Kapasitor dan Induktor

Ukuran: px
Mulai penontonan dengan halaman:

Download "Kapasitor dan Induktor"

Transkripsi

1 Kapasitor dan Induktor Slide-05 Ir. Agus Arif, MT Semester Gasal 2016/ / 28

2 Materi Kuliah 1 Pengantar 2 Kapasitor Kapasitor dalam Rangkaian Model Kapasitor Ideal Contoh Kapasitor Karakteristik Kapasitor Hubungan v-i Integral Penyimpanan Tenaga 3 Induktor Model Induktor Ideal Induktor dan Induktans Contoh Induktor Karakteristik Induktor Hubungan v-i Integral Penyimpanan Tenaga 4 Kombinasi Induktor & Kapasitor Induktor dlm Hub Seri Induktor dlm Hub Paralel Kapasitor dlm Hub Seri Kapasitor dlm Hub Paralel 2 / 28

3 Pengantar Dua jenis elemen rangkaian: Elemen aktif = elemen yg mampu memasok daya rerata > 0 kpd elemen lainnya selama rentang waktu yg tak-berhingga (mis. sumber 2 tegangan dan arus ideal yg independen & dependen) Elemen pasif = elemen yg tidak mampu memasok daya rerata > 0 kpd elemen lainnya selama rentang yg tak-berhingga Selain resistor, dua elemen pasif = kapasitor dan induktor mampu menyimpan dan memasok sejumlah tenaga yang berhingga tergolong elemen linear, namun hubungan tegangan-arusnya (v-i) tergantung pada waktu (t) 3 / 28

4 Kapasitor Sebelum Dihubungkan Kapasitor sebelum dihubungkan dengan rangkaian luar: Kapasitor terdiri dari 2 permukaan menghantar (plat) yg dapat menyimpan muatan 2 listrik Muatan 2 listrik pd kedua permukaan kapasitor = sama banyak tapi berlawanan tandanya Kedua permukaan tsb dipisahkan oleh lapisan insulasi yg tipis dengan resistans yg sangat besar Jika resistans ini dianggap, maka muatan 2 permukaan kapasitor tidak akan pernah dapat bergabung Kapasitor 2 plat dgn masing 2 permukaan seluas A, terpisah pada jarak d, dan permitivitas lapisan insulasi ɛ, memiliki kapasitans C = ɛ A d 4 / 28

5 Kapasitor Sesudah Dihubungkan Kapasitor sesudah dihubungkan dengan rangkaian luar: Sesuai dgn KCL, arus positif mengalir lewat satu terminal masuk ke plat pertama = arus keluar dari plat kedua menuju terminal lainnya Namun secara internal, muatan yg ada di plat pertama tidak dapat mengalir ke plat yang kedua, sehingga terjadi penumpukan muatan pada plat tsb sesuai dengan i = dq dt Dilema ini diselesaikan J.C. Maxwell dgn hipotesa arus perpindahan (displacement current) yg muncul bilamana terjadi perubahan tegangan atau medan listrik Arus perpindahan mengalir secara internal antar 2 plat kapasitor = arus konduksi yg mengalir di antara kedua terminal kapasitor 5 / 28

6 Model Kapasitor Ideal Hubungan tegangan-arus (v-i) dari suatu kapasitor: i = C dv dt dengan v = v(t) dan i = i(t) mematuhi syarat komponen pasif Satuan dari kapasitans: [C] = ampere-sekon volt = coulomb volt = farad = F 6 / 28

7 Contoh Kapasitor Contoh dari beberapa kapasitor komersil: (a) Ki-ka: keramik 270 pf, tantalum 20 µf, polyester 15 nf, dan polyester 150 nf (b) Ki-ka: rated electrolytic 2000 µf 40 VDC dan rated electrolytic µf 35 VDC (c) Searah jarum jam dari yg terkecil: semua rated electrolytic 100 µf 63 VDC, 2200 µf 50 VDC, 55 F 2.5 VDC, dan 4800 µf 50 VDC 7 / 28

8 Karakteristik Kapasitor Berdasarkan hubungan v-i kapasitor: i = C dv dt Tegangan kapasitor yang tetap mengakibatkan arus yang mengalirinya = nol Kapasitor = rangkaian terbuka (open circuit) bagi jaringan dc (tegangan tetap) Tegangan kapasitor yg berubah mendadak memerlukan arus yg besar-tak-berhingga mustahil secara fisika Tidak diperbolehkan perubahan tegangan kapasitor selama rentang waktu yang sangat singkat 0 8 / 28

9 Hubungan v-i Integral Dari hubungan v-i suatu kapasitor dapat dijabarkan dv = 1 C i(t) dt dan pengintegralan dari waktu t 0 hingga t menghasilkan v(t) = 1 C t t 0 i(t ) dt + v(t 0 ) Integral tertentu di atas dapat juga ditulis sebagai v(t) = 1 i dt + k C Akhirnya, jikalau t 0 = dan v(t 0 ) = 0 maka v(t) = 1 C t i dt 9 / 28

10 Penyimpanan Tenaga Untuk menentukan tenaga tersimpan dalam suatu kapasitor, dimulai dari daya yg dipasok kepadanya: p = v i = C v dv dt Perubahan tenaga yg tersimpan dalam medan listrik kapasitor: t t 0 p dt = C sehingga t t 0 v dv dt dt = C v(t) v(t 0 ) v dv = 1 2 C { [v(t)] 2 [v(t 0 )] 2} w C (t) w C (t 0 ) = 1 2 C { [v(t)] 2 [v(t 0 )] 2} Jikalau dipilih rujukan tenaga-nol pada saat t 0 maka w C (t 0 ) = 0 dan v(t 0 ) = 0, alhasil w C (t) = 1 2 C v(t)2 10 / 28

11 Contoh #1 - [1] Tentukan tenaga maksimum yg tersimpan dalam kapasitor pada rangkaian di bawah dan tenaga yg dibuang resistor selama rentang 0 < t < 0.5 s Jawab Dgn rujukan tenaga-nol, tenaga yg tersimpan dalam kapasitor: w C (t) = 1 2 C v(t)2 = 1 2 ( ){100 sin(2πt)} 2 = 0.1 sin 2 (2πt) J Persamaan di atas dapat disketsakan sebagai berikut: 11 / 28

12 Contoh #1 - [2] Dari grafik di atas: Tenaga tersimpan dalam kapasitor meningkat sejak t = 0 s hingga t = 0.25 s dan memuncak pada 100 mj Tenaga menurun hingga 0 J selama 0.25 s berikutnya Alhasil, w C max = 100 mj 12 / 28

13 Contoh #1 - [3] Arus yg melalui resistor 1 MΩ: i R = v R = 100 sin(2πt) 10 6 = 10 4 sin(2πt) A Daya yg dibuang (dissipated) resistor tsb: p R = i 2 R R = {10 4 sin(2πt)} 2 (10 6 ) = 10 2 sin 2 (2πt) W Alhasil, tenaga yg dibuang resistor selama rentang 0 < t < 0.5 s w R = p R dt = sin 2 (2πt) dt = 2.5 mj 13 / 28

14 Model Induktor Ideal Oersted menunjukkan konduktor yg menghantarkan arus dapat menghasilkan medan magnet Ampére mengukur medan magnet ini terkait secara linear dengan kuat arus yg menghasilkannya Faraday & Henry menemukan medan magnet yg berubah dapat mengimbas tegangan pada rangkaian yg berhampiran Kedua penemu ini menunjukkan tegangan yg terimbas tsb sebanding dengan laju perubahan arus yg menimbulkan medan magnet Konstanta kesebandingannya disebut induktans (L) dan model ideal dari induktor: v = L di dt 14 / 28

15 Induktor dan Induktans Lambang induktor yg juga mematuhi syarat komponen pasif Satuan dari induktans: [L] = volt-sekon ampere = henry = H Induktor = kumparan konduktor dgn luas penampang A, panjang sumbu s, banyak lilitan N, & permeabilitas udara µ memiliki induktans L = µn2 A s 15 / 28

16 Contoh Induktor Contoh dari beberapa induktor komersil: (a) Searah jarum jam dari terkiri: induktor toroidal teras ferit 287 µh, induktor silinder teras ferit 266 µh, induktor teras ferit 215 µh dirancang utk frekuensi VHF, induktor toroidal teras bubuk besi 85 µh, induktor bobbin-style 10 µh, induktor axial lead 100 µh, dan induktor lossy-core 7 µh utk menekan RF (b) Induktor 11 H berdimensi 10 cm 8 cm 8 cm 16 / 28

17 Karakteristik Induktor Berdasarkan hubungan v-i induktor: v = L di dt Arus induktor yang tetap (seberapapun kuatnya) akan mengakibatkan tegangan di antara terminal 2 nya = nol Induktor = hubungan singkat (short circuit) bagi jaringan dc (arus tetap) Arus induktor yg berubah mendadak memerlukan tegangan dan daya yg besar-tak-berhingga mustahil secara fisika Tidak diperbolehkan perubahan arus induktor secara seketika (instantaneously) dari suatu nilai ke nilai lainnya 17 / 28

18 Hubungan v-i Integral Penulisan-ulang hubungan v-i suatu induktor menghasilkan di = 1 L v dt dan pengintegralan dari waktu t 0 hingga t menghasilkan i(t) = 1 L t t 0 v(t ) dt + i(t 0 ) Integral tertentu di atas dapat juga ditulis sebagai i(t) = 1 v dt + k L Akhirnya, jikalau t 0 = dan i(t 0 ) = i( ) = 0 maka i(t) = 1 L t v dt 18 / 28

19 Penyimpanan Tenaga Untuk menentukan tenaga tersimpan dalam suatu induktor, dimulai dari daya yg diserapnya: p = v i = L i di dt Perubahan tenaga yg tersimpan dalam medan magnet induktor: t t 0 p dt = L sehingga t i t 0 di dt dt = L i(t) i(t 0 ) i di = 1 2 L { [i(t)] 2 [i(t 0 )] 2} w L (t) w L (t 0 ) = 1 2 L { [i(t)] 2 [i(t 0 )] 2} Jikalau dipilih rujukan tenaga-nol pada saat t 0 maka w L (t 0 ) = 0 dan i(t 0 ) = 0, alhasil w L (t) = 1 2 L i(t)2 19 / 28

20 Contoh #2 - [1] Tentukan tenaga maksimum yg tersimpan dalam induktor pada rangkaian di bawah dan hitung tenaga yg dibuang resistor selama tenaga tsb disimpan dan dilepas induktor Jawab Dgn rujukan tenaga-nol, tenaga yg tersimpan dalam induktor: w L (t) = 1 2 L i(t)2 = 1 ( )} πt 2 ( ) πt {12 2 (3) sin = 216 sin J 20 / 28

21 Contoh #2 - [2] Tenaga tsb meningkat dari nol pada t = 0 s hingga 216 J pada t = 3 s. Alhasil, tenaga maksimum yg disimpan induktor adalah w Lmax = 216 J Setelah mencapai puncaknya, tenaga tsb sepenuhnya meninggalkan induktor selama 3 s berikutnya. Daya yg dibuang resistor 0.1 Ω: { p R = i 2 R = (0.1) 12 sin ( πt 6 )} 2 ( ) πt = 14.4 sin 2 6 Alhasil, tenaga yg diubah menjadi bahang dalam resistor selama rentang 6 s w R = 6 0 p R dt = 6 0 ( ) πt 14.4 sin 2 dt = 43.2 J 6 W 21 / 28

22 Induktor dalam Hubungan Seri - [1] Sumber tegangan ideal dipasangkan dgn kombinasi seri dari N induktor dan rangkaian ekivalennya: Penerapan KVL pada kalang-tunggal di atas menghasilkan: v s = v 1 + v v N di = L 1 dt + L di 2 dt + + L N = (L 1 + L L N ) di dt di dt 22 / 28

23 Induktor dalam Hubungan Seri - [2] Penulisan lebih ringkas menghasilkan: N N di v s = v n = L n dt = di N L n dt n=1 n=1 n=1 Namun, dari rangkaian ekivalen dapat dijabarkan: v s = L eq di dt Alhasil, induktans ekivalen adalah N L eq = L n = L 1 + L L N n=1 Hasil ini mirip dengan yg diperoleh pada hubungan seri dari beberapa resistor 23 / 28

24 Induktor dalam Hubungan Paralel - [1] Sumber arus ideal dipasangkan dgn kombinasi paralel dari N induktor: Penerapan analisis simpul pada simpul-tunggal di atas: N N [ 1 t ] i s = i n = v dt + i n (t 0 ) L n=1 n=1 n t 0 ( N ) 1 t N = v dt + i n (t 0 ) t 0 L n=1 n n=1 24 / 28

25 Induktor dalam Hubungan Paralel - [2] Pembandingan pers i s sebelumnya dgn rangkaian ekivalen di atas: i s = 1 L eq t t 0 v dt + i s (t 0 ) Karena KCL mengharuskan i s (t 0 ) = N n=1 i n (t 0 ), maka 1 L eq = 1 L L L N Hasil ini mirip dengan yg diperoleh pada hubungan paralel dari beberapa resistor 25 / 28

26 Kapasitor dalam Hubungan Seri - [1] Sumber tegangan ideal dipasangkan dgn kombinasi seri dari N kapasitor: Penerapan KVL pada kalang-tunggal di atas menghasilkan: N N [ 1 t ] v s = v n = i dt + v n (t 0 ) C n=1 n=1 n t 0 ( N ) 1 t N = i dt + v n (t 0 ) t 0 C n=1 n n=1 26 / 28

27 Kapasitor dalam Hubungan Seri - [2] Dari rangkaian ekivalen di atas dapat dijabarkan: v s = 1 C eq t t 0 i dt + v s (t 0 ) Karena KVL mengharuskan v s (t 0 ) = N n=1 v n (t 0 ), maka 1 C eq = 1 C C C N Hasil ini mirip dgn yg diperoleh pd hubungan paralel beberapa resistans atau hubungan seri beberapa konduktans 27 / 28

28 Kapasitor dalam Hubungan Paralel Akhirnya, rangkaian di samping dapat dipakai utk menjabarkan kapasitor ekivalen dari N kapasitor yg terhubung paralel: N C eq = C 1 +C 2 + +C N = C n n=1 Hasil ini mirip dgn yg diperoleh pd hubungan seri beberapa resistans atau hubungan paralel beberapa konduktans 28 / 28

Hukum Tegangan dan Arus Listrik

Hukum Tegangan dan Arus Listrik Hukum Tegangan dan Arus Listrik Slide-02 Ir. Agus Arif, MT Semester Genap 2016/2017 1 / 27 Materi Kuliah 1 Hukum Kirchhoff Bagian dari Rangkaian Hukum Arus Hukum Tegangan 2 Hubungan Seri Hubungan Paralel

Lebih terperinci

Rangkaian RL dan RC Dengan Sumber

Rangkaian RL dan RC Dengan Sumber Rangkaian RL dan RC Dengan Sumber Slide-07 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 32 Materi Kuliah 1 Pengantar Rangkaian Sebelumnya Fungsi Undak Satuan Sumber Ekivalen Fungsi Pulsa 2 Rangkaian

Lebih terperinci

Teknik-teknik Analisis Rangkaian

Teknik-teknik Analisis Rangkaian Teknik-teknik Analisis Rangkaian Slide-04 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 29 Materi Kuliah 1 Transformasi Sumber Sumber Tegangan yg Praktis Efek Pembebanan Sumber Tegangan yg Umum Sumber

Lebih terperinci

Pengantar Rangkaian Listrik

Pengantar Rangkaian Listrik Pengantar Rangkaian Listrik Slide-01 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 28 Materi Kuliah 1 Pendahuluan Perkenalan Rangkaian Listrik Pemecahan Problem Sistem Satuan 2 Definisi Besaran Listrik

Lebih terperinci

Daya Rangkaian AC [2]

Daya Rangkaian AC [2] Daya Rangkaian AC [2] Slide-11 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 16 Materi Kuliah 1 Nilai Efektif Tegangan & Arus Efektif Nilai Efektif Gelombang Berkala Nilai RMS Gelombang Sinusoidal Nilai

Lebih terperinci

KAPASITOR DAN INDUKTOR

KAPASITOR DAN INDUKTOR KAPASITOR DAN INDUKTOR Oleh : Risa Farrid Christianti, ST.,MT. Sekolah Tinggi Teknologi Telematika Telkom Purwokerto PENDAHULUAN Kapasitor dan Induktor merupakan komponen/elemen pasif dari rangkaian elektronik

Lebih terperinci

Phasor dan Impedans. Slide-09. Ir. Agus Arif, MT. Semester Gasal 2016/2017

Phasor dan Impedans. Slide-09. Ir. Agus Arif, MT. Semester Gasal 2016/2017 Phasor dan Slide-09 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Phasor Frekuensi Komplex Definisi Phasor Transformasi Phasor Hubungan Tegangan-Arus Hukum Ohm dan Kirchhoff Rangkaian

Lebih terperinci

Daya Rangkaian AC [1]

Daya Rangkaian AC [1] Daya Rangkaian AC [1] Slide-10 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 21 Materi Kuliah 1 Daya Sesaat Definisi Daya Input Undak Daya Input Sinusoidal 2 Definisi Daya Input Sinusoidal Daya Resistif

Lebih terperinci

BAB II ELEMEN RANGKAIAN LISTRIK

BAB II ELEMEN RANGKAIAN LISTRIK 14 BAB II ELEMEN RANGKAIAN LISTRIK Seperti dijelaskan pada bab sebelumnya, bahwa pada tidak dapat dipisahkan dari penyusunnya sendiri, yaitu berupa elemen atau komponen. Pada bab ini akan dibahas elemen

Lebih terperinci

Analisis Simpul dan Jala

Analisis Simpul dan Jala Analisis Simpul dan Jala Slide-03 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Analisis Simpul Analisis Rangkaian Metode Analisis Simpul SuperSimpul Ringkasan 2 Analisis Jala Analisis

Lebih terperinci

Analisis Ajeg dari Sinusoidal

Analisis Ajeg dari Sinusoidal Analisis Ajeg dari Sinusoidal Slide-08 Ir. Agus Arif, MT Semester Gasal 2016/2017 1 / 23 Materi Kuliah 1 Karakteristik Sinusoid Bentuk Umum Pergeseran Fase Sinus Kosinus 2 Tanggapan Paksaan thdp Sinusoid

Lebih terperinci

Esti Puspitaningrum, S.T., M.Eng.

Esti Puspitaningrum, S.T., M.Eng. RANKAIAN LISTRIK 1 Esti Puspitaningrum, S.T., M.Eng. BAB 3 HUKUM-HUKUM RL 1. HUKUM OHM Tegangan melintasi berbagai jenis bahan pengantar adalah berbanding lurus dengan arus yang mengalir melalui bahan

Lebih terperinci

12/26/2006 PERTEMUAN XIII. 1. Pengantar

12/26/2006 PERTEMUAN XIII. 1. Pengantar PERTEMUAN XIII RANGKAIAN DC KAPASITIF DAN INDUKTIF 1. Pengantar Jika sebuah rangkaian terdiri dari sebuah kapasitor dan induktor, beberapa energi dari sumber dapat disimpan dan energi tersimpan tersebut

Lebih terperinci

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK 1. Konsep Dasar a. Arus dan Rapat Arus Sebuah arus listrik i dihasilkan jika sebuah

Lebih terperinci

BAB III HUKUM HUKUM RANGKAIAN

BAB III HUKUM HUKUM RANGKAIAN BAB III HUKUM HUKUM RANGKAIAN Tujuan. - Mahasiswa dapat menyelesaikan masalah ranggkaian listrik dengan menggunakan Hukum ohm, - Mahasiswa dapat menyelesaikan masalah ranggkaian listrik dengan menggunakan

Lebih terperinci

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK

PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK PERTEMUAN II KONSEP DASAR ELEMEN-ELEMEN RANGKAIAN LISTRIK 1. Konsep Dasar a. Arus dan Rapat Arus Sebuah arus listrik i dihasilkan jika sebuah muatan netto q lewat melalui suatu penampang penghantar selama

Lebih terperinci

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart

e. muatan listrik menghasilkan medan listrik dari... a. Faraday d. Lenz b. Maxwell e. Hertz c. Biot-Savart 1. Hipotesis tentang gejala kelistrikan dan ke-magnetan yang disusun Maxwell ialah... a. perubahan medan listrik akan menghasilkan medan magnet b. di sekitar muatan listrik terdapatat medan listrik c.

Lebih terperinci

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik

Menganalisis rangkaian listrik. Mendeskripsikan konsep rangkaian listrik Menganalisis rangkaian listrik Mendeskripsikan konsep rangkaian listrik Listrik berasal dari kata elektron yang berarti batu ambar. Jika sebuah batu ambar digosok dengan kain sutra, maka batu akan dapat

Lebih terperinci

Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam)

Kumpulan Soal Fisika Dasar II. Universitas Pertamina ( , 2 jam) Kumpulan Soal Fisika Dasar II Universitas Pertamina (16-04-2017, 2 jam) Materi Hukum Biot-Savart Hukum Ampere GGL imbas Rangkaian AC 16-04-2017 Tutorial FiDas II [Agus Suroso] 2 Hukum Biot-Savart Hukum

Lebih terperinci

BAB I TEORI RANGKAIAN LISTRIK DASAR

BAB I TEORI RANGKAIAN LISTRIK DASAR BAB I TEORI RANGKAIAN LISTRIK DASAR I.1. MUATAN ELEKTRON Suatu materi tersusun dari berbagai jenis molekul. Suatu molekul tersusun dari atom-atom. Atom tersusun dari elektron (bermuatan negatif), proton

Lebih terperinci

TOPIK 4. Kapasitansi. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si.

TOPIK 4. Kapasitansi. Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. TOPIK 4 Kapasitansi Fisika Dasar II TIP, TP, UGM 2009 Ikhsan Setiawan, M.Si. ikhsan_s@ugm.ac.id http://setiawan.synthasite.com 2 Kapasitansi Definisi kapasitansi Kapasitansi beragam jenis kapasitor Kombinasi

Lebih terperinci

Pengantar Rangkaian Listrik. Dedi Nurcipto, MT.

Pengantar Rangkaian Listrik. Dedi Nurcipto, MT. Pengantar Rangkaian Listrik Dedi Nurcipto, MT. Pengantar Rangkaian Listrik Tujuan Mata Kuliah : Konsep dasar Rangkaian Elektrik, Hulum Hukum dasar rangkaian Listrik serta teknik dasar yang di pakai untuk

Lebih terperinci

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS

LATIHAN FISIKA DASAR 2012 LISTRIK STATIS Muatan Diskrit LATIHAN FISIKA DASAR 2012 LISTRIK STATIS 1. Ada empat buah muatan titik yaitu Q 1, Q 2, Q 3 dan Q 4. Jika Q 1 menarik Q 2, Q 1 menolak Q 3 dan Q 3 menarik Q 4 sedangkan Q 4 bermuatan negatif,

Lebih terperinci

GAYA GERAK LISTRIK KELOMPOK 5

GAYA GERAK LISTRIK KELOMPOK 5 GAYA GERAK LISTRIK KELOMPOK 5 Tujuan Dapat memahami prinsip kerja ggl dan fungsinya dalam suatu rangkaian tertutup. Dapat mencari arus dan tegangan dalam suatu rangkaian rumit dengan memakai hukum kirchoff

Lebih terperinci

LEMBAR TUGAS MAHASISWA ( LTM )

LEMBAR TUGAS MAHASISWA ( LTM ) LEMBAR TUGAS MAHASISWA ( LTM ) TEORI RANGKAIAN LISTRIK Program Studi Teknik Komputer Jenjang Pendidikan Program Diploma III Tahun AMIK BSI NIM NAMA KELAS :. :.. :. Akademi Manajemen Informatika dan Komputer

Lebih terperinci

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik.

BAB I PENDAHULUAN. pemasangan atau pembuatan barang-barang elektronika dan listrik. BAB I PENDAHULUAN 1.1. Latar Belakang Pengukuran merupakan suatu aktifitas dan atau tindakan membandingkan suatu besaran yang belum diketahui nilainya atau harganya terhadap besaran lain yang sudah diketahui

Lebih terperinci

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan

Gambar 3. (a) Diagram fasor arus (b) Diagram fasor tegangan RANGKAIAN ARUS BOLAK-BALIK Arus bolak-balik atau Alternating Current (AC) yaitu arus listrik yang besar dan arahnya yang selalu berubah-ubah secara periodik. 1. Sumber Arus Bolak-balik Sumber arus bolak-balik

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Induksi Elektromagnet Nama : Kelas/No : / - - INDUKSI ELEKTROMAGNET - INDUKSI FARADAY DAN ARUS BOLAK-BALIK Induksi

Lebih terperinci

Conductor dan Dielektrik

Conductor dan Dielektrik Conductor dan Dielektrik Pendahuluan Sebuah kapasitor adalah perangkat yang menyimpan muatan listrik. Kapasitor bervariasi dalam bentuk dan ukuran, tetapi konfigurasi dasar adalah dua konduktor yang membawa

Lebih terperinci

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet

ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII. Medan Magnet ULANGAN AKHIR SEMESTER GANJIL 2015 KELAS XII gaya F. Jika panjang kawat diperpendek setengah kali semula dan kuat arus diperbesar dua kali semula, maka besar gaya yang dialami kawat adalah. Medan Magnet

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

Untai 1. I. Setyawan. Materi. Referensi. Evaluasi Untai Elektrik I. Pendahuluan. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana

Untai 1. I. Setyawan. Materi. Referensi. Evaluasi Untai Elektrik I. Pendahuluan. Dr. Iwan Setyawan. Fakultas Teknik Universitas Kristen Satya Wacana Materi Referensi Evaluasi Untai Elektrik I Pendahuluan Dr. Iwan Setyawan Fakultas Teknik Universitas Kristen Satya Wacana Materi Materi Referensi Evaluasi 1 Definisi-definisi Dasar 2 Konsep-konsep Untai

Lebih terperinci

LATIHAN UAS 2012 LISTRIK STATIS

LATIHAN UAS 2012 LISTRIK STATIS Muatan Diskrit LATIHAN UAS 2012 LISTRIK STATIS 1. Dua buah bola bermuatan sama (2 C) diletakkan terpisah sejauh 2 cm. Gaya yang dialami oleh muatan 1 C yang diletakkan di tengah-tengah kedua muatan adalah...

Lebih terperinci

RANGKAIAN ARUS SEARAH (DC)

RANGKAIAN ARUS SEARAH (DC) TOPIK 6 RANGKAIAN ARUS SEARAH (DC) Arus Searah (DC) Pada rangkaian DC hanya melibatkan arus dan tegangan searah, yaitu arus dan tegangan yang tidak berubah terhadap waktu. Elemen pada rangkaian DC meliputi:

Lebih terperinci

Perkuliahan PLPG Fisika tahun D.E Tarigan Drs MSi Jurusan Fisika FPMIPA UPI 1

Perkuliahan PLPG Fisika tahun D.E Tarigan Drs MSi Jurusan Fisika FPMIPA UPI 1 Perkuliahan PLPG Fisika tahun 2009 Jurusan Fisika FPMIPA UPI 1 Muatan Listrik Dua jenis muatan listrik: positif dan negatif Satuan muatan adalah coulomb [C] Muatan elektron (negatif) atau proton (positif)

Lebih terperinci

PEMBAHASAN. R= ρ l A. Secara matematis :

PEMBAHASAN. R= ρ l A. Secara matematis : PEMBAHASAN 1. Rangkaian DC a.) Dasar-dasar Rangkaian Listrik Resistor (hambatan) Resistor adalah komponen elektronik dua saluran yang didesain untuk menahan arus listrik dengan memproduksi penurunan tegangan

Lebih terperinci

Oleh: Yasinta Friska Ratnaningrum XII.IPA 1 / 36

Oleh: Yasinta Friska Ratnaningrum XII.IPA 1 / 36 Oleh: Yasinta Friska Ratnaningrum XII.IPA 1 / 36 KONSEP RANGKAIAN LISTRIK a.pengertian arus dan tegangan b.hubungan antara arus, tegangan dan tahanan ( Hukum OHM) c.arus pada percabangan, hk. Kirchoff

Lebih terperinci

Induksi Elektromagnet

Induksi Elektromagnet Induksi Elektromagnet Fluks magnet Sebagaimana fluks listrik, fluks magnet juga dapat diilustrasikan sebagai banyaknya garis medan yang menembus suatu permukaan. n Fluks listrik yang dihasilkan oleh medan

Lebih terperinci

KARAKTERISTIK KAPASITOR M. Raynaldo Sandita Powa ( )

KARAKTERISTIK KAPASITOR M. Raynaldo Sandita Powa ( ) KARAKTERISTIK KAPASITOR M. Raynaldo Sandita Powa (20020047) Program Pendidikan Fisika Sekolah Tinggi Keguruan dan Ilmu Pendidikan Surya, Tangerang 204. Pendahuluan Pada percobaan kali ini, akan dilakukan

Lebih terperinci

Rangkaian AC Tiga-Fase [1]

Rangkaian AC Tiga-Fase [1] Rangkaian AC Tiga-Fase [1] Slide-12 Ir. Agus Arif, MT Semester Genap 2015/2016 1 / 23 Materi Kuliah 1 Sistem Tiga-Fase Sistem Fase-Jamak Definisi Tiga-Fase Notasi Subskrip-Ganda 2 Definisi Sumber Tiga-Fase

Lebih terperinci

RESONANSI PADA RANGKAIAN RLC

RESONANSI PADA RANGKAIAN RLC ESONANSI PADA ANGKAIAN LC A. Tujuan 1. Mengamati adanya gejala resonansi dalam rangkaian arus bolaik-balik.. Mengukur resonansi pada rangkaian seri LC 3. Menggambarkan lengkung resonansi pada rangkaian

Lebih terperinci

KUMPULAN SOAL FISIKA KELAS XII

KUMPULAN SOAL FISIKA KELAS XII KUMPULAN SOAL FISIKA KELAS XII Nada-Nada Pipa Organa dan Dawai Soal No. 1 Sebuah pipa organa yang terbuka kedua ujungnya memiliki nada dasar dengan frekuensi sebesar 300 Hz. Tentukan besar frekuensi dari

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Listrik Arus Bolak-balik - Soal Doc. Name: RK13AR12FIS0401 Version: 2016-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi

Lebih terperinci

K13 Revisi Antiremed Kelas 12 Fisika

K13 Revisi Antiremed Kelas 12 Fisika K13 Revisi Antiremed Kelas 12 Fisika Persiapan Penilaian Akhir Semester (PAS) Ganjil Doc. Name: RK13AR12FIS01PAS Version: 2016-11 halaman 1 01. Perhatikan rangkaian hambatan listrik berikut. Hambatan pengganti

Lebih terperinci

MATA KULIAH RANGKAIAN LISTRIK I

MATA KULIAH RANGKAIAN LISTRIK I MATA KULIAH RANGKAIAN LISTRIK I SCHEDULE : TUESDAY, 08.30-11.00 WITA Ir. IDA AYU DWI GIRIANTARI, MEng.Sc., PhD Nip 131953994 KONTRAK MIDDLE TEST/UTS = 35% ASSIGMENT /TUGAS = 15% PARTICIPATIONS = 10% FINAL

Lebih terperinci

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK

SOAL DAN PEMBAHASAN ARUS BOLAK BALIK SOAL DAN PEMBAHASAN ARUS BOLAK BALIK Berikut ini ditampilkan beberapa soal dan pembahasan materi Fisika Listrik Arus Bolak- Balik (AC) yang dibahas di kelas 12 SMA. (1) Diberikan sebuah gambar rangkaian

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham, Analisis Rangkaian Listrik () BAB 4 Model Piranti Pasif Suatu piranti mempunyai karakteristik atau perilaku tertentu.

Lebih terperinci

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK

FASOR DAN impedansi pada ELEMEN-elemen DASAR RANGKAIAN LISTRIK FASO DAN impedansi pada ELEMEN-elemen DASA ANGKAIAN LISTIK 1. Fasor Fasor adalah grafik untuk menyatakan magnituda (besar) dan arah (posisi sudut). Fasor utamanya digunakan untuk menyatakan gelombang sinus

Lebih terperinci

BAB 1. RANGKAIAN LISTRIK

BAB 1. RANGKAIAN LISTRIK BAB 1. RANGKAIAN LISTRIK Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Elemen

Lebih terperinci

RANGKAIAN LISTRIK. Kuliah 1 (Umum)

RANGKAIAN LISTRIK. Kuliah 1 (Umum) RANGKAIAN LISTRIK Kuliah 1 (Umum) DEFINISI Rangkaian listrik adalah susunan komponenkomponen elektronika yang dirangkai dengan sumber tegangan menjadi satu kesatuan yang memiliki fungsi dan kegunaan tertentu.

Lebih terperinci

C = Q V ab (1) C = Q A (2)

C = Q V ab (1) C = Q A (2) Bab 25. Kapasitan dan Dielektrik Kapasitor adalah sepasang konduktor yang dipisahkan oleh bahan isolator. Ketika kapasitor dimuati, pada dua konduktor akan ada muatan sama banyak Q dan beda jenis, dan

Lebih terperinci

Fisika Umum (MA 301) Topik hari ini. Kelistrikan

Fisika Umum (MA 301) Topik hari ini. Kelistrikan Fisika Umum (MA 301) Topik hari ini Kelistrikan 8/14/2007 Pendahuluan Pengetahuan kelistrikan sudah diamati pada zaman yunani kuno (700 SM). Dimulai dengan pengamatan bahwa batu amber (fosil( fosil) ketika

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN LISTRIK

MODUL PRAKTIKUM RANGKAIAN LISTRIK MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM TTPL DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2014 PERCOBAAN I BRIEFING PRAKTIKUM Briefing praktikum dilaksanakan hari Selasa

Lebih terperinci

DAN RANGKAIAN AC A B A. Gambar 4.1 Berbagai bentuk isyarat penting pada sistem elektronika

DAN RANGKAIAN AC A B A. Gambar 4.1 Berbagai bentuk isyarat penting pada sistem elektronika + 4 KAPASITOR, INDUKTOR DAN RANGKAIAN A 4. Bentuk Gelombang lsyarat (signal) Isyarat adalah merupakan informasi dalam bentuk perubahan arus atau tegangan. Perubahan bentuk isyarat terhadap fungsi waktu

Lebih terperinci

PETA KONSEP ELEKTROSTATIS ENERGI KUAT MEDAN LISTRIK KEPING SEJAJAR HUKUM GAUSS POTENSIAL LISTRIK KAPASITOR POTENSIAL LISTRIK MEDAN LISTRIK DUA KEPING

PETA KONSEP ELEKTROSTATIS ENERGI KUAT MEDAN LISTRIK KEPING SEJAJAR HUKUM GAUSS POTENSIAL LISTRIK KAPASITOR POTENSIAL LISTRIK MEDAN LISTRIK DUA KEPING PETA KONSEP ELEKTROSTATIS ELEKTROSTATIS KUAT MEDAN LISTRIK HUKUM GAUSS ENERGI POTENSIAL LISTRIK POTENSIAL LISTRIK KEPING SEJAJAR KAPASITOR MEDAN LISTRIK DUA KEPING SEJAJAR POTENSIAL LISTRIK DUA KEPING

Lebih terperinci

KAPASITOR dan SIFAT BAHAN DIELEKTRIK

KAPASITOR dan SIFAT BAHAN DIELEKTRIK KAPASITOR dan SIFAT BAHAN DIELEKTRIK Kapasitor adalah dua buah konduktor yang dipisahkan oleh isolator. Masing-masing muatan pada pelat sama besar dan berlawanan arah. Kapasitansi C sebuah kapasitor adalah

Lebih terperinci

P ERTEM UA N 1 DASAR ELEKTRONIKA INDRA DARMAWAN, ST

P ERTEM UA N 1 DASAR ELEKTRONIKA INDRA DARMAWAN, ST P ERTEM UA N 1 DASAR ELEKTRONIKA INDRA DARMAWAN, ST RENCANA KULIAH Materi Komponen Pasif Elektronika Karakteristik Komponen Pasif Elektronika RENCANA KULIAH Komponen Peruliahan Tugas QUIS Ujian Tengah

Lebih terperinci

Gerak Gaya Listrik (GGL) Electromotive Force (EMF)

Gerak Gaya Listrik (GGL) Electromotive Force (EMF) FISIKA II Gerak Gaya Listrik (GGL) Electromotive Force (EMF) Jika suatu kawat penghantar digerakkan memotong arah suatu medan magnetic, maka akan timbul suatu gaya gerak listrik pada kawat penghantar tersebut.

Lebih terperinci

TEKNIK ELEKTRO. SISTEM TENAGA (Arus Kuat) ELEKTRONIKA (Arus Lemah) TELEKOMUNIKSI SISTEM KONTROL TEKNIK KOMPUTER

TEKNIK ELEKTRO. SISTEM TENAGA (Arus Kuat) ELEKTRONIKA (Arus Lemah) TELEKOMUNIKSI SISTEM KONTROL TEKNIK KOMPUTER TEKNIK ELEKTRO SISTEM TENAGA (Arus Kuat) ELEKTRONIKA (Arus Lemah) TELEKOMUNIKSI SISTEM KONTROL TEKNIK KOMPUTER Rangkaian Listrik merupakan dasar keilmuan Teknik Elektro Materi PENGERTIAN DASAR RANGKAIAN

Lebih terperinci

Induktansi. Kuliah Fisika Dasar II Jurusan TIP, FTP, UGM 2009

Induktansi. Kuliah Fisika Dasar II Jurusan TIP, FTP, UGM 2009 Induktansi Kuliah Fisika Dasar II Jurusan TIP, FTP, UGM 2009 Ikhsan Setiawan, M.Si. Jurusan Fisika FMIPA UGM http:/setiawan.synthasite.com ikhsan_s@ugm.ac.id 1 Outline Induktansi Diri Rangkaian RL Energi

Lebih terperinci

TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1)

TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1) TEKNIK MESIN STT-MANDALA BANDUNG DASAR ELEKTRONIKA (1) DASAR ELEKTRONIKA KOMPONEN ELEKTRONIKA SISTEM BILANGAN KONVERSI DATA LOGIC HARDWARE KOMPONEN ELEKTRONIKA PASSIVE ELECTRONIC ACTIVE ELECTRONICS (DIODE

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kapasitor Kapasitor banyak digunakan dalam sirkuit elektronik dan mengerjakan berbagai fungsi. Pada dasarnya kapasitor merupakan alat penyimpan muatan listrik yang dibentuk

Lebih terperinci

KAPASITOR (KONDENSATOR)

KAPASITOR (KONDENSATOR) 1 KAPASITOR (KONDENSATOR) Kapasitor (Kondensator) yang dalam rangkaian elektronika dilambangkan dengan huruf "C" adalah suatu komponen elektronika yang dapat menyimpan energi/muatan listrik di dalam medan

Lebih terperinci

Materi ajar. Kapasitor

Materi ajar. Kapasitor Materi ajar Kapasitor A. Kapasitor 1. Pengertian kapasitor Kapasitor atau sering juga disebut kondensator adalah alat (komponen) yang dibuat sedemikian sehingga mampu menyimpan muatan listrik. Sebuah kapasitor

Lebih terperinci

BAB 2. KOMPONEN PASIF

BAB 2. KOMPONEN PASIF RESISTOR BAB 2. KOMPONEN PASIF Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan seperti tembaga, perak, emas dan bahan metal umumnya memiliki resistansi yang sangat kecil. Bahan material

Lebih terperinci

Analisis Rangkaian Listrik Di Kawasan Waktu

Analisis Rangkaian Listrik Di Kawasan Waktu Sudaryatno Sudirham nalisis Rangkaian Listrik Di Kawasan Waktu 2 Sudaryatno Sudirham, nalisis Rangkaian Listrik (1) BB 6 Hukum-Hukum Dasar Pekerjaan analisis pada suatu rangkaian linier yang parameternya

Lebih terperinci

CIRCUIT DASAR DAN PERHITUNGAN

CIRCUIT DASAR DAN PERHITUNGAN CIRCUIT DASAR DAN PERHITUNGAN Oleh : Sunarto YB0USJ ELEKTROMAGNET Listrik dan magnet adalah dua hal yang tidak dapat dipisahkan, setiap ada listrik tentu ada magnet dan sebaliknya. Misalnya ada gulungan

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

Perkuliahan Fisika Dasar II FI-331. Oleh Endi Suhendi 1

Perkuliahan Fisika Dasar II FI-331. Oleh Endi Suhendi 1 Perkuliahan Fisika Dasar II FI-331 Oleh Endi Suhendi 1 Menu hari ini (2 minggu): Hambatan & Arus Listrik Rangkaian DC Oleh Endi Suhendi 2 Last Time: Kapasitor & Dielektrik Oleh Endi Suhendi 3 Kapasitor

Lebih terperinci

MODUL PRAKTIKUM RANGKAIAN LISTRIK

MODUL PRAKTIKUM RANGKAIAN LISTRIK MODUL PRAKTIKUM RANGKAIAN LISTRIK LABORATORIUM TTPL DEPARTEMEN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS INDONESIA DEPOK 2013 PERCOBAAN I DASAR KELISTRIKAN, LINEARITAS ANALISA MESH DAN SIMPUL I. TUJUAN

Lebih terperinci

TUGAS XIII LISTRIK DAN MAGNET

TUGAS XIII LISTRIK DAN MAGNET TUGAS XIII LISTRIK DAN MAGNET 1. Sebuah kapasitor keping sejajar yang tebalnya d mempunyai kapasitas C o. Ke dalam kapasitor ini dimasukkan dua bahan dielektrik yang masing-masing tebalnya d/2 dengan konstanta

Lebih terperinci

BAB II RANGKAIAN ELEKTRONIK DAN KOMPONEN

BAB II RANGKAIAN ELEKTRONIK DAN KOMPONEN BAB II RANGKAIAN ELEKTRONIK DAN KOMPONEN 2.1 PENDAHULUAN Deskripsi Singkat Manfaat Relevansi CapaianPembelajaran 1. Penjelasan tentang rangkaian elektronik dengan didukung oleh komponen-komponen dasar

Lebih terperinci

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip

BAB II MOTOR ARUS SEARAH. searah menjadi energi mekanis yang berupa putaran. Pada prinsip BAB II MOTOR ARUS SEARAH 2.1. Umum Motor arus searah (DC) adalah mesin yang mengubah energi listrik arus searah menjadi energi mekanis yang berupa putaran. Pada prinsip pengoperasiannya, motor arus searah

Lebih terperinci

Konduktor dan isolator

Konduktor dan isolator Konduktor dan isolator Arus listrik adalah nama yang diberikan untuk aliran elektronelektron (atau pembawa (carrier) muatan negatif). Elektronelektron berputar (to orbit) mengelilingi inti (nucleus) atom.

Lebih terperinci

ALAT UKUR BESARAN LISTRIK. Jenis dan Prinsip Kerjanya

ALAT UKUR BESARAN LISTRIK. Jenis dan Prinsip Kerjanya ALAT UKUR BESARAN LISTRIK Jenis dan Prinsip Kerjanya Alat ukur besaran listrik : Galvanometer Ampermeter arus searah Voltmeter arus searah ohmmeter Galvanometer Prinsip kerja PMMC (Permanent magnet moving

Lebih terperinci

Teknik-Teknik Analisis Rangkaian Rangkaian Listrik 1 (TKE131205) Program Studi Teknik Elektro, Unsoed

Teknik-Teknik Analisis Rangkaian Rangkaian Listrik 1 (TKE131205) Program Studi Teknik Elektro, Unsoed Teknik-Teknik Analisis Rangkaian Rangkaian Listrik 1 (TKE131205) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Analisis nodal dan mesh. Kita membutuhkan

Lebih terperinci

KISI-KISI PENULISAN SOAL FISIKA SMA KELAS XII IPA ULANGAN AKHIR SEMESTER GASAL

KISI-KISI PENULISAN SOAL FISIKA SMA KELAS XII IPA ULANGAN AKHIR SEMESTER GASAL KISI-KISI PENULISAN SOAL FISIKA SMA KELAS XII IPA ULANGAN AKHIR SEMESTER GASAL No 1. 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah Y = A sin ( t kx) Diberikan persamaan

Lebih terperinci

KOMPONEN PASIF. TK2092 Elektronika Dasar Semester Ganjil 2015/2016. Hanya dipergunakan untuk kepentingan pengajaran di lingkungan Universitas Telkom 1

KOMPONEN PASIF. TK2092 Elektronika Dasar Semester Ganjil 2015/2016. Hanya dipergunakan untuk kepentingan pengajaran di lingkungan Universitas Telkom 1 TK2092 Elektronika Dasar Semester Ganjil 2015/2016 Fakultas Ilmu Terapan Universitas Telkom Bandung 2015 KOMPONEN PASIF Disusun oleh: Duddy Soegiarto, ST.,MT dds@politekniktelkom.ac.id Rini Handayani,

Lebih terperinci

BAB 1. RANGKAIAN LISTRIK

BAB 1. RANGKAIAN LISTRIK BAB 1. RANGKAIAN LISTRIK Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Elemen

Lebih terperinci

FISIKA. Sesi DUA KEPING SEJAJAR DAN KAPASITOR A. DUA KEPING SEJAJAR

FISIKA. Sesi DUA KEPING SEJAJAR DAN KAPASITOR A. DUA KEPING SEJAJAR FISIKA KELAS XII IPA - KURIKULUM GABUNGAN 05 Sesi NGAN DUA KEPING SEJAJAR DAN KAPASITOR A. DUA KEPING SEJAJAR Keping sejajar adalah dua keping konduktor yang mempunyai luas dan bahan yang sama. Jika dihubungkan

Lebih terperinci

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif

Berikut ini rumus untuk menghitung reaktansi kapasitif dan raktansi induktif Resonansi paralel sederhana (rangkaian tank ) Kondisi resonansi akan terjadi pada suatu rangkaian tank (tank circuit) (gambar 1) ketika reaktansi dari kapasitor dan induktor bernilai sama. Karena rekatansi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Persamaan Diferensial Persamaan diferensial adalah suatu hubungan yang terdapat antara suatu variabel independen, suatu variabel dependen, dan satu atau lebih turunan dari

Lebih terperinci

LABORATORIUM TEKNIK ELEKTRONIKA DAN TEKNIK DIGITAL Sekolah Tinggi Teknologi Telematika Telkom Jl. D.I. Panjaitan 128 Purwokerto

LABORATORIUM TEKNIK ELEKTRONIKA DAN TEKNIK DIGITAL Sekolah Tinggi Teknologi Telematika Telkom Jl. D.I. Panjaitan 128 Purwokerto telk telk LABORATORIUM TEKNIK ELEKTRONIKA DAN TEKNIK DIGITAL Sekolah Tinggi Teknologi Telematika Telkom Jl. D.I. Panjaitan 28 Purwokerto Status Revisi : 00 Tanggal Pembuatan : 5 Desember 204 MODUL MATA

Lebih terperinci

Komponen dan RL Dasar

Komponen dan RL Dasar Komponen dan RL Dasar Rangkaian Listrik 1 (TKE131205) Program Studi Teknik Elektro, Unsoed Iwan Setiawan 1/91 Kuantitas. 2/91 Angka. 3/91 Satuan? Satuan dan skala. 5/91 Ukuran sebuah

Lebih terperinci

Gelombang Elektromagnetik

Gelombang Elektromagnetik Gelombang Elektromagnetik Agus Suroso (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Agus Suroso (FTETI-ITB) Gelombang EM 1 / 29 Materi 1 Persamaan

Lebih terperinci

A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC

A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC Revisi : 01 Tgl : 1 Maret 2008 Hal 1 dari 8 A. Kompetensi Mengukur beban R, L, C pada sumber tegangan DC dan AC B. Sub Kompetensi 1. Mengukur besarnya arus dan daya pada beban RLC pada sumber tenaga tegangan

Lebih terperinci

Rudi Susanto

Rudi Susanto LISTIK DINAMIS udi Susanto http://rudist.wordpress.com 1 Tujuan Instruksional Dapat menentukan arus listrik, hambatan listrik, energi listrik, daya listrik serta dapat menggunakan hukum Ohm dan aturan

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Listrik Arus Bolak Balik - Latihan Soal Doc. Name: AR12FIS0699 Version: 2011-12 halaman 1 01. Suatu sumber tegangan bolak-balik menghasilkan tegangan sesuai dengan fungsi: v =140

Lebih terperinci

MODUL 1 GEJALA TRANSIEN

MODUL 1 GEJALA TRANSIEN MODUL GEJALA TRANSIEN Pendahuluan. Deskripsi Singkat Bab ini akan membahas tentang kndisi awal kapasitr dan induktr sebagai elemen pasif penyimpan energi.. Manfaat Memahami gejala transien pada elemen

Lebih terperinci

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD.

BINOVATIF LISTRIK DAN MAGNET. Hani Nurbiantoro Santosa, PhD. BINOVATIF LISTRIK DAN MAGNET Hani Nurbiantoro Santosa, PhD hanisantosa@gmail.com 2 BAB 4 KAPASITOR Kapasitas, Kapasitor Pelat Sejajar, Kapasitor Bola, Kapasitor Silinder, Kapasitor Pengganti Seri dan Paralel,

Lebih terperinci

ENERGI DAN DAYA LISTRIK

ENERGI DAN DAYA LISTRIK ENERGI DAN DAYA LISTRIK ENERGI LISTRIK A I V W = Q V B C Energi yang dihasilkan dari aliran muatan listrik dalam suatu rangkaian listrik tertutup disebut dengan energi listrik Keterangan : Q = muatan listrik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Pada bab ini akan dibahas mengenai teori teori yang mendasari perancangan dan perealisasian inductive wireless charger untuk telepon seluler. Teori-teori yang digunakan dalam skripsi

Lebih terperinci

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2

ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 ARUS BOLAK-BALIK Pertemuan 13/14 Fisika 2 Arus bolak-balik adalah arus yang arahnya berubah secara bergantian. Bentuk arus bolakbalik yang paling sederhana adalah arus sinusoidal. Tegangan yang mengalir

Lebih terperinci

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

Arus Bolak Balik. Arus Bolak Balik. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Materi 1 Sumber arus bolak-balik (alternating current, AC) 2 Resistor pada rangkaian AC 3 Induktor

Lebih terperinci

TM - 2 LISTRIK. Pengertian Listrik

TM - 2 LISTRIK. Pengertian Listrik TM - 2 LISTRIK Pengertian Listrik Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut: - Listrik adalah kondisi dari partikel sub-atomik

Lebih terperinci

ELEKTRONIKA DASAR 105J

ELEKTRONIKA DASAR 105J 1 105J 1. TEORI DASAR Kapasitor (Kondensator) yang dalam rangkaian elektronika dilambangkan dengan huruf "C" adalah suatu alat yang dapat menyimpan energi/muatan listrik di dalam medan listrik, dengan

Lebih terperinci

Bandingkan... vs vs vs vs

Bandingkan... vs vs vs vs Bandingkan... vs vs vs vs Hal yang menarik... Sejak kapan perangkat elektronik tersebut ditemukan? Bagaimana perangkat elektronik tersebut bekerja? Apa yang menjadi kesamaan dari semua perangkat elektronik

Lebih terperinci

drimbajoe.wordpress.com 1

drimbajoe.wordpress.com 1 drimbajoe.wordpress.com STK AUS SEAAH A. KUAT AUS STK Konsep Materi Kuat Arus istrik () Banyaknya muatan (Q) yang mengalir dalam selang (t). Besarnya Kuat arus listrik () sebanding dengan banyak muatan

Lebih terperinci

Lembar Kerja Peserta Didik 1 Alat Ukur Listrik dan Rangkaian Sederhana

Lembar Kerja Peserta Didik 1 Alat Ukur Listrik dan Rangkaian Sederhana Lembar Kerja Peserta Didik 1 Alat Ukur Listrik dan Rangkaian Sederhana 1. Tujuan Untuk mengetahui cara mengukur arus dan tegangan listrik 2. Alat dan bahan a. Amperemeter b. Voltmeter c. Hambatan d. Sumber

Lebih terperinci