 2014 BERUBAH Organisme di bumi selalu berubah dari waktu ke waktu

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 14 3. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian ini dilakukan pada bulan Oktober 2011 sampai bulan Februari 2012 dengan interval waktu pengambilan sampel 1 bulan. Penelitian dilakukan di Pelabuhan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Keadaan Lokasi Penelitian Cirebon merupakan daerah yang terletak di tepi pantai utara Jawa Barat tepatnya diperbatasan antara Jawa Barat dan Jawa Tengah. Lokasi penelitian

Lebih terperinci

2. TINJAUAN PUSTAKA 2.1. Pengelolaan Sumberdaya Perikanan 2.2. Pengelolaan Perikanan Berkelanjutan

2. TINJAUAN PUSTAKA 2.1. Pengelolaan Sumberdaya Perikanan 2.2. Pengelolaan Perikanan Berkelanjutan 4 2. TINJAUAN PUSTAKA 2.1. Pengelolaan Sumberdaya Perikanan Pengelolaan perikanan adalah proses terintegrasi dalam pengumpulan informasi, analisis, perencanaan, konsultasi, pembuatan keputusan, alokasi

Lebih terperinci

Tujuan Pengelolaan Perikanan. Suadi Lab. Sosial Ekonomi Perikanan Jurusan Perikanan UGM

Tujuan Pengelolaan Perikanan. Suadi Lab. Sosial Ekonomi Perikanan Jurusan Perikanan UGM Tujuan Pengelolaan Perikanan Suadi Lab. Sosial Ekonomi Perikanan Jurusan Perikanan UGM suadi@ugm.ac.id Tujuan Pengelolaan tenggelamkan setiap kapal lain kecuali milik saya (sink every other boat but mine)

Lebih terperinci

Ex-situ observation & analysis: catch effort data survey for stock assessment -SCHAEFER AND FOX-

Ex-situ observation & analysis: catch effort data survey for stock assessment -SCHAEFER AND FOX- CpUE Ex-situ observation & analysis: catch effort data survey for stock assessment -SCHAEFER AND FOX- By. Ledhyane Ika Harlyan 0.400 0.350 0.300 0.250 0.200 0.150 0.100 0.050 0.000 Schaefer y = -0.000011x

Lebih terperinci

1. PENDAHULUAN. Tabel 1. Volume dan nilai produksi ikan lemuru Indonesia, tahun Tahun

1. PENDAHULUAN. Tabel 1. Volume dan nilai produksi ikan lemuru Indonesia, tahun Tahun 1. PENDAHULUAN 1.1 Latar Belakang Ikan lemuru merupakan salah satu komoditas perikanan yang cukup penting. Berdasarkan data statistik perikanan Indonesia tercatat bahwa volume tangkapan produksi ikan lemuru

Lebih terperinci

BAB 1 PENDAHULUAN. memiliki pulau dengan garis pantai sepanjang ± km dan luas

BAB 1 PENDAHULUAN. memiliki pulau dengan garis pantai sepanjang ± km dan luas BAB 1 PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan salah satu negara kepulauan terbesar didunia yang memiliki 17.508 pulau dengan garis pantai sepanjang ± 81.000 km dan luas sekitar 3,1 juta km 2.

Lebih terperinci

METODE PENELITIAN STOCK. Analisis Bio-ekonomi Model Gordon Schaefer

METODE PENELITIAN STOCK. Analisis Bio-ekonomi Model Gordon Schaefer METODE PENELITIAN 108 Kerangka Pemikiran Agar pengelolaan sumber daya udang jerbung bisa dikelola secara berkelanjutan, dalam penelitian ini dilakukan beberapa langkah perhitungan untuk mengetahui: 1.

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 22 4. HASIL DAN PEMBAHASAN 4.1. Hasil 4.1.1. Kondisi perairan Teluk Jakarta Teluk Jakarta, terletak di sebelah utara kota Jakarta, dengan luas teluk 285 km 2, dengan garis pantai sepanjang 33 km, dan rata-rata

Lebih terperinci

BAB IV GAMBARAN WILAYAH STUDI

BAB IV GAMBARAN WILAYAH STUDI BAB IV GAMBARAN WILAYAH STUDI IV.1 Gambaran Umum Kepulauan Seribu terletak di sebelah utara Jakarta dan secara administrasi Pulau Pramuka termasuk ke dalam Kabupaten Administrasi Kepulauan Seribu, Provinsi

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 17 4. HASIL DAN PEMBAHASAN 4.1. Keadaan Umum Perairan Teluk Jakarta Pesisir Teluk Jakarta terletak di Pantai Utara Jakarta dibatasi oleh garis bujur 106⁰33 00 BT hingga 107⁰03 00 BT dan garis lintang 5⁰48

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Letak dan Kondisi Penelitian Kabupaten Cirebon dengan luas wilayah 990,36 km 2 merupakan bagian dari wilayah Provinsi Jawa Barat yang terletak di bagian timur dan merupakan

Lebih terperinci

3. METODOLOGI. Gambar 2. Peta lokasi penangkapan ikan tembang (Sardinella fimbriata) Sumber : Dinas Hidro-Oseanografi (2004)

3. METODOLOGI. Gambar 2. Peta lokasi penangkapan ikan tembang (Sardinella fimbriata) Sumber : Dinas Hidro-Oseanografi (2004) 3. METODOLOGI 3.1. Lokasi dan Waktu Penelitian Penelitian ini dilakukan selama delapan bulan dari bulan Maret 2011 hingga Oktober 2011 dengan mengikuti penelitian bagian Manajemen Sumberdaya Perikanan

Lebih terperinci

1. PENDAHULUAN Latar Belakang

1. PENDAHULUAN Latar Belakang 1. PENDAHULUAN Latar Belakang Ekosistem mangrove tergolong ekosistem yang unik. Ekosistem mangrove merupakan salah satu ekosistem dengan keanekaragaman hayati tertinggi di daerah tropis. Selain itu, mangrove

Lebih terperinci

1.PENDAHULUAN 1.1. Latar Belakang

1.PENDAHULUAN 1.1. Latar Belakang 1.PENDAHULUAN 1.1. Latar Belakang Wilayah laut Indonesia terdiri dari perairan teritorial seluas 0,3 juta km 2, perairan laut Nusantara seluas 2,8 juta km 2 dan perairan Zona Ekonomi Eksklusif (ZEE) seluas

Lebih terperinci

3 METODE PENELITIAN. Gambar 2 Peta lokasi penelitian PETA LOKASI PENELITIAN

3 METODE PENELITIAN. Gambar 2 Peta lokasi penelitian PETA LOKASI PENELITIAN 3 METODE PENELITIAN Waktu dan Tempat Penelitian Pelaksanaan penelitian dibagi dalam 2 tahapan berdasarkan waktu kegiatan, yaitu : (1) Pelaksanaan penelitian lapangan selama 2 bulan (September- Oktober

Lebih terperinci

5.5 Status dan Tingkat Keseimbangan Upaya Penangkapan Udang

5.5 Status dan Tingkat Keseimbangan Upaya Penangkapan Udang 5.5 Status dan Tingkat Keseimbangan Upaya Penangkapan Udang Pemanfaatan sumberdaya perikanan secara lestari perlu dilakukan, guna sustainability spesies tertentu, stok yang ada harus lestari walaupun rekrutmen

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Kepulauan Seribu merupakan kabupaten administratif yang terletak di sebelah utara Provinsi DKI Jakarta, memiliki luas daratan mencapai 897,71 Ha dan luas perairan mencapai

Lebih terperinci

Analisis Potensi Lestari Sumberdaya Perikanan Tuna Longline di Kabupaten Cilacap, Jawa Tengah

Analisis Potensi Lestari Sumberdaya Perikanan Tuna Longline di Kabupaten Cilacap, Jawa Tengah Maspari Journal 03 (2011) 24-29 http://masparijournal.blogspot.com Analisis Potensi Lestari Sumberdaya Perikanan Tuna Longline di Kabupaten Cilacap, Jawa Tengah Onolawe Prima Sibagariang, Fauziyah dan

Lebih terperinci

5 EVALUASI UPAYA PENANGKAPAN DAN PRODUKSI IKAN PELAGIS KECIL DI PERAIRAN PANTAI BARAT SULAWESI SELATAN

5 EVALUASI UPAYA PENANGKAPAN DAN PRODUKSI IKAN PELAGIS KECIL DI PERAIRAN PANTAI BARAT SULAWESI SELATAN 5 EVALUASI UPAYA PENANGKAPAN DAN PRODUKSI IKAN PELAGIS KECIL DI PERAIRAN PANTAI BARAT SULAWESI SELATAN 5.1 Pendahuluan Armada penangkapan yang dioperasikan nelayan terdiri dari berbagai jenis alat tangkap,

Lebih terperinci

Gambar 6 Sebaran daerah penangkapan ikan kuniran secara partisipatif.

Gambar 6 Sebaran daerah penangkapan ikan kuniran secara partisipatif. 4 HASIL DAN PEMBAHASAN 4.1 Wilayah Sebaran Penangkapan Nelayan Labuan termasuk nelayan kecil yang masih melakukan penangkapan ikan khususnya ikan kuniran dengan cara tradisional dan sangat tergantung pada

Lebih terperinci

3. BAHAN DAN METODE. Gambar 6. Peta Lokasi Penelitian (Dinas Hidro-Oseanografi 2004)

3. BAHAN DAN METODE. Gambar 6. Peta Lokasi Penelitian (Dinas Hidro-Oseanografi 2004) 24 3. BAHAN DAN METODE 3.1. Waktu dan Lokasi Penelitian Penelitian ini mengikuti penelitian bagian Manajemen Sumberdaya Perikanan (MSPi) dan dilaksanakan selama periode bulan Maret 2011 hingga Oktober

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 14 3. METODE PENELITIAN 3.1. Lokasi dan Waktu Penelitian Penelitian ini dilaksanakan di perairan dangkal Karang Congkak, Kepulauan Seribu, Jakarta. Pengambilan contoh ikan dilakukan terbatas pada daerah

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia memiliki peranan penting sebagai wilayah tropik perairan Iaut pesisir, karena kawasan ini memiliki nilai strategis berupa potensi sumberdaya alam dan sumberdaya

Lebih terperinci

METODE PENELITIAN. Gambar 7 Lokasi penelitian di perairan dangkal Semak Daun.

METODE PENELITIAN. Gambar 7 Lokasi penelitian di perairan dangkal Semak Daun. METODE PENELITIAN Lokasi dan Waktu Penelitian Penelitian ini dilaksanakan di Wilayah Perairan Semak Daun, Kelurahan Pulau Panggang, Kabupaten Administrasi Kepulauan Seribu (KAKS) Daerah Khusus bukota Jakarta

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan Negara kepulauan yang rentan terhadap dampak perubahan iklim. Provinsi Jawa Barat merupakan salah satu provinsi di Indonesia yang termasuk rawan

Lebih terperinci

TINJAUAN PUSTAKA 2.1. Klasifikasi dan Struktur Morfologis Klasifikasi

TINJAUAN PUSTAKA 2.1. Klasifikasi dan Struktur Morfologis Klasifikasi 3 2. TINJAUAN PUSTAKA 2.1. Klasifikasi dan Struktur Morfologis 2.1.1. Klasifikasi Menurut klasifikasi Bleeker, sistematika ikan selanget (Gambar 1) adalah sebagai berikut (www.aseanbiodiversity.org) :

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 14 3. METODOLOGI PENELITIAN 3.1. Lokasi dan Waktu Penelitian Penelitian ini dilakukan pada bulan Januari sampai bulan April tahun 2012. Pengambilan data primer dilakukan pada bulan April tahun 2012 sedangkan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 4. HASIL DAN PEMBAHASAN 4.1. Keadaan Umum Perairan Teluk Jakarta Perairan Teluk Jakarta merupakan sebuah teluk di perairan Laut Jawa yang terletak di sebelah utara provinsi DKI Jakarta, Indonesia. Terletak

Lebih terperinci

5 POTENSI DAN TINGKAT PEMANFAATAN SUMBER DAYA PERIKANAN DEMERSAL

5 POTENSI DAN TINGKAT PEMANFAATAN SUMBER DAYA PERIKANAN DEMERSAL 5 POTENSI DAN TINGKAT PEMANFAATAN SUMBER DAYA PERIKANAN DEMERSAL 5.1 Pendahuluan Pemanfaatan yang lestari adalah pemanfaatan sumberdaya perikanan pada kondisi yang berimbang, yaitu tingkat pemanfaatannya

Lebih terperinci

KELAYAKAN PENANGKAPAN IKAN DENGAN JARING PAYANG DI PALABUHANRATU MENGGUNAKAN MODEL BIOEKONOMI GORDON- SCHAEFER

KELAYAKAN PENANGKAPAN IKAN DENGAN JARING PAYANG DI PALABUHANRATU MENGGUNAKAN MODEL BIOEKONOMI GORDON- SCHAEFER KELAYAKAN PENANGKAPAN IKAN DENGAN JARING PAYANG DI PALABUHANRATU MENGGUNAKAN MODEL BIOEKONOMI GORDON- SCHAEFER Oleh : Moh. Erwin Wiguna, S.Pi., MM* Yogi Bachtiar, S.Pi** RINGKASAN Penelitian ini mengkaji

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang I PENDAHULUAN 1.1 Latar Belakang Kepiting bakau (Scylla spp.) tergolong dalam famili Portunidae dari suku Brachyura. Kepiting bakau hidup di hampir seluruh perairan pantai terutama pada pantai yang ditumbuhi

Lebih terperinci

Volume 5, Nomor 2, Desember 2014 Indonesian Journal of Agricultural Economics (IJAE) ANALISIS POTENSI LESTARI PERIKANAN TANGKAP DI KOTA DUMAI

Volume 5, Nomor 2, Desember 2014 Indonesian Journal of Agricultural Economics (IJAE) ANALISIS POTENSI LESTARI PERIKANAN TANGKAP DI KOTA DUMAI Volume 5, Nomor 2, Desember 2014 ISSN 2087-409X Indonesian Journal of Agricultural Economics (IJAE) ANALISIS POTENSI LESTARI PERIKANAN TANGKAP DI KOTA DUMAI Hazmi Arief*, Novia Dewi**, Jumatri Yusri**

Lebih terperinci

IV. METODE PENELITIAN. kriteria tertentu. Alasan dalam pemilihan lokasi penelitian adalah TPI Wonokerto

IV. METODE PENELITIAN. kriteria tertentu. Alasan dalam pemilihan lokasi penelitian adalah TPI Wonokerto IV. METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian Lokasi penelitian dilakukan di TPI Wonokerto, Kabupaten Pekalongan, Jawa Tengah (Lampiran 1). Pemilihan lokasi penelitian berdasarkan alasan dan kriteria

Lebih terperinci

I. PENDAHULUAN. dan 46 jenis diantaranya merupakan ikan endemik (Syandri, 2008). Salah satu

I. PENDAHULUAN. dan 46 jenis diantaranya merupakan ikan endemik (Syandri, 2008). Salah satu 1 I. PENDAHULUAN 1.1 Latar Belakang Sumatera dan pulau-pulau di sekitarnya memiliki 570 jenis spesies ikan tawar dan 46 jenis diantaranya merupakan ikan endemik (Syandri, 2008). Salah satu jenis ikan endemik

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia sebagai negara kepulauan dengan panjang garis pantai mencapai 95.181 km (Rompas 2009, dalam Mukhtar 2009). Dengan angka tersebut menjadikan Indonesia sebagai

Lebih terperinci

4 KEADAAN UMUM LOKASI PENELITIAN

4 KEADAAN UMUM LOKASI PENELITIAN 4 KEADAAN UMUM LOKASI PENELITIAN 4.1 Letak Geografis dan Luas Wilayah Provinsi Kepulauan Bangka Belitung secara geografis terletak pada 104 0 50 sampai 109 0 30 Bujur Timur dan 0 0 50 sampai 4 0 10 Lintang

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang I PENDAHULUAN 1.1 Latar Belakang Perikanan sebagai salah satu sektor unggulan dalam pembangunan nasional mempunyai peranan penting dalam mendorong pertumbuhan ekonomi di masa mendatang, serta mempunyai

Lebih terperinci

1 PENDAHULUAN 1.1 Latar Belakang

1 PENDAHULUAN 1.1 Latar Belakang 1 PENDAHULUAN 1.1 Latar Belakang Laut dan sumberdaya alam yang dikandungnya dipahami secara luas sebagai suatu sistem yang memberikan nilai guna bagi kehidupan manusia. Sebagai sumber kehidupan, potensi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Pulau Pramuka I II III

BAB IV HASIL DAN PEMBAHASAN. Pulau Pramuka I II III BAB IV HASIL DAN PEMBAHASAN 4.1 Parameter Fisika dan Kimiawi Perairan Berdasarkan hasil penelitian di perairan Kepulauan Seribu yaitu Pulau Pramuka dan Pulau Semak Daun, diperoleh nilai-nilai parameter

Lebih terperinci

TUGAS: RINGKASAN EKSEKUTIF Nama: Yuniar Ardianti

TUGAS: RINGKASAN EKSEKUTIF Nama: Yuniar Ardianti TUGAS: RINGKASAN EKSEKUTIF Nama: Yuniar Ardianti Sebuah lagu berjudul Nenek moyangku seorang pelaut membuat saya teringat akan kekayaan laut Indonesia. Tapi beberapa waktu lalu, beberapa nelayan Kepulauan

Lebih terperinci

3 METODOLOGI PENELITIAN

3 METODOLOGI PENELITIAN 3 METODOLOGI PENELITIAN 3.1 Lokasi Penelitian Penelitian ini dilaksanakan di Taman Nasional Karimunjawa, Kabupaten Jepara, Jawa Tengah (Gambar 3). 3.2 Tahapan Pelaksanaan Penelitian Tahapan-tahapan pelaksanaan

Lebih terperinci

1. PENDAHULUAN 1.1 Latar Belakang

1. PENDAHULUAN 1.1 Latar Belakang 1 1. PENDAHULUAN 1.1 Latar Belakang Laporan hasil kajian Intergovernmental Panel on Climate Change (IPCC) tahun 2001 mengenai perubahan iklim, yaitu perubahan nilai dari unsur-unsur iklim dunia sejak tahun

Lebih terperinci

METODOLOGI PENELITIAN. Penelitian ini dilakukan di Danau Singkarak, Provinsi Sumatera Barat

METODOLOGI PENELITIAN. Penelitian ini dilakukan di Danau Singkarak, Provinsi Sumatera Barat 27 IV. METODOLOGI PENELITIAN 4.1 Lokasi dan Waktu Penelitian Penelitian ini dilakukan di Danau Singkarak, Provinsi Sumatera Barat (Lampiran 1). Pengambilan data dilakukan pada bulan Maret-April 2011. Penentuan

Lebih terperinci

Gambar 2. Peta Lokasi Penelitian

Gambar 2. Peta Lokasi Penelitian III. METODOLOGI 3.1. Lokasi dan Waktu Penelitian ini dilaksanakan di Perairan Karang Congkak, Karang Lebar, dan Semak Daun Kepulauan Seribu (Gambar 2). Lokasi pengambilan contoh dilakukan di perairan yang

Lebih terperinci

BAB I PENDAHULUAN. Lovejoy (1980). Pada awalnya istilah ini digunakan untuk menyebutkan jumlah

BAB I PENDAHULUAN. Lovejoy (1980). Pada awalnya istilah ini digunakan untuk menyebutkan jumlah BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia sebagai salah satu kawasan yang terletak pada daerah tropis adalah habitat bagi kebanyakan hewan dan tumbuhan untuk hidup dan berkembang biak. Indonesia merupakan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Matematika merupakan ilmu pengetahuan yang diperoleh dengan bernalar dan melakukan pengamatan-pengamatan. Matematika juga merupakan salah satu disiplin ilmu yang dapat

Lebih terperinci

3. METODE. penelitian dilakukan dengan beberapa tahap : pertama, pada bulan Februari. posisi koordinat LS dan BT.

3. METODE. penelitian dilakukan dengan beberapa tahap : pertama, pada bulan Februari. posisi koordinat LS dan BT. 3. METODE 3.1. Waktu dan Lokasi Penelitian Penelitian ini dilakukan dari Februari hingga Agustus 2011. Proses penelitian dilakukan dengan beberapa tahap : pertama, pada bulan Februari dilakukan pengumpulan

Lebih terperinci

V. GAMBARAN UMUM PERAIRAN SELAT BALI

V. GAMBARAN UMUM PERAIRAN SELAT BALI V. GAMBARAN UMUM PERAIRAN SELAT BALI Perairan Selat Bali merupakan perairan yang menghubungkan Laut Flores dan Selat Madura di Utara dan Samudera Hindia di Selatan. Mulut selat sebelah Utara sangat sempit

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Hutan mangrove adalah kelompok jenis tumbuhan yang tumbuh di

BAB I PENDAHULUAN. A. Latar Belakang. Hutan mangrove adalah kelompok jenis tumbuhan yang tumbuh di BAB I PENDAHULUAN A. Latar Belakang Hutan mangrove adalah kelompok jenis tumbuhan yang tumbuh di sepanjang garis pantai tropis sampai sub-tropis yang memiliki fungsi istimewa di suatu lingkungan yang mengandung

Lebih terperinci

Potensi Terumbu Karang Luwu Timur

Potensi Terumbu Karang Luwu Timur Potensi Terumbu Karang Luwu Timur Kabupaten Luwu Timur merupakan kabupaten paling timur di Propinsi Sulawesi Selatan dengan Malili sebagai ibukota kabupaten. Secara geografis Kabupaten Luwu Timur terletak

Lebih terperinci

SUMBER DAYA HABIS TERPAKAI YANG DAPAT DIPERBAHARUI. Pertemuan ke 2

SUMBER DAYA HABIS TERPAKAI YANG DAPAT DIPERBAHARUI. Pertemuan ke 2 SUMBER DAYA HABIS TERPAKAI YANG DAPAT DIPERBAHARUI Pertemuan ke 2 Sumber daya habis terpakai yang dapat diperbaharui: memiliki titik kritis Ikan Hutan Tanah http://teknologi.news.viva.co.id/news/read/148111-

Lebih terperinci

BAB I PENDAHULUAN. baik bagi pesisir/daratan maupun lautan. Selain berfungsi secara ekologis,

BAB I PENDAHULUAN. baik bagi pesisir/daratan maupun lautan. Selain berfungsi secara ekologis, BAB I PENDAHULUAN 1.1 Latar Belakang Ekosistem mangrove merupakan salah satu ekosistem yang sangat vital, baik bagi pesisir/daratan maupun lautan. Selain berfungsi secara ekologis, ekosistem mangrove memiliki

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia mempunyai perairan laut yang lebih luas dibandingkan daratan, oleh karena itu Indonesia dikenal sebagai negara maritim. Perairan laut Indonesia kaya akan

Lebih terperinci

4. HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN 22 4. HASIL DAN PEMBAHASAN 4.1. Kelompok Umur Pertumbuhan populasi tiram dapat dilihat berdasarkan sebaran kelompok umur. Analisis sebaran kelompok umur dilakukan dengan menggunakan FISAT II metode NORMSEP.

Lebih terperinci

c----. Lemuru Gambar 1. Perkembangan Total Produksi Ikan Laut dan Ikan Lemuru di Indonesia. Sumber: ~tatistik Perikanan Indonesia.

c----. Lemuru Gambar 1. Perkembangan Total Produksi Ikan Laut dan Ikan Lemuru di Indonesia. Sumber: ~tatistik Perikanan Indonesia. Latar Belakanq Indonesia adalah negara maritim, lebih dari 70% dari luas wilayahnya, seluas 3,l juta km2, terdiri dari laut. Setelah deklarasi Zone Ekonomi Eksklusif Indonesia (ZEEI) pada tanggal 21 Maret

Lebih terperinci

2. TINJAUAN PUSTAKA. : Actinopterygii : Perciformes

2. TINJAUAN PUSTAKA. : Actinopterygii : Perciformes 5 2. TINJAUAN PUSTAKA 2.1. Deskripsi Umum Ikan Kurisi (Nemipterus furcosus) Ikan kurisi merupakan salah satu ikan yang termasuk kelompok ikan demersal. Ikan ini memiliki ciri-ciri tubuh yang berukuran

Lebih terperinci

TINJAUAN PUSTAKA. besar maupun sedikit. Di perairan Indo-Pasifik terdapat 3 spesies ikan Kembung

TINJAUAN PUSTAKA. besar maupun sedikit. Di perairan Indo-Pasifik terdapat 3 spesies ikan Kembung TINJAUAN PUSTAKA Ikan Kembung (Rastrelliger spp.) Ikan Kembung merupakan salah satu ikan pelagis yang sangat potensial di Indonesia dan hampir seluruh perairan Indonesia ikan ini tertangkap dalam jumlah

Lebih terperinci

I PENDAHULUAN Latar Belakang

I PENDAHULUAN Latar Belakang I PENDAHULUAN 1.1. Latar Belakang Sumberdaya alam pesisir merupakan suatu himpunan integral dari komponen hayati (biotik) dan komponen nir-hayati (abiotik) yang dibutuhkan oleh manusia untuk hidup dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Kondisi Fisik Daerah Penelitian II.1.1 Kondisi Geografi Gambar 2.1. Daerah Penelitian Kabupaten Indramayu secara geografis berada pada 107 52-108 36 BT dan 6 15-6 40 LS. Berdasarkan

Lebih terperinci

2. TINJAUAN PUSTAKA 2.1. Ikan Tembang Klasifikasi dan tata nama

2. TINJAUAN PUSTAKA 2.1. Ikan Tembang Klasifikasi dan tata nama 5 2. TINJAUAN PUSTAKA 2.1. Ikan Tembang 2.1.1. Klasifikasi dan tata nama Menurut www.fishbase.org (2009) taksonomi ikan tembang (Gambar 3) diklasifikasikan sebagai berikut : Filum : Chordata Subfilum :

Lebih terperinci

BAB I PENDAHULUAN. A. Latar Belakang. Mangrove merupakan ekosistem dengan fungsi yang unik dalam lingkungan

BAB I PENDAHULUAN. A. Latar Belakang. Mangrove merupakan ekosistem dengan fungsi yang unik dalam lingkungan BAB I PENDAHULUAN A. Latar Belakang Mangrove merupakan ekosistem dengan fungsi yang unik dalam lingkungan hidup. Oleh karena adanya pengaruh laut dan daratan, dikawasan mangrove terjadi interaksi kompleks

Lebih terperinci