ANALISA TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISA TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER"

Transkripsi

1 ANALISA TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER Totok Yulianto, S.T, M.T*, Nevi Eko Yuliananto** *Staf Pengajar Jurusan Teknik Perkapalan **Mahasiswa Jurusan Teknik Perkapalan Institut Teknologi Sepuluh Nopember (ITS) Sukolilo-Surabaya ABSTRAK Dalam penelitian ini, dilakukan perhitungan tegangan geser secara analisa manual dan metode elemen hingga sesuai dengan regulasi common structural rules (CSR) bulk carriers. Pemodelan elemen hingga untuk perhitungan tegangan geser menggunakan software MSC PATRAN sebagai pre processor dan MSC NASTRAN sebagai processor. Kapal yang dijadikan studi kasus adalah kapal bulk carrier 8665 DWT dengan L = m. Karena panjang kapal lebih dari 90 m (L 90 m), dilakukan pemeriksaan kekuatan kapal dari kriteria tegangan geser yang disyaratkan oleh regulasi CSR bulk carriers, yakni 120/k N/mm 2 ( N/mm 2 ). Hasil dari penelitian ini adalah terdapat bagian konstruksi yang mengalami tegangan geser terbesar yang melebihi kriteria, yakni : pada posisi pelat sisi tegangan geser menjadi 818 N/mm 2 terjadi pada kondisi pembebanan-5/ Deepest Ballast R1 (hogging), pada posisi center girder tegangan geser menjadi 186 N/mm 2 terjadi pada kondisi pembebanan-6/ Multi Port-3 H1 (sagging) dan kondisi pembebanan-13/ Heavy Ballast H1 (sagging), pada posisi side girder 3500 tegangan geser menjadi 186 N/mm 2 terjadi pada kondisi pembebanan-13/ Heavy Ballast H1 (sagging). Pada konstruksi yang teganganya melebihi batas dilakukan penebalan pelat, yakni : pada posisi pelat sisi tegangan geser menjadi 115 N/mm 2 setelah penebalan pelat 24 mm. Pada posisi center girder tegangan geser menjadi 93.4 N/mm 2 setelah penebalan pelat 29 mm. Pada posisi side girder 3500, tegangan geser menjadi 92.6 N/mm 2 setelah penebalan pelat 28.8 mm. Perbedaan terjadi karena analisa dengan metode elemen hingga, dipengaruhi EDW/ Equivalent Design Wave (beban H, F, R, P) atau gabungan antara variasi beban gelombang dan variasi beban muatan. Sedangkan analisa dengan perhitungan manual, hanya dipengaruhi oleh variasi muatan (loading pattern) yang diselesaikan mulai dari penyebaran berat kapal, kekuatan memanjang, shear flow, yang akhirnya didapatkan besarnya shear stress pada penampang yang mengalami shear force terbesar. Kata kunci : CSR, bulk carrier, tegangan geser. 1. PENDAHULUAN. Dalam bidang kekuatan struktur kapal, kita perlu memperhitungkan tegangan maksimum yang terjadi pada kapal Bulk Carrier. Karena kapal bulk carrier merupakan kapal full displacemen dengan muatan curah sehingga perlu adanya perhatian khusus dalam analisa tegangan geser. Tegangan disini bisa diakibatkan karena gaya lintang (shear force) dan momen puntir (torsi). Selain itu, dalam penelitian ini, diambil studi kasus untuk kapal Bulk Carrier 8665 DWT dengan L = m. Karena panjang kapal lebih dari 90 m ( L 90 m), dilakukan pemeriksaan kekuatan kapal dari kriteria tegangan geser yang disyaratkan oleh regulasi Common Structural Rules for Bulk Carrier. Yang kedua, desain konstruksi yang telah ada belum tentu memenuhi sebelum dilakukan pemeriksaan tegangan geser ijin dengan berdasarkan CSR. Dalam pemodelan FE analisys software yang dipakai adalah MSC PATRAN sebagai Pre Processor dan MSC NASTRAN sebagai Processor. Beberapa tujuan dalam penelitian ini adalah menentukan tegangan geser pada shear force dan momen torsi maksimum, membandingkan tegangan geser perhitungan manual dan FE analisys dengan tegangan geser yang diijinkan oleh CSR, Mendapatkan alternatif dalam merancang konstruksi kapal apabila mengalami tegangan geser yang melebihi persyaratan CSR. 2. TINJAUAN PUSTAKA. Model elemen hingga yang baik secara umum dapat memberikan hasil untuk evaluasi kekuatan dari konstruksi. Hal ini dapat dilakukan dengan menggunakan model 3 dimensi pada daerah tengah kapal (midship section). Langkah-langkah permodelan perhitungan metode elemen hingga untuk konstruksi pada tengah kapal (midship section) dari bulk carrier sesuai dengan regulasi Common Structural Rule for Bulk Carrier. 1

2 2.1 Lingkup Model. Menurut CSR for Bulk Carrier Chapter 7, section 2, memberikan informasi bahwa pemodelan kapal dilakukan pada tiga cargo hold yang berada di tengah kapal beserta ke empat sekat melintang dan stoolnya termasuk juga web frame dan semua bentuk konstruksi yang ada pada bagian tersebut. Pemodelan dilakukan secara utuh baik sisi port side atau star board karena pembebanan yang ada pada regulasi ini tidak simetris. 2.2 Kondisi Batas. Sesuai dengan regulasi CSR untuk kondisi batas diberikan pada independent point di kedua ujung model sesuai dengan tabel 1 dan tabel 2 (Sumber : CSR Bulk Carriers). Independent point adalah titik pusat grafitasi dari model pada daerah tersebut. Untuk node yang berada disekeliling independent point didefenisikan sebagai rigid link. Tabel 1. Rigid Link pada kedua ujung model. Setiap penampang tertutup dirubah menjadi penampang terbuka dengan memotong pada salah satu ujung dari penampang tertutup tersebut. Tiap cabang shear flow 0 pada ujung cabangnya. Moment pertama m dapat dihitung dengan persamaan 2 untuk membedakan nilai m dengan cut section diberikan simbol m*. Sehingga besarnya nilai dari shear flow disimbolkan sebagai q* menjadi. Dan luasan shear flow untuk koreksi shear flow untuk satu komponen penampang tertutup dapat diselesaikan dengan cara simpson, sebagai berikut : (q*/t) ds = (q*.fs).s / 3.t (3) (4) (5) Koreksi shear flow untuk satu komponen tertutup adalah : (1/t)ds (6) Sehingga koreksi shear flow keseluruhan komponen tertutup dapat diselesaikan dengan integral tertutup. (1/t)ds (7) Tabel 2. Independent Point pada kedua ujung model. Dan luasan shear flow untuk koreksi shear flow untuk keseluruhan komponen penampang tertutup dapat diselesaikan dengan cara integral tertutup, sebagai berikut : (q*/t)ds (8) 2.3 Shear Stress pada Penampang MultiCell (Owen, F,Huges. 1983). Secara umum, shear stress dapat didefinisikan ke dalam persamaan 1: Dimana, Q I t y s (1) (2) : shear force : momen inersia penampang : tebal pelat : jarak titik berat luasan sampai sumbu netral axis : panjang pelat yang ditinjau 2 Sehingga dari persamaan 7 dan 8 menjadi persamaan shear flow koreksi untuk suatu penampang tertutup: (9) (q1/t)ds + (q2/t)ds + + (qn/t)ds = - (q*/t)ds Kemudian dilakukan penjumlahan antara shear flow sebelum koreksi (pers.4) dan shear flow koreksi (pers.9), menjadi : (10) Apabila arah shear flow sebelum koreksi berlawanan dengan arah shear flow koreksi, maka tanda (+) menjadi (-). 2.4 Shear Stress akibat Momen Torsi (Owen, F, Huges. 1983). Yang perlu diketahui untuk perhitungan tegangan geser akibat torsi adalah, bahwa sudut puntir (θ ) disemua komponen konstruksi adalah

3 sama. Pada umumnya torsi di setiap penampang terbuka atau tertutup berasal dari persamaan turunan pertama dari θ = dθ/dx. Open Section. persamaan konstanta torsional St. Venant ditunjukkan ke dalam persamaan sebagai berikut : (11) (12) Dimana, Lm adalah lebar pelat yang dianalisa pada penampang melintang kapal. Dan t adalah tebal pelat yang dianalisa. Shear stress di setiap titik adalah maksimum pada permukaan terluar dan nol (0) pada pertengahan tebal. Close Section. Persamaan sudut puntir untuk ditunjukkan ke dalam persamaan sebagai berikut : i 1 J 2 GA (13) Shear flow untuk momen torsi didapat dari persamaan sebagai berikut : i t L m Sehingga, didapat shear stress dengan persamaan q T.t (14) (15) 3. METODOLOGI. Dalam penelitian ini digunakan metode analisa secara manual dan analisa elemen hingga yang tahapan-tahapannya adalah sebagai berikut: Studi literature. Studi kasus pada kapal Bulk Carrier dengan kapasitas muatan 8665 DWT. Analisa pemodelan elemen hingga dengan model 3 ruang muat kapal. Analisa dengan perhitungan manual. Perhitungan kekuatan memanjang. Perhitungan momen torsi digunakan rumus pendekatan berdasarkan BKI dan CSR yang terbesar diambil. Dari momen torsi dan shear force didapatkan tegangan geser yang didapat dari rumus Owen F. Huges (1983). q i i A S i q t J ds t T Kemudian dari hasil analisa FEM dan Manual dibandingkan dengan tegangan geser yang diijinkan oleh CSR. 4. PEMBEBANAN ELEMEN HINGGA. Desain kondisi pembebanan elemen hingga pada Common Structural Rules for Bulk Carrier (chapter 4, Appendix 2) mempunyai 26 macam kondisi pembebanan untuk analisa kekuatan memanjang. Disetiap kondisi pembebanan dipengaruhi oleh ekivalen desain gelombang atau equivalent design wave (EDW) yaitu besarnya harga gaya tekan yang diterima konstruksi kapal (hull girder) akibat respon dari gelombang air laut. EDW mempunyai empat macam kondisi yaitu EDW H adalah kondisi dimana gelombang reguler yang berlawanan dengan arah layar kapal menyebabkan vertikal bending momen maximum. Terdiri dari H1 untuk sagging dan H2 untuk hogging EDW F adalah kondisi dimana gelombang reguler yang searah dengan arah layar kapal menyebabkan vertikal bending momen maximum. Terdiri dari F1 untuk sagging dan F2 untuk hogging. EDW R adalah kondisi dimana gelombang reguler mengakibatkan roll maximum. Terdiri dari R1 untuk sagging dan R2 untuk hogging. EDW P adalah kondisi dimana gelombang reguler mengakibatkan tekanan hidrostatik pada garis air maximum. Terdiri dari P1 untuk sagging dan P2 untuk hogging. 4.1 Beban Eksternal Air Laut. Total dari beban tekan luar dalam kn/m 2 adalah akumulasi dari tekanan hidrostatik dan tekanan hidrodinamika yang dipengaruhi oleh load case H1, H2, F1, F2, P1, P2, R1 dan R2. P = Ps + Pw (16) Dimana, Ps : Tekanan Statis Air Laut Pw : Tekanan Dinamis Air Laut Beban tekan hidrostatik dapat dihitung dengan persamaan pada tabel 3 berikut: Tabel 3. Persamaan Tekanan Hidostatik. 3

4 Sedangkan tekanan hdrodinamika terdiri dipengaruhi oleh ekivalen desain gelombang H, F, R dan P. Sehingga persamaannya sebagai berikut : Tekanan Hidrodinamika untuk Load Cases H1 & F2. Tekanan hidrodinamika p H dan p F untuk load case H1, H2, F1 dan F2 dalam satuan kn/m 2 dapat dihitung dengan persamaan dibawah ini : Tabel 4. Persamaan Tekanan Hidrodinamika H dan F. Dimana, Pcs Pcw : beban tekan ruang muat pada kondisi air tenang, kn/m 2. : beban tekan ruang muat pada kondisi air gelombang, kn/m 2. Untuk menghitung besarnya beban tekan (Pcs) pada ruang muat pada kondisi air tenang adalah dengan menggunakan persamaan sebagai berikut: (21) Beban tekan ruang muat (Pcw) pada kondisi desain gelombang dalam kn/m 2, dapat dihitung dengan persamaan berikut : Untuk Load case H : (22) Dimana, Untuk Load case F : 2y /B 1.0 dan z adalah lebih kecil daripada T LC (17) Untuk Load cases R dan P : (23) (24) Tekanan Hidrodinamika untuk Load Case R1. Tekanan hidrodinamika untuk load case R1 disetiap titik pada lambung kapal dibawah garis air dapat dihitung dengan menggunakan persamaan dibawah ini : (18) Tekanan Hidrodinamika untuk Load Case P1. Tekanan hidrodinamika untuk load case P1 dihitung dengan menggunakan persamaan dibawah ini : Tabel 5. Persamaan Tekanan Hidrodinamika P1. (19) 4.2 Beban Internal untuk Muatan Kering. Total dari beban tekan ruang muat dalam kn/m 2 adalah akumulasi dari tekanan ruang muat pada kondisi air tenang dan tekanan ruang muat yang dipengaruhi oleh load case H1, H2, F1, F2, P1, P2, R1 dan R2. (20) Beban Internal Cairan pada Tangki. Seperti halnya beban tekan ruang muat, beban tekan pada tangki merupakan penjumlahan dari tekanan cairan tangki pada kondisi air tenang dan tekanan cairan tangki saat kapal dipengaruhi oleh desain gelombang, load case H1, H2, F1, F2, P1, P2, R1 dan R2. Untuk cairan yang dimaksud bisa berupa ballast, air tawar, bahan bakar tergantung dengan fungsinya. Dimana, p BS p BW Pb = Pbs + Pbw (25) : Beban tekan cairan pada tangki kondisi air tenang, kn/m 2. : Beban tekan cairan pada tangki kondisi gelombang, kn/m 2. Beban tekan cairan pada tangki pada kondisi air tenang dapat dihitung dengan persamaan berikut : (26) (27) Beban tekan cairan pada tangki pada kondisi air gelombang dapat dihitung dengan persamaan berikut : Untuk load case H : (28)

5 Untuk load case F : Pbw = 0 Untuk load cases R dan P : (29) Semua harga beban tekanan diatas akan di-inputkan kedalam FE model sesuai dengan loading pattern. 5. PEMBEBANAN ANALISA MANUAL. Selain dilakukan analisa dengan pemodelan elemen hingga, dilakukan analisa dengan perhitungan manual baik itu tegangan geser akibat gaya geser (shear force) dan momen torsi. Dalam perhitungan analisa manual ini, digunakan kondisi pembebanan berdasarkan regulasi CSR bulk carrier chapter 4, appendix Tegangan geser akibat gaya geser (shear force). Berdasarkan penjelasan bab 2 mengenai kekuatan memanjang kapal, maka diperoleh hasil shear force dan bending momen. Untuk perhitungan kekuatan memanjang digunakan bantuan software hydromax, bertujuan untuk mengetahui kondisi keseimbangan kapal/ trim kapal pada setiap kondisi pembebanan muatan. Dalam software tersebut, diinputkan distribusi berat dan titik berat kapal total (LWT+DWT) di setiap pembagian station. Pola pembebanan SlackLoad. Berdasarkan CSR bulk carrier, pada kondisi ini semua ruang muat terisi penuh dengan massa jenis muatan sesuai desain 1.35 ton/m 3 dengan massa muatan tiap ruang muat tetap. Dalam hal ini, pada ruang muat 4 diisi muatan dengan kuantitas 50% dari massa muatan penuh ruang muat 4. Shear force maksimum terjadi pada daerah m dari AP (station 10). Qsw-max = kn pada m dari AP. Qwv = kn pada x/l = 0.25 (untuk negative shear force). QT = Qsw-max + Qwv = = kn pada x/l = 0.25 Shear Flow sebelum Koreksi. Perhitungan Shear flow dilakukan pada setengah model (karena simetris). Shear flow pada penampang tertutup (close section) dihitung dengan terlebih dahulu memotong penampang sehingga menjadi penampang terbuka (open section). Gambar 2. Perjanjian tanda. Tabel 7. Tabulasi shear flow sebelum koreksi. Tabel 6. Massa muatan LC Slack load. M ρc CH ton ton/m^3 CH CH CH CH CH(total) Gambar 1. Ilustrasi pembebanan LC slack load. Gambar 3. Plot shear flow sebelum koreksi. 5

6 Shear Flow Koreksi. Kemudian dari cut cell tersebut dikoreksi untuk penampang tertutup, kecuali pada penampang yang memang terbuka (misal : pelat sisi) tidak perlu dilakukan koreksi untuk penampang tertutup. Tabel 9. Tabulasi shear flow total. Tabel 8. Tabulasi shear flow koreksi. Gambar 5. Plot shear flow total. Untuk pola pembebanan yang lain, perhitungan shear flow dilakukan dengan cara yang sama. Gambar 4. Plot shear flow koreksi. Sehingga dengan cara perhitungan yang sama, diperoleh nilai shear flow koreksi di setiap penampang (cincin) tertutup: 5.2 Tegangan Geser akibat Momen Torsi. Untuk perhitungan momen torsi maksimum digunakan persamaan Mwtmax (BKI sect 5, 3.5), persamaan Mwt (BKI sect 5, 3.5) dan persamaan Mwt (CSR Bulk carrier) yang terbesar diambil sebagai nilai Mx (momen torsi). Penampang yang dilakukan analisa adalah daerah midship section. Dalam tugas akhir ini dihitung horizontal shear flow karena sebagai dasar untuk mendapatkan shear center, yaitu titik dimana sebagai acuan lengan dari horizontal shear force (ez), sedangkan lengan dari vertikal shear force (ey) adalah 0 karena penampang adalah simetri. Atau dapat diartikan titik pertemuan Vy dan Vz. Sehingga dari hasil horizontal shear flow diatas, dapat dicari letak shear center. Tabel 10. Tabulasi shear center. Shear Flow Total. Setelah dilakukan perhitungan shear flow untuk potongan penampang terbuka dan koreksi untuk penampang tertutup, diperoleh shear flow total : 6

7 Shear stress torsional dapat dihitung dengan terlebih dahulu mencari sudut puntir (α), dimana sudut puntir di setiap komponen konstruksi adalah sama. 6.1 Kriteria Diterima Konstruksi untuk Tegangan Geser. Tegangan ijin untuk analisa konstruksi kapal tidak boleh melebihi dari 120/k N/mm 2. Sehingga tegangan ijin untuk konstruksi kapal Bulk Carrier 8665 DWT adalah : τ = 120/0.78 = N/mm Analisa Model Elemen Hingga. Setelah model elemen hingga diberikan pembebanan dan kondisi batas yang ditentukan oleh regulasi CSR bulk carriers, maka kita dapat melakukan analisa dengan software Nastran 2010, yakni : Tabel 12. Hasil analisa elemen hingga. Gambar 6. Perjanjian tanda. Tabel 11. Tabulasi shear flow torsi (total). 6. ANALISA DAN PEMBAHASAN. Sesuai dengan metodologi pada bab 3, pembebanan pada penelitian ini dilakukan dengan 2 (dua) metode, yaitu FE analysis dan analisa manual. Hasil tegangan geser (shear stress) dari kedua pembebanan tersebut akan dilakukan pemeriksaan tegangan geser yang diijinkan CSR bulk carriers. Dari hasil analisa diatas dilakukan penambahan ketebalan pada konstruksi yang tidak memenuhi kriteria. Penggantian ketebalan yakni sebagai berikut : 7

8 Tabel 13. Analisa penguatan konstruksi. 9.85E E+01 accepted accepted Untuk pola pembebanan lainnya, dilakukan cara yang sama seperti diatas. Shear Stress akibat Moment Torsi. Dalam analisa ini, terdapat bagian konstruksi bulk carrier yang mengalami tegangan geser yang melebihi batas pada daerah bukaan palkah sebesar N/mm 2. Sehingga perlu penguatan konstruksi pada daerah bukaan palkah tersebut. Tabel 15. Shear stress sebelum penguatan. 6.3 Analisa perhitungan shear stress dengan manual. Dilakukan analisa dengan melakukan pemeriksaan tegangan geser yang diijinkan oleh regulasi CSR bulk carrier, dengan batas ijin sebesar N/mm 2. Pola Pembebanan Slack Load. Evaluasi dari hasil analisa Perhitungan manual shear stress adalah tidak ada bagian konstruksi yang melebihi batas criteria yang diijinkan CSR Bulk Carrier. Shear stress terbesar pada bagian pelat sisi, sebesar N/mm 2. Tabel 16. Shear stress setelah penguatan. Tabel 14. Pemeriksaan Shear stress. q q 1-2 Shear Stress (τ) (N/mm 2 ) 2.96E E E+00 Criteria CSR ( N/mm 2 ) accepted accepted accepted q E+00 accepted 8

9 6.4 Analisa Perbandingan Shear Stress Manual dan Metode Elemen Hingga. Sesuai yang telah dijelaskan pada bab 3 sebelumnya, bahwa dalam penelitian ini setelah mendapatkan hasil dari shear stress dengan analisa manual dan shear stress analisa elemen hingga. Maka, selanjutnya dilakukan analisa perbandingan dari kedua hasil tersebut. Sehingga, dari perbandingan kedua hasil tersebut akan didapatkan beberapa perbedaan yang mengakibatkan besarnya shear stress berbeda. Tabel 17. Analisa perbandingan. regulasi CSR lebih ekstrim. Pembebanan pada CSR dipengaruhi oleh EDW (ekivalen desain wave), sehingga lebih bersifat dinamis. Selain itu, kondisi pembebanan elemen hingga lebih banyak yakni 26 kondisi pembebanan. Sedangkan kondisi pembebanan analisa manual sebanyak 14 kondisi pembebanan. Perbedaan kondisi pembebanan ini terjadi karena untuk pembebanan elemen hingga dipengaruhi EDW (beban H, F, R, P) atau gabungan antara variasi beban gelombang dan variasi beban muatan sedangkan pembebanan analisa manual hanya dipengaruhi oleh variasi muatan (loading pattern) yang diselesaikan mulai dari penyebaran berat kapal, kekuatan memanjang, shear flow, yang akhirnya didapatkan besarnya shear stress pada penampang yang mengalami shear force terbesar. Namun, kesamaan dari kedua metode tersebut adalah dari semua kondisi pembebanan, bagian konstruksi yang mengalami tegangan geser terbesar adalah pada bagian pelat sisi. Hal ini dikarenakan, pelat sisi merupakan bagian konstruksi yang terbuka (open section), sehingga tidak ada pengurangan koreksi shear flow untuk penampang terbuka. Selain itu kapal Bulk Carrier 8665 DWT ini dirancang dengan single skin, sehingga apabila dikenai beban ekstrim maka akan terjadi shear stress terbesar. Dari tabel hasil perbandingan diatas, dapat diketahui bahwa shear stress hasil analisa metode elemen hingga lebih besar atau ekstrim daripada analisa secara manual. Hal ini dikarenakan pembebanan elemen hingga yang disyaratkan oleh 9 7. KESIMPULAN. Dari hasil perhitungan menggunakan metode elemen hingga dengan permodelan dan analisa perhitungan manual, pembebanan dan kondisi batas sesuai dengan ketentuan Common Structural Rule for Bulk Carriers dapat diambil kesimpulan sebagai berikut : a. Perbedaan yang terjadi antara analisa metode elemen hingga berdasarkan CSR bulk Carriers dan analisa perhitungan manual, terjadi karena perbedaan jenis pembebanan. b. Untuk analisa dengan metode elemen hingga, dipengaruhi EDW (beban H, F, R, P) atau gabungan antara variasi beban gelombang dan variasi beban muatan. c. Untuk analisa dengan perhitungan manual, pembebanan analisa manual hanya dipengaruhi oleh variasi muatan (loading pattern) yang diselesaikan mulai dari penyebaran berat kapal, kekuatan memanjang, shear flow, yang akhirnya didapatkan besarnya shear stress pada penampang yang mengalami shear force terbesar. Sehingga, analisa dengan perhitungan manual tidak sesuai lagi digunakan dalam analisa tegangan geser ini.

10 d. Untuk analisa dengan metode elemen hingga, terdapat bagian konstruksi yang mengalami tegangan geser terbesar yang melebihi criteria regulasi CSR bulk carrier, yakni : Pada posisi pelat sisi, tegangan geser menjadi 818 N/mm 2 terjadi pada kondisi pembebanan-5/ Deepest Ballast R1 (hogging). Pada posisi center girder, tegangan geser menjadi 186 N/mm 2 terjadi pada kondisi pembebanan-6/ Multi Port-3 H1 (sagging) dan kondisi pembebanan-13/ Heavy Ballast H1 (sagging). Pada posisi side girder 3500, tegangan geser menjadi 186 N/mm 2 terjadi pada kondisi pembebanan-13/ Heavy Ballast H1 (sagging). e. Untuk analisa tegangan geser akibat beban gaya lintang (shear force) dengan perhitungan manual, tidak terdapat bagian konstruksi yang mengalami tegangan geser terbesar yang melebihi criteria regulasi CSR bulk carrier. Tegangan geser terbesar pada posisi pelat sisi sebesar N/mm 2 tejadi pada kondisi pembebanan-8 (Multi port-4). f. Untuk analisa tegangan geser akibat beban momen torsi dengan perhitungan manual, terdapat bagian konstruksi yang mengalami tegangan geser terbesar yang melebihi criteria regulasi CSR bulk carrier, yakni : Pada posisi pelat geladak utama, pelat ambang palkah, dan pelat topside, tegangan geser menjadi N/mm 2. Pada posisi pelat lajur sisi atas, tegangan geser menjadi N/mm 2. Pada pelat lajur bilga, tegangan geser menjadi N/mm 2. g. Untuk analisa dengan metode elemen hingga, pada konstruksi yang mengalami tegangan geser melebihi batas criteria CSR dilakukan penebalan pelat sehingga tegangan geser turun menjadi : Pada posisi pelat sisi, tegangan geser menjadi 115 N/mm 2 setelah penebalan pelat 24 mm terjadi pada kondisi pembebanan-5/ Deepest Ballast R1 (hogging). Pada posisi center girder, tegangan geser menjadi 93.4 N/mm 2 setelah penebalan pelat 29 mm terjadi pada kondisi pembebanan-6/ Multi Port-3 H1 (sagging) dan kondisi pembebanan-13/ Heavy Ballast H1 (sagging). Pada posisi side girder 3500, tegangan geser menjadi 92.6 N/mm 2 setelah penebalan pelat 28.8 mm terjadi pada kondisi pembebanan- 13/ Heavy Ballast H1 (sagging). h. Untuk analisa tegangan geser akibat beban momen torsi, pada konstruksi yang mengalami tegangan geser melebihi batas criteria CSR dilakukan penebalan pelat sehingga tegangan geser turun menjadi : Pada posisi pelat geladak utama, pelat ambang palkah, dan pelat topside, tegangan geser menjadi N/mm 2 setelah penebalan pelat 30 mm. Pada posisi pelat lajur sisi atas, tegangan geser menjadi N/mm 2 setelah penebalan pelat 27 mm. Pada pelat lajur bilga, tegangan geser menjadi N/mm 2 setelah penebalan pelat 36 mm. i. Dari analisa hasil tegangan geser secara keseluruhan, pembebanan yang disyaratkan oleh regulasi CSR dapat menghasilkan desain konstruksi kapal yang lebih kuat dan lebih aman untuk berlayar pada kondisi ekstrim (Samudra Atlantik Utara). 8. DAFTAR PUSTAKA. IACS. (2010). IACS Common Structural Rules for Bulk Carriers. UK, 1 July RINA, Italy. BKI, (2009). Edition 2008 Volume II Rules for Hull, Biro Klasifikasi Indonesia, Indonesia. Faires, V. M, (1965). Design of Machine Elements, MacMillan Company, USA. Hughes, F.O. (1983). Ship Structural Design. John Wiley & Son, New York. Kyokai, N. (2002). Guidelines for Bulk Carrier Structure, ClassNK, Japan. Rawson, K.J., Tupper, E.C. (1994). Basic Ship Theory, fourth edition, Longman Scientifice Technical, USA. Riyadi, S. (2006). Analisa Hull Girder pada Kapal Box Shape Bulk Carrier (BSBC) DWT Menggunakan Metode Elemen Hingga, Tugas Akhir, ITS, Surabaya. Zakky, A. (2008). Perkiraan Umur Konstruksi Kapal dengan Analisa Fatigue: Study Kasus pada Kapal Bulk Carrier DWT, Tugas Akhir, ITS, Surabaya. 10

ANALISA TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER

ANALISA TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER ANALISA TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER Oleh Nevi Eko Yuliananto NRP. 4107100011 Dosen Pembimbing : Totok Yulianto, S.T, M.T JURUSAN TEKNIK PERKAPALAN FAKULTAS TEKNOLOGI KELUATAN INSTITUT

Lebih terperinci

Tegangan Geser pada Struktur Kapal Kontainer

Tegangan Geser pada Struktur Kapal Kontainer JURNAL TEKNIK ITS Vol. 1, (Sept, 2012) ISSN: 2301-9271 G-46 Tegangan Geser pada Struktur Kapal Kontainer Dwi Qaqa Prasetyatama dan Totok Yulianto Jurusan Teknik Perkapalan, Fakultas Teknologi Kelautan,

Lebih terperinci

PERKIRAAN UMUR KONSTRUKSI KAPAL DENGAN ANALISA FATIGUE: STUDI KASUS PADA KAPAL TANKER DWT. Oleh: OKY ADITYA PUTRA

PERKIRAAN UMUR KONSTRUKSI KAPAL DENGAN ANALISA FATIGUE: STUDI KASUS PADA KAPAL TANKER DWT. Oleh: OKY ADITYA PUTRA PERKIRAAN UMUR KONSTRUKSI KAPAL DENGAN ANALISA FATIGUE: STUDI KASUS PADA KAPAL TANKER 24.000 DWT Oleh: OKY ADITYA PUTRA 4106 100 040 LATAR BELAKANG Metode perhitungan konvensional memiliki banyak kekurangan

Lebih terperinci

APLIKASI METODE ELEMEN HINGGA SEKITAR BUKAAN PALKAH. Disusun oleh : Harquita Rama Dio Nugraha ( ) M. NURUL MISBAH, S.T., M.T.

APLIKASI METODE ELEMEN HINGGA SEKITAR BUKAAN PALKAH. Disusun oleh : Harquita Rama Dio Nugraha ( ) M. NURUL MISBAH, S.T., M.T. Presentasi Tugas Akhir APLIKASI METODE ELEMEN HINGGA PADA PERHITUNGAN TEGANGAN DI SEKITAR BUKAAN PALKAH Disusun oleh : Harquita Rama Dio Nugraha (4105 100 046) Dosen Pembimbing: M. NURUL MISBAH, S.T.,

Lebih terperinci

ANALISA TEGANGAN GESER PADA STRUKTUR CINCIN KAPAL CHEMICAL TANKER 6200 DWT

ANALISA TEGANGAN GESER PADA STRUKTUR CINCIN KAPAL CHEMICAL TANKER 6200 DWT ANALISA TEGANGAN GESER PADA STRUKTUR CINCIN KAPAL CHEMICAL TANKER 6200 DWT ABSTRAC *Totok Yulianto ST, MT, **M. Yudi Oktovianto * Staf Pengajar Jurusan Teknik Perkapalan **Mahasiswa Jurusan Teknik Perkapalan

Lebih terperinci

OPTIMISASI UKURAN UTAMA BULK CARRIER UNTUK PERAIRAN SUNGAI DENGAN MUATAN BERSIH MAKSIMAL TON

OPTIMISASI UKURAN UTAMA BULK CARRIER UNTUK PERAIRAN SUNGAI DENGAN MUATAN BERSIH MAKSIMAL TON OPTIMISASI UKURAN UTAMA BULK CARRIER UNTUK PERAIRAN SUNGAI DENGAN MUATAN BERSIH MAKSIMAL 10000 TON Yopi Priyo Utomo (1), Wasis Dwi Aryawan (2). Jurusan Teknik Perkapalan, Fakultas Teknologi Kelautan, Institut

Lebih terperinci

Studi Perancangan Sistem Konstruksi Kapal Liquified Natural Gas (LNG) CBM

Studi Perancangan Sistem Konstruksi Kapal Liquified Natural Gas (LNG) CBM Studi Perancangan Sistem Konstruksi Kapal Liquified Natural Gas (LNG) 30.000 CBM Zamzamil Huda Abstrak Sering kali dalam perancangan dan pembuatan kapal baru mengalami kelebihan dan pengurangan berat konstruksi

Lebih terperinci

ANALISA SHEAR STRESS PADA STRUKTUR CINCIN KAPAL CRUDE OIL TANKER 6500 DWT BERBASIS METODE ELEMEN HINGGA

ANALISA SHEAR STRESS PADA STRUKTUR CINCIN KAPAL CRUDE OIL TANKER 6500 DWT BERBASIS METODE ELEMEN HINGGA ANALISA SHEAR STRESS PADA STRUKTUR CINCIN KAPAL CRUDE OIL TANKER 6500 DWT BERBASIS METODE ELEMEN HINGGA Andreas Ricardo Hasian Siagian 1, Imam Pujo Mulyatno 1, Berlian A. A 1 1) S1 Teknik Perkapalan, Fakultas

Lebih terperinci

Analisis Kekuatan Konstruksi Sekat Melintang Kapal Tanker dengan Metode Elemen Hingga

Analisis Kekuatan Konstruksi Sekat Melintang Kapal Tanker dengan Metode Elemen Hingga JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: 2337-3539 (2301-9271 Print) G-183 Analisis Kekuatan Konstruksi Sekat Melintang Kapal Tanker dengan Metode Elemen Hingga Ardianus, Septia Hardy Sujiatanti,

Lebih terperinci

Pengembangan Software Loading Manual Kapal Tanker Ukuran Sampai Dengan DWT

Pengembangan Software Loading Manual Kapal Tanker Ukuran Sampai Dengan DWT Pengembangan Software Loading Manual Kapal Tanker Ukuran Sampai Dengan 17500 DWT Oleh : NUR RIDWAN RULIANTO 4106100064 Dosen Pembimbing : Prof. Ir. Djauhar Manfaat M. Sc., Ph.D JURUSAN TEKNIK PERKAPALAN

Lebih terperinci

Pengembangan Software Loading Manual Tanker Ukuran Sampai Dengan DWT

Pengembangan Software Loading Manual Tanker Ukuran Sampai Dengan DWT JURNAL TEKNIK POMITS Vol. 1, No. 2, (2013) ISSN: 2301-9271 1 Pengembangan Software Loading Manual Tanker Ukuran Sampai Dengan 17.500 DWT Nur Ridwan Rulianto dan Djauhar Manfaat Jurusan Teknik Perkapalan,

Lebih terperinci

Analisa Tegangan pada Cross Deck Kapal Ikan Katamaran 10 GT menggunakan Metode Elemen Hingga

Analisa Tegangan pada Cross Deck Kapal Ikan Katamaran 10 GT menggunakan Metode Elemen Hingga JURNAL PENELITIAN 1 Analisa Tegangan pada Cross Deck Kapal Ikan Katamaran 10 GT menggunakan Metode Elemen Hingga Erik Chabibi, Totok Yulianto, I Ketut Suastika Teknik Perkapalan, Fakultas Teknologi Kelautan,

Lebih terperinci

DESAIN KAPAL TANKER 3500 DWT

DESAIN KAPAL TANKER 3500 DWT DESAIN KAPAL TANKER 3500 DWT Marcel Winfred Yonatan 1 Pembimbing: Prof.Dr.Ir. Ricky Lukman Tawekal 2 Program Studi Sarjana Teknik Kelautan Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung,

Lebih terperinci

Analisis Fatigue Life pada Bracket Oil Tanker dengan Beban Sloshing

Analisis Fatigue Life pada Bracket Oil Tanker dengan Beban Sloshing JURNAL TEKNIK ITS Vol. 7, No. 1 (2018), 2337-3520 (2301-928X Print) G 42 Analisis Fatigue Life pada Bracket Oil Tanker dengan Beban Sloshing Muhamad Gifari Rusdi, M. Nurul Misbah, dan Totok Yulianto Departemen

Lebih terperinci

PRESENTASI TUGAS AKHIR (P3)

PRESENTASI TUGAS AKHIR (P3) PRESENTASI TUGAS AKHIR (P3) OLEH : AHMAD ADILAH 4310 100 012 DOSEN PEMBIMBING : 1. Prof. Eko Budi Djatmiko, M. Sc., Ph. D 2. Dr. Eng. Rudi Walujo Prastianto, ST., MT. Jurusan Teknik Kelautan Fakultas Teknologi

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) G-5

JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: ( Print) G-5 JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) G-5 Analisa Tegangan pada Cross Deck Kapal Ikan Katamaran 10 GT Menggunakan Metode Elemen Hingga Erik Chabibi, Totok Yulianto,

Lebih terperinci

KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN

KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN Samuel 1, Eko Sasmito Hadi 1, Ario Restu Sratudaku 1, 1) Program Studi S1 Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia Email

Lebih terperinci

PERBANDINGAN KEKUATAN KONSTRUKSI LAMBUNG MONOHULL DENGAN MONOMARAN PADA KAPAL RO-RO 5000 GT

PERBANDINGAN KEKUATAN KONSTRUKSI LAMBUNG MONOHULL DENGAN MONOMARAN PADA KAPAL RO-RO 5000 GT PERBANDINGAN KEKUATAN KONSTRUKSI LAMBUNG MONOHULL DENGAN MONOMARAN PADA KAPAL RO-RO 5000 GT Angga Pradipta, Ahmad Fauzan Zakki, Hartono Yudo 1) 1) Program Studi S1 Teknik Perkapalan, Fakultas Teknik, Universitas

Lebih terperinci

JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro

JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro http://ejournal3.undip.ac.id/index.php/naval JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro ISSN 2338-0322 Studi Kasus Puntiran Pada Konstruksi Bangunan

Lebih terperinci

PERHITUNGAN BUKAAN KULIT SHELL EXPANTION

PERHITUNGAN BUKAAN KULIT SHELL EXPANTION BAB V PERHITUNGAN BUKAAN KULIT Perhitungan Shell Expansion ( bukaan kulit ) kapal MT. SADEWA diambil dari perhitungan Rencana Profil berdasarkan Peraturan Biro Klasifikasi Indonesia Volume II, Rules for

Lebih terperinci

KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN

KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN KARAKTERISTIK KM. ZAISAN STAR AKIBAT PERUBAHAN MUATAN Samuel, Eko Sasmito Hadi, Ario Restu Sratudaku Program Studi S1 Teknik Perkapalan, Fakultas Teknik, Universitas Diponegoro, Indonesia Abstrak KM. Zaisan

Lebih terperinci

BAB V SHELL EXPANSION

BAB V SHELL EXPANSION BAB V SHELL EXPANSION A. PERHITUNGAN BEBAN A.1. Beban Geladak Cuaca (Load and Weather Deck) Yang dianggap sebagai geladak cuaca adalah semua geladak yang bebas kecuali geladak yang tidak efektif yang terletak

Lebih terperinci

JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro

JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro http://ejournal3.undip.ac.id/index.php/naval JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro ISSN 2338-0322 Optimalisasi Desain Struktur Kekuatan

Lebih terperinci

Analisa Kekuatan Sekat Bergelombang Kapal Tanker Menggunakan Metode Elemen Hingga

Analisa Kekuatan Sekat Bergelombang Kapal Tanker Menggunakan Metode Elemen Hingga JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: 2337-3539 (2301-9271 Print) G-282 Analisa Kekuatan Sekat Bergelombang Kapal Tanker Menggunakan Metode Elemen Hingga Zaki Rabbani, Achmad Zubaydi, dan Septia

Lebih terperinci

Kajian Kekuatan Kolom-Ponton Semisubmersible dengan Konfigurasi Delapan Kolom Berpenampang Persegi Empat Akibat Eksitasi Gelombang

Kajian Kekuatan Kolom-Ponton Semisubmersible dengan Konfigurasi Delapan Kolom Berpenampang Persegi Empat Akibat Eksitasi Gelombang JURNAL TEKNIK POMIT Vol., No., (204 IN: 2337-3539 (-6 Kajian Kekuatan Kolom-Ponton emisubmersible dengan Konfigurasi Delapan Kolom Berpenampang Persegi Empat Akibat Eksitasi Gelombang Yosia Prakoso, Eko

Lebih terperinci

STUDI PERANCANGAN SISTEM PENGGADINGAN KONSTRUKSI RUANG MUAT KAPAL SUPER CONTAINER TEUS (MALACCA- MAX)

STUDI PERANCANGAN SISTEM PENGGADINGAN KONSTRUKSI RUANG MUAT KAPAL SUPER CONTAINER TEUS (MALACCA- MAX) STUDI PERANCANGAN SISTEM PENGGADINGAN KONSTRUKSI RUANG MUAT KAPAL SUPER CONTAINER 18.000 TEUS (MALACCA- MAX) Amhar Wahyudi Harahap 1), Ahmad Fauzan Zakki 1), Hartono Yudo 1) 1) Jurusan S1 Teknik Perkapalan,

Lebih terperinci

BAB V RENCANA BUKAAN KULIT (SHEEL EXPANSION) Beban sisi geladak dihitung menurut rumus BKI 2006 Vol II Sect.

BAB V RENCANA BUKAAN KULIT (SHEEL EXPANSION) Beban sisi geladak dihitung menurut rumus BKI 2006 Vol II Sect. BAB V RENCANA BUKAAN KULIT () A. Perhitungan Beban A.1 Beban Sisi Beban sisi geladak dihitung menurut rumus BKI 2006 Vol II Sect. 4.B.2.1 A.1.1. Dibawah Garis Air Muat Beban sisi geladak dibawah garis

Lebih terperinci

Kajian Kekuatan Struktur Semi-submersible dengan Konfigurasi Enam Kaki Berpenampang Persegi Empat Akibat Eksitasi Gelombang

Kajian Kekuatan Struktur Semi-submersible dengan Konfigurasi Enam Kaki Berpenampang Persegi Empat Akibat Eksitasi Gelombang JURNAL TEKNIK POMITS Vol. 2, No. 1, (2013) ISSN: 2337-3539 (2301-9271 Print) 1 Kajian Kekuatan Struktur Semi-submersible dengan Konfigurasi Enam Kaki Berpenampang Persegi Empat Akibat Eksitasi Gelombang

Lebih terperinci

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m

Soal 2. b) Beban hidup : beban merata, w L = 45 kn/m beban terpusat, P L3 = 135 kn P1 P2 P3. B C D 3,8 m 3,8 m 3,8 m 3,8 m Soal 2 Suatu elemen struktur sebagai balok pelat berdinding penuh (pelat girder) dengan ukuran dan pembebanan seperti tampak pada gambar di bawah. Flens tekan akan diberi kekangan lateral di kedua ujung

Lebih terperinci

ANALISIS TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER DENGAN DUA LUBANG PALKAH TIAP RUANG MUAT

ANALISIS TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER DENGAN DUA LUBANG PALKAH TIAP RUANG MUAT TUGAS AKHIR MN141581 ANALISIS TEGANGAN GESER PADA STRUKTUR KAPAL BULK CARRIER DENGAN DUA LUBANG PALKAH TIAP RUANG MUAT RIZKI YANUAR ARDIANTO NRP. 4111 100 068 DOSEN PEMBIMBING Totok Yulianto, S.T., M.T.

Lebih terperinci

KAJIAN KEKUATAN KOLOM-PONTON SEMISUBMERSIBLE DENGAN KONFIGURASI DELAPAN KOLOM BERPENAMPANG PERSEGI EMPAT AKIBAT EKSITASI GELOMBANG

KAJIAN KEKUATAN KOLOM-PONTON SEMISUBMERSIBLE DENGAN KONFIGURASI DELAPAN KOLOM BERPENAMPANG PERSEGI EMPAT AKIBAT EKSITASI GELOMBANG KAJIAN KEKUATAN KOLOM-PONTON SEMISUBMERSIBLE DENGAN KONFIGURASI DELAPAN KOLOM BERPENAMPANG PERSEGI EMPAT AKIBAT EKSITASI GELOMBANG YOSIA PRAKOSO 4310 100 017 PEMBIMBING: Prof. Ir. Eko Budi Djatmiko, M.

Lebih terperinci

KAPAL JURNAL ILMU PENGETAHUAN & TEKNOLOGI KELAUTAN

KAPAL JURNAL ILMU PENGETAHUAN & TEKNOLOGI KELAUTAN http://ejournal.undip.ac.id/index.php/kapal 1829-8370 (p) 2301-9069 (e) KAPAL JURL ILMU PENGETAHUAN & TEKNOLOGI KELAUTAN Perbandingan Respon Struktur Kapal Oil Chemical Tanker di North Atlantic Dan Indonesian

Lebih terperinci

KEKUATAN STRUKTUR KONSTRUKSI KAPAL AKIBAT PENAMBAHAN PANJANG. Thomas Mairuhu *) Abstract

KEKUATAN STRUKTUR KONSTRUKSI KAPAL AKIBAT PENAMBAHAN PANJANG. Thomas Mairuhu *) Abstract KEKUATAN STRUKTUR KONSTRUKSI KAPAL AKIBAT PENAMBAHAN PANJANG Thomas Mairuhu *) Abstract The passenger cargo ship which has = 0 ton and 7 meter in length between perpendicular was prolong in 4 meter in

Lebih terperinci

Bagaimana menentukan spesifikasi kantung udara yang efektif dengan memvariasikan ukuran tongkang, spesifikasi airbag dan jarak antar airbag?

Bagaimana menentukan spesifikasi kantung udara yang efektif dengan memvariasikan ukuran tongkang, spesifikasi airbag dan jarak antar airbag? Latar Balakang Peluncuran yaitu proses memindahkan berat kapal dari darat ke perairan. Metode peluncuran mengalami perkembangan sejalan dengan perkembangan teknologi. Peluncuran dengan sarana Airbag semakin

Lebih terperinci

Analisis Kekuatan Konstruksi Wing Tank Kapal Tanker Menggunakan Metode Elemen Hingga

Analisis Kekuatan Konstruksi Wing Tank Kapal Tanker Menggunakan Metode Elemen Hingga JURNAL TEKNIK ITS Vol. 6, No., (017) ISSN: 337-3539 (301-971 Print) G-77 Analisis Kekuatan Konstruksi Wing Tank Kapal Tanker Menggunakan Metode Elemen Hingga Dedi Dwi Sanjaya, Septia Hardy Sujiatanti,

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol

BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol BAB II DASAR TEORI 2.1 Pengertian Rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

Perancangan Sistem Transmisi Untuk Penerapan Energi Laut

Perancangan Sistem Transmisi Untuk Penerapan Energi Laut Perancangan Sistem Transmisi Untuk Penerapan Energi Laut Zeno (1) dan Irfan Syarif Arief, ST.MT (2) (1) Mahasiswa Teknik Sistem Perkapalan ITS, (2),(3) Staff Pengajar Teknik Sistem Perkapalan ITS, Fakultas

Lebih terperinci

Oleh: Agus Tri Wahyu Dosen Pembimbing: Aries Sulisetyono, ST.,MASc.,Ph.D Dosen Pembimbing: Totok Yulianto. ST.,MT.

Oleh: Agus Tri Wahyu Dosen Pembimbing: Aries Sulisetyono, ST.,MASc.,Ph.D Dosen Pembimbing: Totok Yulianto. ST.,MT. 2013 Oleh: Agus Tri Wahyu Dosen Pembimbing: Aries Sulisetyono, ST.,MASc.,Ph.D. 1971 0320 1995121002 Dosen Pembimbing: Totok Yulianto. ST.,MT. 1970 0731 1995121001 PANDUAN 1. Teori Mekanika Teknik 2.

Lebih terperinci

Oleh : Fadhila Sahari Dosen Pembimbing : Budianto, ST. MT.

Oleh : Fadhila Sahari Dosen Pembimbing : Budianto, ST. MT. Oleh : Fadhila Sahari 6108 030 028 Dosen Pembimbing : Budianto, ST. MT. PROGRAM STUDI TEKNIK PERENCANAAN DAN KONSTRUKSI KAPAL JURUSAN TEKNIK BANGUNAN KAPAL POLITEKNIK PERKAPALAN NEGERI SURABAYA INSTITUT

Lebih terperinci

Perancangan Aplikasi Perhitungan dan Optimisasi Konstruksi Profil pada Midship Kapal Berdasar Rule Biro Klasifikasi Indonesia

Perancangan Aplikasi Perhitungan dan Optimisasi Konstruksi Profil pada Midship Kapal Berdasar Rule Biro Klasifikasi Indonesia JURNAL TEKNIK ITS Vol. 7, No. 1 (2018), 27-520 (201-928X Print) G 12 Perancangan Aplikasi Perhitungan dan Optimisasi Konstruksi Profil pada Midship Kapal Berdasar Rule Biro Klasifikasi Indonesia Aditya

Lebih terperinci

STRENGTH ANALYSIS OF CONTAINER DECK CONSTRUCTION MV. SINAR DEMAK EFECT OF CHARGES CONTAINER USING FINITE ELEMENT METHOD

STRENGTH ANALYSIS OF CONTAINER DECK CONSTRUCTION MV. SINAR DEMAK EFECT OF CHARGES CONTAINER USING FINITE ELEMENT METHOD STRENGTH ANALYSIS OF CONTAINER DECK CONSTRUCTION MV. SINAR DEMAK EFECT OF CHARGES CONTAINER USING FINITE ELEMENT METHOD Imam Pujo. M, Berlian AA, Rachmat Alif Maulana Department of Naval Engineering, Engineering

Lebih terperinci

PERKIRAAN UMUR KONSTRUKSI KAPAL DENGAN ANALISA FATIGUE: STUDI KASUS PADA KAPAL TANKER DWT. Oky Aditya Putra *1, Ir.Soeweify,M.

PERKIRAAN UMUR KONSTRUKSI KAPAL DENGAN ANALISA FATIGUE: STUDI KASUS PADA KAPAL TANKER DWT. Oky Aditya Putra *1, Ir.Soeweify,M. PERKIRAAN UMUR KONSTRUKSI KAPAL DENGAN ANALISA FATIGUE: STUDI KASUS PADA KAPAL TANKER 24.000 DWT Oky Aditya Putra *1, Ir.Soeweify,M.Eng 2, 1 Mahasiswa Jurusan Teknik Perkapalan FTK-ITS 2 Dosen Jurusan

Lebih terperinci

PERHITUNGAN FATIGUE LIFE KAPAL TANKER SINGLE HULL DIATAS DWT YANG BEROPERASI DI INDONESIA USIA LEBIH DARI 15 TAHUN PADA TAHUN 2012

PERHITUNGAN FATIGUE LIFE KAPAL TANKER SINGLE HULL DIATAS DWT YANG BEROPERASI DI INDONESIA USIA LEBIH DARI 15 TAHUN PADA TAHUN 2012 PRESENTASI TUGAS AKHIR PERHITUNGAN FATIGUE LIFE KAPAL TANKER SINGLE HULL DIATAS 20.000 DWT YANG BEROPERASI DI INDONESIA USIA LEBIH DARI 15 TAHUN PADA TAHUN 2012 Oleh : Argo Yogiarto- 4109 100 055 Dosen

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Statika rangka Dalam konstruksi rangka terdapat gaya-gaya yang bekerja pada rangka tersebut. Dalam ilmu statika keberadaan gaya-gaya yang mempengaruhi sistem menjadi suatu obyek

Lebih terperinci

ANALISA KEKUATAN DECK TONGKANG MUATAN TIANG PANCANG 750 DWT DENGAN SOFTWARE BERBASIS METODE ELEMEN HINGGA

ANALISA KEKUATAN DECK TONGKANG MUATAN TIANG PANCANG 750 DWT DENGAN SOFTWARE BERBASIS METODE ELEMEN HINGGA ANALISA KEKUATAN DECK TONGKANG MUATAN TIANG PANCANG 750 DWT DENGAN SOFTWARE BERBASIS METODE ELEMEN HINGGA Sukanto Jatmiko, Saptadi ABSTRACT Pada awalnya pihak pemilik kapal merencanakan material baja 00

Lebih terperinci

Perancangan Buoy Mooring System Untuk Loading Unloading Aframax Tanker Di Terminal Kilang Minyak Balongan

Perancangan Buoy Mooring System Untuk Loading Unloading Aframax Tanker Di Terminal Kilang Minyak Balongan Perancangan Buoy Mooring System Untuk Loading Unloading Aframax Tanker Di Terminal Kilang Minyak Balongan OLEH: REZHA AFRIYANSYAH 4109100018 DOSEN PEMBIMBING IR. WASIS DWI ARYAWAN, M.SC., PH.D. NAVAL ARCHITECTURE

Lebih terperinci

ANALISA LENTURAN DAN KONSENTRASI TEGANGAN PADA PELAT SISI AKIBAT BEBAN SISI DAN VARIASI JARAK GADING DENGAN METODE ELEMEN HINGGA

ANALISA LENTURAN DAN KONSENTRASI TEGANGAN PADA PELAT SISI AKIBAT BEBAN SISI DAN VARIASI JARAK GADING DENGAN METODE ELEMEN HINGGA ANALISA LENTURAN DAN KONSENTRASI TEGANGAN PADA PELAT SISI AKIBAT BEBAN SISI DAN VARIASI JARAK GADING DENGAN METODE ELEMEN HINGGA Nama : Teguh Putranto NRP : 4108100063 Dosen Pembimbing : Ir. Asjhar Imron,

Lebih terperinci

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Konferensi Nasional Teknik Sipil 3 (KoNTekS 3) Jakarta, 6 7 Mei 2009 KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU Estika 1 dan Bernardinus Herbudiman 2 1 Jurusan Teknik Sipil,

Lebih terperinci

ANALISA TEKNIS PENENTUAN SPESIFIKASI KANTUNG UDARA (AIRBAG) SEBAGAI SARANA UNTUK PELUNCURAN TONGKANG

ANALISA TEKNIS PENENTUAN SPESIFIKASI KANTUNG UDARA (AIRBAG) SEBAGAI SARANA UNTUK PELUNCURAN TONGKANG ANALISA TEKNIS PENENTUAN SPESIFIKASI KANTUNG UDARA (AIRBAG) SEBAGAI SARANA UNTUK PELUNCURAN TONGKANG Alex Prastyawan*, Ir Heri Supomo, M.Sc** *Mahasiswa Jurusan Teknik Perkapalan **Dosen Jurusan Teknik

Lebih terperinci

Latar Belakang: MT MARLINA XV (IMO Number ),tahun 1983, DWT,

Latar Belakang: MT MARLINA XV (IMO Number ),tahun 1983, DWT, 1 Latar Belakang: PLTU 2 Papua Jayapura (2x10MW) (PLN), 250.000 ton batubara kalori rendah / tahun. Provinsi Sumatera Selatan, nilai cadangan batubara kalori rendah mencapai 2.426,00 juta ton, massa jenis

Lebih terperinci

KAJIAN TEKNIS DAN EKONOMIS KONSTRUKSI SINGLE

KAJIAN TEKNIS DAN EKONOMIS KONSTRUKSI SINGLE KAJIAN TEKNIS DAN EKONOMIS KONSTRUKSI SINGLE DAN DOUBLE PADA 18.500 DWT DRY CARGO VESSEL DENGAN MENGGUNAKAN PROGRAM KOMPUTER YANG BERBASIS METODE ELEMEN HINGGA DITINJAU DARI PENGGUNAAN MATERIAL,HARGA,BIAYA

Lebih terperinci

Analisis Teknis dan Ekonomis Konversi Landing Craft Tank (LCT) Menjadi Self-Propelled Oil Barge (SPOB)

Analisis Teknis dan Ekonomis Konversi Landing Craft Tank (LCT) Menjadi Self-Propelled Oil Barge (SPOB) JURNAL TEKNIK POMITS Vol. 2, No. 1, (213) ISSN: 2337-3539 (231-9271 Print) G-84 Analisis Teknis dan Ekonomis Konversi Landing Craft Tank (LCT) Menjadi Self-Propelled Oil Barge (SPOB) Zainul Arifin Fatahillah

Lebih terperinci

1.1 Latar Belakang. 1. Kapal tongkang jenis Floating Crane.

1.1 Latar Belakang. 1. Kapal tongkang jenis Floating Crane. BAB I PENDAHULUAN 1.1 Latar Belakang 1. Kapal tongkang jenis Floating Crane. Kapal Tongkang merupakan kapal yang khusus untuk dimuati barang curah ataupun kapal tenaga pembantu sebagai transfer antara

Lebih terperinci

ANALISA KEKUATAN STRUKTUR TANK DECK PADA KAPAL (LST) LANDING SHIP TANK KRI.TELUK BINTUNI 7000 DWT MENGGUNAKAN METODE ELEMEN HINGGA

ANALISA KEKUATAN STRUKTUR TANK DECK PADA KAPAL (LST) LANDING SHIP TANK KRI.TELUK BINTUNI 7000 DWT MENGGUNAKAN METODE ELEMEN HINGGA ANALISA KEKUATAN STRUKTUR TANK DECK PADA KAPAL (LST) LANDING SHIP TANK KRI.TELUK BINTUNI 7000 DWT MENGGUNAKAN METODE ELEMEN HINGGA Fasya Nurayoga 1), Imam Pujo Mulyatno 1), Berlian Arswendo 1), 1) Departemen

Lebih terperinci

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran Bab 5 Puntiran 5.1 Pendahuluan Pada bab ini akan dibahas mengenai kekuatan dan kekakuan batang lurus yang dibebani puntiran (torsi). Puntiran dapat terjadi secara murni atau bersamaan dengan beban aksial,

Lebih terperinci

PERHITUNGAN FATIGUE LIFE KAPAL TANKER SINGLE HULL DIATAS DWT YANG BEROPERASI DI INDONESIA USIA LEBIH DARI 15 TAHUN PADA TAHUN 2012

PERHITUNGAN FATIGUE LIFE KAPAL TANKER SINGLE HULL DIATAS DWT YANG BEROPERASI DI INDONESIA USIA LEBIH DARI 15 TAHUN PADA TAHUN 2012 PERHITUNGAN FATIGUE LIFE KAPAL TANKER SINGLE HULL DIATAS 20.000 DWT YANG BEROPERASI DI INDONESIA USIA LEBIH DARI 15 TAHUN PADA TAHUN 2012 Argo Yogiarto*, Ir. Asjhar Imron, M.Sc., MSE., PED.**, Ir. Soeweify,

Lebih terperinci

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( )

STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7. Oleh : RACHMAWATY ASRI ( ) TUGAS AKHIR STUDI PERILAKU TEKUK TORSI LATERAL PADA BALOK BAJA BANGUNAN GEDUNG DENGAN MENGGUNAKAN PROGRAM ABAQUS 6.7 Oleh : RACHMAWATY ASRI (3109 106 044) Dosen Pembimbing: Budi Suswanto, ST. MT. Ph.D

Lebih terperinci

Resume Mekanika Struktur I

Resume Mekanika Struktur I Resume Mekanika Struktur Disusun Oleh : ANDHKA PRAMAD (NM : 14/369981/SV/07488) Kelas D1 Untuk memenuhi tugas dari Bapak r. Tarmono, MT (NP : 195401041987031001) Universitas Gadjah Mada ogyakarta Daftar

Lebih terperinci

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN

PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN ANALISIS PROFIL CFS (COLD FORMED STEEL) DALAM PEMASANGAN STRUKTUR RANGKA ATAP YANG EFISIEN Torkista Suadamara NRP : 0521014 Pembimbing : Ir. GINARDY HUSADA, MT FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

Analisis Tegangan Akibat Beban Gelombang pada Struktur Kapal Perang Tipe Corvette

Analisis Tegangan Akibat Beban Gelombang pada Struktur Kapal Perang Tipe Corvette Analisis Tegangan Akibat Beban Gelombang pada Struktur Kapal Perang Tipe Corvette G72 Pratama Yuli Arianto, Aries Sulisetyono, Teguh Putranto Jurusan Teknik Perkapalan, Fakultas Teknologi Kelautan, Institut

Lebih terperinci

STUDI EFECTIVE TORSIONAL CONSTANT UNTUK BERBAGAI PROFIL STUDI KASUS PROFIL GUNUNG GARUDA (254S)

STUDI EFECTIVE TORSIONAL CONSTANT UNTUK BERBAGAI PROFIL STUDI KASUS PROFIL GUNUNG GARUDA (254S) STUDI EFECTIVE TORSIONAL CONSTANT UNTUK BERBAGAI PROFIL STUDI KASUS PROFIL GUNUNG GARUDA (54S) Kamaludin Program Studi Teknik Sipil, ITENAS - Bandung, Jl. PHH Mustoa Bandung Email: kmldn@yahoo.com atau

Lebih terperinci

Analisa Kekuatan Memanjang Floating Dock Konversi Dari Tongkang dengan Metode Elemen Hingga

Analisa Kekuatan Memanjang Floating Dock Konversi Dari Tongkang dengan Metode Elemen Hingga G148 Analisa Kekuatan Memanjang Floating Dock Konversi Dari Tongkang dengan Metode Elemen Hingga Dwi Rendra Pramono, Asjhar Imron, & Mohammad Nurul Misbah Jurusan Teknik Perkapalan, Fakultas Teknologi

Lebih terperinci

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6.

LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan. Bab 6. LAPORAN TUGAS AKHIR (KL-40Z0) Perancangan Dermaga dan Trestle Tipe Deck On Pile di Pelabuhan Garongkong, Propinsi Sulawesi Selatan Bab 6 Penulangan Bab 6 Penulangan Perancangan Dermaga dan Trestle Tipe

Lebih terperinci

ANALISIS TEKNIS DAN EKONOMIS KONVERSI KAPAL TANKER SINGLE HULL MENJADI DOUBLE HULL

ANALISIS TEKNIS DAN EKONOMIS KONVERSI KAPAL TANKER SINGLE HULL MENJADI DOUBLE HULL PRESENTASI TUGAS AKHIR ANALISIS TEKNIS DAN EKONOMIS KONVERSI KAPAL TANKER SINGLE HULL MENJADI DOUBLE HULL Dipresentasikan Oleh : MUHAMMAD KHARIS - 4109 100 094 Dosen Pembimbing : Ir. Triwilaswandio W.P.,

Lebih terperinci

Tegangan Dalam Balok

Tegangan Dalam Balok Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya

Lebih terperinci

ANALISA KEKUATAN DECK PADA PONTON BATUBARA PRAWIRAMAS PURI PRIMA II 1036 DWT DENGAN SOFTWARE BERBASIS METODE ELEMEN HINGGA

ANALISA KEKUATAN DECK PADA PONTON BATUBARA PRAWIRAMAS PURI PRIMA II 1036 DWT DENGAN SOFTWARE BERBASIS METODE ELEMEN HINGGA ANALISA KEKUATAN DECK PADA PONTON BATUBARA PRAWIRAMAS PURI PRIMA II 1036 DWT DENGAN SOFTWARE BERBASIS METODE ELEMEN HINGGA Berlian Arswendo A, Burhan Arifin Abstrak Ponton merupakan alat apung yang bentuknya

Lebih terperinci

Perancangan Dermaga Pelabuhan

Perancangan Dermaga Pelabuhan Perancangan Dermaga Pelabuhan PENDAHULUAN 1. Latar Belakang Kompetensi mahasiswa program sarjana Teknik Kelautan dalam perancangan dermaga pelabuhan Permasalahan konkret tentang aspek desain dan analisis

Lebih terperinci

Analisa Kekuatan Konstruksi Corrugated Watertight Bulkhead Dengan Transverse Plane Watertight Bulkhead Pada Pemasangan Pipa di Ruang Muat Kapal Tanker

Analisa Kekuatan Konstruksi Corrugated Watertight Bulkhead Dengan Transverse Plane Watertight Bulkhead Pada Pemasangan Pipa di Ruang Muat Kapal Tanker 1 Analisa Kekuatan Konstruksi Corrugated Watertight Bulkhead Dengan Transverse Plane Watertight Bulkhead Pada Pemasangan Pipa di Ruang Muat Kapal Tanker Stevan Manuky Putra, Ir. Agoes Santoso, M.Sc., M.Phil.,

Lebih terperinci

Analisa Struktur Baja Pada Platform Kapal Trimaran Menggunakan Pendekatan Elemen Hingga

Analisa Struktur Baja Pada Platform Kapal Trimaran Menggunakan Pendekatan Elemen Hingga 1 Analisa Struktur Baja Pada Platform Kapal Trimaran Menggunakan Pendekatan Elemen Hingga Agus Tri Wahyu, Aries Sulisetyono, & Totok Yulianto. Jurusan Teknik Perkapalan, Fakultas Teknologi Kelautan Institut

Lebih terperinci

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi 1 Analisa Tegangan pada Pipa yang Memiliki Sumuran Berbentuk Limas dengan Variasi Kedalaman Muhammad S. Sholikhin, Imam Rochani, dan Yoyok S. Hadiwidodo Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan,

Lebih terperinci

PERHITUNGAN BEBAN RANCANGAN (DESIGN LOAD) KONSTRUKSI KAPAL BARANG UMUM DWT BERBAHAN BAJA MENURUT REGULASI KELAS

PERHITUNGAN BEBAN RANCANGAN (DESIGN LOAD) KONSTRUKSI KAPAL BARANG UMUM DWT BERBAHAN BAJA MENURUT REGULASI KELAS PERHITUNGAN BEBAN RANCANGAN (DESIGN LOAD) KONSTRUKSI KAPAL BARANG UMUM 12.000 DWT BERBAHAN BAJA MENURUT REGULASI KELAS Iswadi Nur Program Studi Teknik Perkapalan, Fakultas Teknik, UPN Veteran Jakarta,

Lebih terperinci

DESAIN ULANG KAPAL PERINTIS 200 DWT UNTUK MENINGKATKAN PERFORMA KAPAL

DESAIN ULANG KAPAL PERINTIS 200 DWT UNTUK MENINGKATKAN PERFORMA KAPAL Sidang Tugas Akhir (MN 091382) DESAIN ULANG KAPAL PERINTIS 200 DWT UNTUK MENINGKATKAN PERFORMA KAPAL Oleh : Galih Andanniyo 4110100065 Dosen Pembimbing : Ir. Wasis Dwi Aryawan, M.Sc., Ph.D. Jurusan Teknik

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK

ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA ABSTRAK ANALISIS DAN DESAIN STRUKTUR RANGKA GEDUNG 20 TINGKAT SIMETRIS DENGAN SISTEM GANDA Yonatan Tua Pandapotan NRP 0521017 Pembimbing :Ir Daud Rachmat W.,M.Sc ABSTRAK Sistem struktur pada gedung bertingkat

Lebih terperinci

ANALISA KEKUATAN KONSTRUKSI MODIFIKASI DOUBLE BOTTOM AKIBAT ALIH FUNGSI PADA KAPAL ACCOMODATION WORK BARGE (AWB) 5640 DWT DENGAN METODE ELEMEN HINGGA

ANALISA KEKUATAN KONSTRUKSI MODIFIKASI DOUBLE BOTTOM AKIBAT ALIH FUNGSI PADA KAPAL ACCOMODATION WORK BARGE (AWB) 5640 DWT DENGAN METODE ELEMEN HINGGA ANALISA KEKUATAN KONSTRUKSI MODIFIKASI DOUBLE BOTTOM AKIBAT ALIH FUNGSI PADA KAPAL ACCOMODATION WORK BARGE (AWB) 5640 DWT DENGAN METODE ELEMEN HINGGA Yuli Prastyo, Imam Pujo Mulyatno, Hartono Yudho S1

Lebih terperinci

Macam-macam Tegangan dan Lambangnya

Macam-macam Tegangan dan Lambangnya Macam-macam Tegangan dan ambangnya Tegangan Normal engetahuan dan pengertian tentang bahan dan perilakunya jika mendapat gaya atau beban sangat dibutuhkan di bidang teknik bangunan. Jika suatu batang prismatik,

Lebih terperinci

BAB II TEORI DASAR. unloading. Berdasarkan sistem penggeraknya, excavator dibedakan menjadi. efisien dalam operasionalnya.

BAB II TEORI DASAR. unloading. Berdasarkan sistem penggeraknya, excavator dibedakan menjadi. efisien dalam operasionalnya. BAB II TEORI DASAR 2.1 Hydraulic Excavator Secara Umum. 2.1.1 Definisi Hydraulic Excavator. Excavator adalah alat berat yang digunakan untuk operasi loading dan unloading. Berdasarkan sistem penggeraknya,

Lebih terperinci

ANALISA KEKUATAN KONSTRUKSI CAR DECK AKIBAT PENAMBAHAN DECK PADA RUANG MUAT KAPAL MOTOR ZAISAN STAR 411 DWT DENGAN METODE ELEMEN HINGGA

ANALISA KEKUATAN KONSTRUKSI CAR DECK AKIBAT PENAMBAHAN DECK PADA RUANG MUAT KAPAL MOTOR ZAISAN STAR 411 DWT DENGAN METODE ELEMEN HINGGA ANALISA KEKUATAN KONSTRUKSI CAR DECK AKIBAT PENAMBAHAN DECK PADA RUANG MUAT KAPAL MOTOR ZAISAN STAR 411 DWT DENGAN METODE ELEMEN HINGGA Aziz Mukhsin 1, Imam Pujo Mulyatno 1, Sarjito Joko Sisworo 1 1) Jurusan

Lebih terperinci

STUDI ANALISIS PERTEMUAN BALOK KOLOM BERBENTUK T STRUKTUR RANGKA BETON BERTULANG DENGAN PEMODELAN STRUT-AND- TIE ABSTRAK

STUDI ANALISIS PERTEMUAN BALOK KOLOM BERBENTUK T STRUKTUR RANGKA BETON BERTULANG DENGAN PEMODELAN STRUT-AND- TIE ABSTRAK STUDI ANALISIS PERTEMUAN BALOK KOLOM BERBENTUK T STRUKTUR RANGKA BETON BERTULANG DENGAN PEMODELAN STRUT-AND- TIE Tidaryo Kusumo NRP : 0821035 Pembimbing: Winarni Hadipratomo, Ir ABSTRAK Strut-and-tie model

Lebih terperinci

BAB IV ALTERNATIF DESAIN DAN ANALISIS PERKUATAN FONDASI

BAB IV ALTERNATIF DESAIN DAN ANALISIS PERKUATAN FONDASI BAB IV ALTERNATIF DESAIN DAN ANALISIS PERKUATAN FONDASI 4.1 ALTERNATIF PERKUATAN FONDASI CAISSON Dari hasil bab sebelumnya, didapatkan kondisi tiang-tiang sekunder dari secant pile yang membentuk fondasi

Lebih terperinci

JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro

JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro http://ejournal-s1.undip.ac.id/index.php/naval JURNAL TEKNIK PERKAPALAN Jurnal Hasil Karya Ilmiah Lulusan S1 Teknik Perkapalan Universitas Diponegoro ISSN 2338-0322 Studi Analisa Struktur Lambung Semi

Lebih terperinci

PRESENTASI TUGAS AKHIR (MN091382)

PRESENTASI TUGAS AKHIR (MN091382) PRESENTASI TUGAS AKHIR (MN091382) Jurusan Teknik Perkapalan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember KONSEP DESAIN KAPAL PEMBERSIH SUNGAI : Studi Kasus Sungai Kepetingan Sidoarjo

Lebih terperinci

BAB II TEORI DASAR. BAB II. Teori Dasar

BAB II TEORI DASAR. BAB II. Teori Dasar BAB II TEORI DASAR Perencanaan elemen mesin yang digunakan dalam peralatan pembuat minyak jarak pagar dihitung berdasarkan teori-teori yang diperoleh dibangku perkuliahan dan buku-buku literatur yang ada.

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN 11 ABSTRAK DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN 11 ABSTRAK DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI DAFTAR ISI HALAMAN JUDUL i HALAMAN PENGESAHAN 11 PRAKATA ABSTRAK DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR NOTASI lii v vi ix xii xiii BAB I PENDAHULlAN 1.1 Latar Belakang 2 1.2 Tujuan 2 1.3 Manfaat

Lebih terperinci

Analisa Perambatan Retak Pada Bagian Poros KM. Surya Tulus Akibat Torsi Dengan Metode Elemen Hingga

Analisa Perambatan Retak Pada Bagian Poros KM. Surya Tulus Akibat Torsi Dengan Metode Elemen Hingga JURNAL TEKNIK ITS Vol. 1, (Sept, 2012) ISSN: 2301-9271 G-109 Analisa Perambatan Retak Pada Bagian Poros KM. Surya Tulus Akibat Torsi Dengan Metode Elemen Hingga Taufiq Estu Raharjo, Soeweify dan Totok

Lebih terperinci

BAB II DASAR TEORI. 2.1 Pengertian rangka

BAB II DASAR TEORI. 2.1 Pengertian rangka BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Data-data Umum Jembatan Beton Prategang-I Bentang 21,95 Meter Gambar 4.1 Spesifikasi jembatan beton prategang-i bentang 21,95 m a. Spesifikasi umum Tebal lantai jembatan

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Skema dan Prinsip Kerja Alat Prinsip kerja mesin spin coating adalah sumber tenaga motor listrik ditransmisikan ke poros hollow melalui pulley dan v-belt untuk mendapatkan

Lebih terperinci

ANALISA LENTUR DAN TORSI PADA CORE-WALL TERBUKA DAN TERTUTUP DENGAN TEORI THIN-WALLED TUGAS AKHIR FRANS SUBRATA

ANALISA LENTUR DAN TORSI PADA CORE-WALL TERBUKA DAN TERTUTUP DENGAN TEORI THIN-WALLED TUGAS AKHIR FRANS SUBRATA ANALISA LENTUR DAN TORSI PADA CORE-WALL TERBUKA DAN TERTUTUP DENGAN TEORI THIN-WALLED TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian Pendidikan sarjana Teknik Sipil FRANS SUBRATA 09 0404 068

Lebih terperinci

ANALISA KEKUATAN STRUKTUR FPSO SEVAN MARINE DENGAN FEM DI PERAIRAN LEPAS PANTAI UTARA NATUNA-INDONESIA

ANALISA KEKUATAN STRUKTUR FPSO SEVAN MARINE DENGAN FEM DI PERAIRAN LEPAS PANTAI UTARA NATUNA-INDONESIA ANALISA KEKUATAN STRUKTUR FPSO SEVAN MARINE DENGAN FEM DI PERAIRAN LEPAS PANTAI UTARA NATUNA-INDONESIA Galang Choirun Amal 1, Ahmad Fauzan Zakki 1, Muhammad Iqbal 1 1) Program Studi S1 Teknik Perkapalan,

Lebih terperinci

D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II STUDI PUSTAKA

D3 TEKNIK SIPIL POLITEKNIK NEGERI BANDUNG BAB II STUDI PUSTAKA BAB II STUDI PUSTAKA 2.1 Definisi Jembatan merupakan satu struktur yang dibuat untuk menyeberangi jurang atau rintangan seperti sungai, rel kereta api ataupun jalan raya. Ia dibangun untuk membolehkan

Lebih terperinci

BAB II LANDASAN TEORI CORE WALL

BAB II LANDASAN TEORI CORE WALL BAB II LANDASAN TEORI CORE WALL.1. Karakterisitik Bentuk dan Letak Core Wall Struktur core wall yang bisa dijumpai dalam aplikasi konstruksi bangunan tinggi dewasa ini ada bermacam-macam. Antara lain adalah

Lebih terperinci

Bab 6 DESAIN PENULANGAN

Bab 6 DESAIN PENULANGAN Bab 6 DESAIN PENULANGAN Laporan Tugas Akhir (KL-40Z0) Desain Dermaga General Cargo dan Trestle Tipe Deck On Pile di Pulau Kalukalukuang Provinsi Sulawesi Selatan 6.1 Teori Dasar Perhitungan Kapasitas Lentur

Lebih terperinci

Soal :Stabilitas Benda Terapung

Soal :Stabilitas Benda Terapung TUGAS 3 Soal :Stabilitas Benda Terapung 1. Batu di udara mempunyai berat 500 N, sedang beratnya di dalam air adalah 300 N. Hitung volume dan rapat relatif batu itu. 2. Balok segi empat dengan ukuran 75

Lebih terperinci

BAB IV PERHITUNGAN GAYA-GAYA PADA STRUKTUR BOX

BAB IV PERHITUNGAN GAYA-GAYA PADA STRUKTUR BOX BAB IV PERHITUNGAN GAYA-GAYA PADA STRUKTUR BOX Perhitungan konstruksi dilakukan dengan metode kesetaraan yaitu analisa dilakukan pada konstruksi yang sudah ada dengan mengasumsikan sebagai beban merata

Lebih terperinci

ANALISA KEKUATAN KONSTRUKSI CAR DECK PADA KAPAL KAPAL ROPAX 5000GT DENGAN METODE ELEMEN HINGGA

ANALISA KEKUATAN KONSTRUKSI CAR DECK PADA KAPAL KAPAL ROPAX 5000GT DENGAN METODE ELEMEN HINGGA ANALISA KEKUATAN KONSTRUKSI CAR DECK PADA KAPAL KAPAL ROPAX 5000GT DENGAN METODE ELEMEN HINGGA Wahyu Dwi Yunanto **), Imam Pujo Mulyatno *), Andi Trimulyono*) *) Staff Pengajar S1 Teknik Perkapalan, Universitas

Lebih terperinci

BAB IV ANALISA STRUKTUR

BAB IV ANALISA STRUKTUR BAB IV ANALISA STRUKTUR 4.1 Data-data Struktur Pada bab ini akan membahas tentang analisa struktur dari struktur bangunan yang direncanakan serta spesifikasi dan material yang digunakan. 1. Bangunan direncanakan

Lebih terperinci

Laporan Praktikum Laboratorium Teknik Material 1 Modul D Uji Lentur dan Kekakuan

Laporan Praktikum Laboratorium Teknik Material 1 Modul D Uji Lentur dan Kekakuan Laporan Praktikum Laboratorium Teknik Material 1 Modul D Uji Lentur dan Kekakuan oleh : Nama : Catia Julie Aulia NIM : Kelompok : 7 Anggota (NIM) : 1. Conrad Cleave Bonar (13714008) 2. Catia Julie Aulia

Lebih terperinci

a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pelat Pertemuan - 3

a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pelat Pertemuan - 3 Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Pelat Pertemuan - 3 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK : Mahasiswa dapat mendesain sistem pelat

Lebih terperinci

Struktur Beton. Ir. H. Armeyn, MT. Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang

Struktur Beton. Ir. H. Armeyn, MT. Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang Penerbit Universiras SematangISBN. 979. 9156-22-X Judul Struktur Beton Struktur Beton Ir. H. Armeyn, MT Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang

Lebih terperinci

ANALISIS DAN DESAIN STRUKTUR FLAT PLATE BETON BERTULANG UNTUK GEDUNG EMPAT LANTAI TAHAN GEMPA

ANALISIS DAN DESAIN STRUKTUR FLAT PLATE BETON BERTULANG UNTUK GEDUNG EMPAT LANTAI TAHAN GEMPA ANALISIS DAN DESAIN STRUKTUR FLAT PLATE BETON BERTULANG UNTUK GEDUNG EMPAT LANTAI TAHAN GEMPA Helmi Kusuma NRP : 0321021 Pembimbing : Daud Rachmat Wiyono, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL

Lebih terperinci