BAB II PEMBAHASAN. Gambar 2.1 Lenturan Gelombang yang Melalui Celah Sempit

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II PEMBAHASAN. Gambar 2.1 Lenturan Gelombang yang Melalui Celah Sempit"

Transkripsi

1 BAB II PEMBAHASAN A. Difraksi Sesuai dengan teori Huygens, difraksi dapat dipandang sebagai interferensi gelombang cahaya yang berasal dari bagian-bagian suatu medan gelombang. Medan gelombang boleh jadi suatu celah. Tiap titik pada muka gelombang dapat dipandang sebagai sumber gelombang baru dan menghasilkan gelombang sekunder yang memancar ke segala arah dengan kecepatan yang sama dengan kecepatan rambat gelombang. Muka gelombang berikutnya berupa permukaan yang menyinggung muka gelombang semua anak gelombang yang berasal dari titik sefase pada muka gelombang terdahulu. Ini berarti semua anak gelombang pada saat muka gelombang tertentu bersifat saling koheren. Jika gelombang datang dari tempat yang jauh bertemu dengan sebuah celah sempit, maka bentuk gelombang yang keluar dari celah sama dengan sebuah sumber titik tanpa memperhatikan bentuk gelombang yang datang. Hal ini dapat dilihat pada Gambar. 1 di bawah ini: Gambar.1 Lenturan Gelombang yang Melalui Celah Sempit Penyebaran gelombang ketika melewati celah sempit yang lebarnya seorde dengan panjang gelombang akan mengalami peristiwa yang dikenal sebagai peristiwa lenturan atau difraksi. Semakin sempit celah itu maka semakin lebar penyebaran gelombang yang terjadi. Jika ukuran lebar celah mendekati nol, maka gelombang yang diteruskan seperti sebuah sumber titik. 4

2 5 Sebelum menurunkan rumusan matematis yang bersangkutan, terlebih dahulu dipahami karakteristik gejala difraksi secara kualitatif berdasarkan prinsip Huygens. Perhatikan gambar. yang merupakan ilustrasi efek penyebaran arah gelombang datar yang menjalar melalui suatu celah dengan lebar D. Gambar. Difraksi Gelombang Datar Oleh Celah Selebar D Muka gelombang yang tiba di celah berhimpit dengan bidang datar celah, karena itu titik A, B pada tepi celah memiliki fase sama selain berfrekuensi sama, serta efek difraksi diamati di titik P, maka selisih lintasan optik antara dua gelombang sekunder itu adalah Δr = AP BP, dan ini merupakan selisih lintasan optik terbesar antara semua gelombang sekunder yang berasal dari titiktitik antara A dan B. Mengingat bahwa semua sumber gelombang antara A dan B berfase sama maka setibanya di titik P, gelombang-gelombang tersebut akan saling berinterferensi. Makin jauh P dari sumber celah atau makin kecil sudut θ, makin kecil pula Δr dimana sudut θ merupakan batas arah difraksi. Syarat terjadinya difraksi, apabila panjang gelombang sinar yang datang mendekati atau seorde dengan lebar celah ( D λ ). Semakin sempit celah maka pola difraksinya semakin jelas, sebaliknya semakin lebar celah, pola difraksinya semakin tidak jelas, sehingga ketika lebar celah jauh melebihi panjang gelombangnya maka pola difraksi tidak akan terjadi. Intensitas difraksi pada setiap titik di layar dapat ditentukan dengan menggunakan diagram fasor untuk N buah celah. Sebagai ganti celah-celah dapat digunakan titik-titik pada muka gelombang dalam celah tunggal. Hal ini dapat

3 6 dilakukan, sebab menurut teori Huygens yang berlaku untuk setiap gelombang, titik-titik pada muka gelombang berlaku sebagai sumber gelombang sekunder yang keluar dari celah. Sebagai contoh dapat digunakan 9 buah titik pada muka gelombang (Gambar. 3) Gambar.3 Muka Gelombang dalam Celah AB Diganti dengan 9 buah Titik Sebagai Gelombang Sekunder Huygens. Untuk mempermudah persoalan, jarak dari celah ke layar jauh lebih besar daripada lebar celah, sehingga dalam Gambar.3 berkas-berkas sinar yang keluar dari celah AB sejajar sehingga dapat dianggap bahwa sinar BP sejajar dengan sinar CP dan AP. Difraksi ini disebut difraksi fraunhofer. Dalam membahas pola interferensi secara analitis, dipikirkan dua cara pendekatan. Apabila jarak layar penangkap pola interferensi jauh lebih panjang daripada ukuran celah, maka sinar-sinar pembentuk pola interferensi dapat dipandang sebagai berkas sejajar sehingga analisisnya lebih sederhana. Difraksi dengan cara pendekatan demikian dikenal dengan difraksi Fraunhofer. Di lain pihak apabila jarak layar dari celah tidak jauh lebih panjang dibanding ukuran celah, sinar-sinar pembentuk pola interferensi itu tidak layak dipandang berkas sejajar sehingga analisisnya pun tidak sesederhana pada difraksi Fraunhofer. Difraksi yang ditinjau secara demikian disebut difraksi Fresnel.

4 7 B. Difraksi Fraunhofer Celah sempit dipandang sebagai medan gelombang cahaya sehingga setiap bagiannya adalah sumber gelombang yang koheren. Gambar.4 memperlihatkan sebuah gelombang datar jatuh tegak lurus pada sebuah celah sempit panjang yang lebarnya a. Perhatikan titik sentral P o pada layar C. Semua sinar sejajar dari celah ke Po memiliki panjang lintasan optis yang sama. Karena pada bidang celah semua sinar sefase, maka ketika tiba di P o tetap sefase dan titik sentral pola difraksi yang tiba pada layar C memiliki intensitas cahaya maksimum. Gambar.4 Keadaan pada Maksimum Sentral Pola Difraksi. Ukuran Jarak Layar dengan Celah Jauh Lebih Besar daripada Ukuran Lebar Celah a. Sekarang perhatikan Gambar.5, sinar cahaya yang tiba di P 1 meninggalkan celah dengan sudut θ. (Perhatikan bahwa sinar yang dinyatakan dengan garis putus putus x p1, ditarik melalui pusat lensa, jadi tidak dibelokkan, sinar ini menentukan harga θ). Sinar r 1 berasal dari bagian atas celah dan sinar r dari pusatnya. Jika θ dipilih sehingga jarak bb dalam gambar adalah setengah panjang gelombang, r 1 dan r berlawanan fase.

5 8 Gambar.5 Keadaan pada Minimum Pertama Pola Difraksi. Maka setiap sinar dari setengah bagian celah sebelah atas akan dihapuskan oleh sinar yang berasal dari setengah bagian lain sebelah bawah yaitu mulai dari titik a di bawah sinar pertama sehingga titik P1 adalah minimum pertama pola difraksi dan memiliki intensitas nol. Jadi pada layar terjadi pola gelap. Syarat untuk keadaan minimum pertama pola difraksi yang ditunjukkan Gambar. 5, adalah a sin..1 atau a sin Maksimum sentral akan menjadi lebih lebar bila celah dibuat lebih sempit. Jika lebar celah sama dengan ukuran panjang gelombang (a = λ), maka minimum pertama terjadi pada sudut θ = 90 o (sin θ = 1 dalam persamaan 1), yang berarti maksimum sentral memenuhi setengah ruang di belakang celah. Dalam Gambar.6 celah dibagi atas empat wilayah yang sama dan digambarkan pada sebuah sinar dari bagian atas masing masing wilayah. Misalkan θ dipilih sehingga jarak bb adalah setengah panjang gelombang. Sinar

6 9 r 1 dan r akan saling meniadakan di titik P, demikian pula sinar r 3 dan r 4. Selisih lintasannya setengah panjang gelombang dan saling meniadakan juga. Sekarang tinjau empat sinar lain pada jarak tertentu di bawah keempat sinar tadi. Sinar yang di bawah r 1 akan saling menghapuskan dengan sinar yang di bawah r, demikian pula sinar yang di bawah r 3 dengan yang di bawah r 4. Demikianlah seterusnya sampai meliputi seluruh sinar yang keluar dari celah. Akhirnya dapat disimpulkan bahwa tidak ada cahaya yang tiba di P ; jadi titik tersebut adalah titik kedua yang intensitasnya nol. Gambar.6 Keadaan pada Minimum Kedua Pola Difraksi. Hasilnya adalah peniadaan sepenuhnya di P untuk cahaya yang digabungkan dari keseluruhan celah tersebut, yang memberikan sebuah daerah gelap (minimum) dalam pola difraksi. a sin 4 atau a sin Dengan perluasan cara di atas, dapat dituliskan rumus umum untuk titik minimum dalam pola difraksi pada layar C, yaitu: a sin m m = ±1, ±, ±3.(minimum)...

7 10 Misalnya, jika lebar celah itu sama dengan sepuluh panjang gelombang 1 3 (a = 10λ), maka daerah gelap terjadi pada sin,,... di antara daerah daerah gelap terdapat daerah daerah terang. Perhatikan bahwa sin θ = 0 bersesuaian dengan sebuah pita terang, dalam hal ini cahaya dari keseluruhan celah itu sampai di P sefase. Jadi akan salah untuk menaruh m = 0 dalam persamaan. Daerah terang yang berada di pusat lebih besar daripada daerah terang lainnya. Dengan cahaya, panjang gelombang λ itu berorde sebesar 500 nm = 5 x 10-7 m. Panjang gelombang ini seringkali jauh lebih kecil daripada lebar celah a. Lebar celah itu secara khusus adalah 10 - cm = 10-4 m. Maka nilai θ dalam persamaan seringkali begitu kecil sehingga sin θ 0 (dimana θ adalah dalam radian) adalah pola maksimum yang sangat baik. Dalam hal ini dapat dituliskan persamaan: m (m = ± 1, ±, ± 3,.) (untuk sudut θ yang kecil) a Gambar.7 memperlihatkan sebuah celah selebar a yang dibagi menjadi N buah jalur sejajar dengan lebar masing masing jalur adalah x. Tiap jalur bertindak sebagai sumber gelombang Huygens yang memberikan suatu gangguan gelombang tertentu di titik P pada sebuah layar yang jauh yang membentuk sudut θ dari garis normal ke bidang celah tersebut. Untuk suatu keadaan tertentu, letak titik P dinyatakan dengan sebuah harga sudut θ. Jika jalur dianggap cukup sempit, maka titik yang terletak pada satu jalur dapat dianggap memiliki panjang lintasan optis yang sama sampai ke P yaitu S = x sin θ dan karena itu semua cahaya dari satu jalur akan tiba di P dengan fase yang sama.

8 11 Gambar.7 Celah Selebar a Dibagi Atas N Buah Jalur yang Lebarnya x. Gambar Insert Menunjukkan Keadaan Jalur Kedua yang Diperbesar. Dalam Limit Diferensial, Celah Dibagi Menjadi Tak Terhingga Buah Jalur (N ~) dengan Lebar Diferensial dx. Untuk Lebih Jelasnya, dalam Gambar Ini Diambil N = 18 Bila jarak antara dua sumber titik adalah x, maka jarak yang ditempuh sampai di titik P adalah x sin θ. Akibatnya gelombang antara jalur pertama dan kedua memiliki beda fase δ yang tetap pada titik P, dan diberikan oleh: beda fase π = beda lintasan λ δ π δ π = S λ = x sin θ λ keterangan: δ = π x sinθ.3 λ

9 1 δ : beda fase (radian) S : beda lintasan antara dua sinar pada tepi atas jalur yang saling bersisian, seperti ditunjukkan pada gambar insert. Jika sudut θ dalam Gambar.7 tidak terlalu besar, maka amplitudo gangguan gelombang Eo di titik P untuk tiap tiap garis dapat dianggap sama. Jadi di titik P dan N buah vektor garis dengan amplitudo sama E θ, frekuensi sama dan beda fase antara dua anggota yang berdampingan δ, kesemuanya bergabung bersama sama membentuk resultan gangguan, yang ingin dicari adalah berapakah amplitudo gangguan resultan Eo untuk berbagai macam harga δ (yaitu untuk berbagai letak titik P pada layar, yang bersesuaian dengan berbagai harga θ (Lihat persamaan 3). Hasil ini dapat diperoleh dengan menyatakan masing masing gangguan gelombang sebagai fasor, lalu dihitung amplitudo fasor resultan. Gambar.8 Difraksi Celah Tunggal pada Keadaan (a) Maksimum Sentral, (b) Tempat Sedikit Berpindah dari Maksimum Sentral, (c) Minimum Pertama.

10 13 Di titik pusat pola difraksi, θ sama dengan nol dan pergeseran fase antara dua jalur yang berdampingan (lihat persamaan 3) juga sama dengan nol. Seperti ditunjukkan pada Gambar.8a, anak panah fasor digambarkan berderet dari ujung ke ujung dan amplitudo resultannya memiliki harga maksimum Emax yang bersesuaian dengan amplitudo di titik pusat maksimum sentral. Jika bergeser sedikit ke harga θ yang tidak sama dengan nol, maka δ akan memiliki harga tertentu yang tidak sama dengan nol pula (lihat persamaan 3). Untuk keadaan ini susunan panah panah ditunjukkan oleh Gambar.8b, amplitudo resultan E θ lebih kecil daripada sebelumnya. Perhatikan bahwa panjang busur lengkung panah panah kecil untuk kedua gambar tersebut sama, bahkan juga untuk semua gambar deretan panah di atas. Jika sudut θ terus diperbesar, akhirnya akan sampai pada keadaan (Gambar.8c) di mana rantai panah tersebut melingkar 360 o, ujung anak panah terakhir menyentuh kembali pangkal anak panah pertama. Keadaan ini bersesuaian dengan E θ = 0, yaitu titik minimum pertama. Untuk keadaan ini sinar pada tepi celah bagian atas (panah 1 dalam Gambar.8c) berbeda fase dengan sinar dari bagian tengah celah (panah ½ N dalam Gambar.8c). Hubungan fase ini sesuai dengan Gambar.5, yang juga menyatakan minimum pertama. Berdasarkan pada teori Huygens maka jumlah sumber titik dapat dibuat dalam jumlah yang sangat besar sekali, sehingga amplitudo untuk setiap gelombang menjadi lebih kecil dan jumlah fase menjadi besar sekali. Akibatnya sudut antara satu fase dengan fase berikutnya menjadi sangat kecil. Dengan demikian kelengkungan penjumlahan vektor dapat diganti dengan suatu busur. Ini diperlihatkan pada gambar.9 di mana panjang busur E θ sebanding dengan amplitudo E m.

11 14 Gambar.9 Susunan yang Biasa Digunakan Untuk Menghitung Intensitas Difraksi Celah Tunggal. Keadaan dalam Gambar Ini Sesuai dengan Keadaan dalam Gambar.8b. Busur lengkung panah panah kecil dalam gambar.9 menyatakan fasor fasor gangguan gelombang, dalam amplitudo dan fase, yang mencapai sembarang titik P pada layar gambar.7, sesuai dengan suatu harga sudut θ tertentu. Amplitudo resultan di P adalah E θ. Jika celah dalam gambar.7 dibagi menjadi jalur jalur kecil selebar dx maka busur anak panah dalam gambar.9 mendekati busur lingkaran yang jari jarinya diperlihatkan dalam gambar tersebut. Panjang busur tersebut adalah Em, yaitu amplitudo pusat pola difraksi, karena pada pusat pola semua gangguan gelombang sefase dan busur ini menjadi garis lurus seperti dalam gambar.8a. Sudut δ pada bagian bawah gambar.9 adalah beda fase antara sinar tepi paling atas dan paling bawah yang keluar dari celah dalam gambar.7. Dari gambar.9 diperoleh: 1 1 sin R E 1 E R sin...4 Bila δ dinyatakan dalam radian, maka dapat ditulis:

12 15 E m R E m R...5 sehingga persamaan 4 dibagi persamaan 5 diperoleh: E E E m 1 R sin R E m 1 sin 6 1 Hasil bagi antara intensitas I θ dengan intensitas I m sama dengan kuadrat amplitudonya, sehingga diperoleh: I I E m E m 1 sin..7 1 Bila δ mendekati harga nol maka: I I m 1 sin 1 1 maka I θ = I m 8 Persamaan 8 menghasilkan keterangan bahwa intensitas I θ sama dengan intensitas I m terjadi bila tidak terdapat beda sudut fase, sehingga semua gelombang cahaya akan menuju layar C. Akibatnya di layar C terjadi terang atau intensitas cahaya maksimum. Berdasarkan persamaan 7, intensitas minimum terjadi bila: 1 sin 1 0 sehingga diperoleh harga:

13 16 ½ δ = π, π, 3π,... δ = π, 4π,., mπ.9 m = 1,, 3, Bila persamaan 9 digabungkan dengan persamaan 3, maka diperoleh: x sin mπ x sin mλ 10 Berdasarkan persamaan 10 maka intensitas difraksi juga sama dengan nol (minimum) untuk arah arah yang menunjukkan 3,.. 1 sin 1 mλ sin untuk m = 1,, a Berdasarkan persamaan 7, maka intensitas maksimum relatif terjadi bila: 0 sehingga harga: 1 3,,..., m 1... m 1,,3,... Contoh: untuk δ = 3π m 1 11 maka: I I m 3 sin = 9,4 I θ = I m 9,4 Bila persamaan 11 digabungkan dengan persamaan 3, maka diperoleh:

14 17 x sin m 1 m 1 x sin 1 Terjadi pola terang jika kedua gelombang berasal dari sumber gelombang yang koheren dan apabila gelombangnya sefase maka kedua gelombang akan saling menguatkan sehingga terjadi intensitas maksimum dan di layar akan tampak pola terang. Sebaliknya jika kedua gelombang tidak sefase maka kedua gelombang akan saling memperlemah sehingga terjadi intensitas minimum dan di layar akan tampak pola gelap. Untuk lebih jelasnya perhatikan gambar.10 berikut: Gambar.10 (a) Dua Gelombang Sefase yang Berinterferensi (b) Dua Gelombang Tidak Sefase yang Saling Berinterferensi.

15 18 Berdasarkan perhitungan matematis difraksi cahaya, maka diperoleh hasil difraksi memiliki distribusi untuk intensitas cahaya pada layar sebagai berikut: Gambar.11 Distribusi Intensitas Difraksi dengan Lebar Celah a Untuk Gelombang dengan Satu Panjang Gelombang λ. Gambar di atas hanya berlaku bila cahaya yang mengenai celah adalah cahaya monokromatis, yaitu cahaya yang terdiri dari satu panjang gelombang (λ). Tampak bahwa intensitas terbesar terletak pada θ = 0, yaitu pada sumbu celah. Bila θ semakin besar, intensitas maksimum semakin kecil. Dengan kata lain, bagian tengah terang, makin ke pinggir makin gelap. Daerah terang di tengah makin lebar bila lebar celah makin kecil. Apabila cahaya yang mengenai celah adalah cahaya polikromatis maka distribusi intensitasnya seperti gambar.1 berikut:

16 19 Gambar.1 Distribusi Intensitas Difraksi untuk Cahaya Polikromatis C. Aplikasi Dalam Kehidupan Sehari-hari 1. Analisis pembagian corak bentuk dari model biologi dan sel dengan analisis Fourier pengukuran sebaran cahaya statis. Model sel biologi dalam bermacam-macam kompleksitas geometris digunakan untuk menghasilkan data untuk menguji suatu metoda penyulingan corak geometris dari distribusi sebaran cahaya. Pengukuran tergantung pada sudut dan cakupan cahaya dan intensitas yang dinamis menyebar dari model ini dibandingkan kepada distribusi yang diramalkan oleh suatu teori sebaran cahaya (Mie) dan oleh teori difraksi (Fraunhofer). Suatu perkiraan daripada teori Fraunhofer menyediakan suatu yang bermakna dalam ukuran perolehan dan membentuk corak data oleh suatu analisis spektrum. Verifikasi dari percobaan yang menggunakan nucleated erythrocytes sebagai material biologi menunjukkan aplikasi potensi dari metode ini untuk pengelompokan ukuran yang penting dan parameter bentuk dari data sebaran cahaya.. Aplikasi Teori Difraksi Fraunhofer ke Disain Detektor yang Bersifat Spesifik Cahaya menyebar dari sel epithelial di dalam suatu celah penelitian aliran sistem diperagakan menggunakan teori difraksi Fraunhofer kondisi skalar. Kekuatan spektrum dihitung untuk posisi model sel yang berurutan di dalam baris fokus dari suatu berkas cahaya laser dengan suatu program komputer transformasi Fourier. Menggunakan kekuatan spektrum yang dihitung, bentuk wujud detektor dirancang untuk mendeteksi struktur sel secara spesifik. Bentuk wujud detektor

17 0 diuji di dalam suatu piranti celah penelitian sebaran statis. Data menandakan kemampuan untuk orientasi mendeteksi sel dan batasan-batasan tertentu. 3. Penghitungan Resolusi Teleskop Gambaran mengenai ruang dari kuat cahaya yang melintas suatu celah adalah transformasi Fourier pada celah itu. Ini mengikuti dari dasar teori difraksi Fraunhofer. Suatu celah adalah satu rangkaian celah kecil sekali. Cahaya yang melintas dua celah bertentangan dengan dirinya sendiri, secara berurutan secara konstruktif dan destruktif. Intensitas deret di belakang celah adalah penyiku dari amplitudo menyangkut garis vektor yang elektromagnetis itu. Pengintegrasian ke seberang celah, ditemukan bahwa intensitas cahaya, sebagai fungsi jarak off-axis θ adalah I= I 0 sin (u)/u Teropong bintang yang biasanya mempunyai tingkap lingkaran, karenanya profil mengenai ruang dari intensitas adalah transformasi Fourier dari suatu lingkaran. Seseorang dapat juga lakukan pengintegrasian -dimensional. Bagaimanapun, bahkan semakin dekat sumber dengan sama terang akan menghasilkan suatu puncak pusat tidak melingkar, kaleng sumber dengan sama terang/cerdas pada prinsipnya dideteksi ke sekitar 1/3 jarak rayleigh. Teropong bintang riil tidak mempunyai semata-mata tingkap lingkaran. Efek dari suatu penggelapan pusat akan berkurang jumlah cahaya di dalam puncak pusat, dan meningkatkan intensitas di dalam cincin difraksi. Sebagai tambahan, pendukung untuk penggelapan pusat lenturan cahaya yang datang berikutnya, memberi poin-poin untuk melihat gambaran dari bintang terang.

INTERFERENSI DAN DIFRAKSI

INTERFERENSI DAN DIFRAKSI INTERFERENSI DAN DIFRAKSI Materi yang akan dibahas : 1. Interferensi Interferensi Young Interferensi Selaput Tipis 2. Difraksi Difraksi Celah Tunggal Difraksi Fresnel Difraksi Fraunhofer Difraksi Celah

Lebih terperinci

A. PENGERTIAN difraksi Difraksi

A. PENGERTIAN difraksi Difraksi 1 A. PENGERTIAN Jika muka gelombang bidang tiba pada suatu celah sempit (lebarnya lebih kecil dari panjang gelombang), maka gelombang ini akan mengalami lenturan sehingga terjadi gelombang-gelombang setengah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Gelombang Gelombang adalah gangguan yang terjadi secara terus menerus pada suatu medium dan merambat dengan kecepatan konstan (Griffiths D.J, 1999). Pada gambar 2.1. adalah

Lebih terperinci

KATA PENGANTAR. Kupang, September Tim Penyusun

KATA PENGANTAR. Kupang, September Tim Penyusun KATA PENGANTAR Puji syukur tim panjatkan ke hadirat Tuhan Yang Maha Esa, karena atas berkat dan rahmat-nya tim bisa menyelesaikan makalah yang berjudul Optika Fisis ini. Makalah ini diajukan guna memenuhi

Lebih terperinci

Interferensi Cahaya. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

Interferensi Cahaya. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Interferensi Cahaya Agus Suroso (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Agus Suroso (FTETI-ITB) Interferensi Cahaya 1 / 39 Contoh gejala interferensi

Lebih terperinci

Difraksi. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung

Difraksi. Agus Suroso Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Difraksi Agus Suroso (agussuroso@fi.itb.ac.id) Fisika Teoretik Energi Tinggi dan Instrumentasi, Institut Teknologi Bandung Agus Suroso (FTETI-ITB) Difraksi 1 / 38 Gejala Difraksi Materi 1 Gejala Difraksi

Lebih terperinci

HANDOUT FISIKA KELAS XII (UNTUK KALANGAN SENDIRI) GELOMBANG CAHAYA

HANDOUT FISIKA KELAS XII (UNTUK KALANGAN SENDIRI) GELOMBANG CAHAYA YAYASAN WIDYA BHAKTI SEKOLAH MENENGAH ATAS SANTA ANGELA TERAKREDITASI A Jl. Merdeka No. 24 Bandung 022. 4214714 Fax. 022. 4222587 http//: www.smasantaangela.sch.id, e-mail : smaangela@yahoo.co.id HANDOUT

Lebih terperinci

Difraksi. Dede Djuhana Departemen Fisika FMIPA-UI 0-0

Difraksi. Dede Djuhana Departemen Fisika FMIPA-UI 0-0 Difraksi Dede Djuhana E-mail:dede@fisika.ui.ac.id Departemen Fisika FMIPA-UI 0-0 Difraksi Difraksi adalah pembelokan arah rambat gelombang yang melalui suatu penghalang yang kecil misal: tepi celah atau

Lebih terperinci

BAB II. Landasan Teori

BAB II. Landasan Teori BAB II Landasan Teori 2.1 Prinsip Kerja Perangkat Fourier Sumber cahaya laser menghasilkan berkas cahaya berdiameter kecil dengan distribusi intensitas mendekati Gaussian. Untuk mendapatkan diameter berkas

Lebih terperinci

BAB 4 Difraksi. Difraksi celah tunggal

BAB 4 Difraksi. Difraksi celah tunggal BAB 4 Difraksi Jika muka gelombang bidang tiba pada suatu celah sempit (lebarnya lebih kecil dari panjang gelombang), maka gelombang ini akan meng-alami lenturan sehingga terjadi gelombanggelombang setengah

Lebih terperinci

A. DISPERSI CAHAYA Dispersi Penguraian warna cahaya setelah melewati satu medium yang berbeda. Dispersi biasanya tejadi pada prisma.

A. DISPERSI CAHAYA Dispersi Penguraian warna cahaya setelah melewati satu medium yang berbeda. Dispersi biasanya tejadi pada prisma. Optika fisis khusus membahasa sifat-sifat fisik cahaya sebagai gelombang. Cahaya bersifat polikromatik artinya terdiri dari berbagai warna yang disebut spektrum warna yang terdiri dai panjang gelombang

Lebih terperinci

Fisika I. Interferensi Interferensi Lapisan Tipis (Gelombang Pantul) 20:12:40. m2π, di mana m = 0,1,2,... (2n-1)π, di mana n =1,2,3,...

Fisika I. Interferensi Interferensi Lapisan Tipis (Gelombang Pantul) 20:12:40. m2π, di mana m = 0,1,2,... (2n-1)π, di mana n =1,2,3,... Interferensi Interferensi Lapisan Tipis (Gelombang Pantul) 0:1:40 = k AB (k 1 AC + ) n 1 C (1) () layar maksimum;0,π,4π,6π,... minimum;π,3π,5π,... mπ, di mana m = 0,1,,... (n-1)π, di mana n =1,,3,... t

Lebih terperinci

LAPORAN R-LAB. Pengukuran Lebar Celah

LAPORAN R-LAB. Pengukuran Lebar Celah LAPORAN R-LAB Pengukuran Lebar Celah Nama : Ivan Farhan Fauzi NPM : 0806399035 Fakultas Departemen Kode Praktikum : Matematika dan Ilmu Pengetahuan Alam : Fisika : OR02 Tanggal Praktikum : 27 April 2009

Lebih terperinci

Difraksi Franhoufer dan Fresnel Difraksi Franhoufer Celah Tunggal Intensitas pada Pola Celah Tunggal Difraksi Franhoufer Celah Ganda Kisi Difraksi

Difraksi Franhoufer dan Fresnel Difraksi Franhoufer Celah Tunggal Intensitas pada Pola Celah Tunggal Difraksi Franhoufer Celah Ganda Kisi Difraksi Sifat dasar & Perambatan Cahaya Superposisi Gelombang Interferensi Gelombang Cahaya Difraksi Franhoufer Difraksi Franhoufer Intensitas pada Pola Difraksi Franhoufer Kisi Difraksi Difraksi Gelombang Cahaya

Lebih terperinci

Halaman (2)

Halaman (2) Halaman (1) Halaman (2) Halaman (3) Halaman (4) Halaman (5) Halaman (6) Halaman (7) SOAL DIFRAKSI PADA CELAH TUNGGAL INTERFERENSI YOUNG PADA CELAH GANDA DAN DIFRAKSI PADA CELAH BANYAK (KISI) Menentukan

Lebih terperinci

BAB GELOMBANG ELEKTROMAGNETIK

BAB GELOMBANG ELEKTROMAGNETIK BAB GELOMBANG ELEKTROMAGNETIK I. SOAL PILIHAN GANDA Diketahui c = 0 8 m/s; µ 0 = 0-7 Wb A - m - ; ε 0 = 8,85 0 - C N - m -. 0. Perhatikan pernyataan-pernyataan berikut : () Di udara kecepatannya cenderung

Lebih terperinci

CAHAYA. CERMIN. A. 5 CM B. 10 CM C. 20 CM D. 30 CM E. 40 CM

CAHAYA. CERMIN. A. 5 CM B. 10 CM C. 20 CM D. 30 CM E. 40 CM CAHAYA. CERMIN. A. 5 CM B. 0 CM C. 20 CM D. 30 CM E. 40 CM Cahaya Cermin 0. EBTANAS-0-2 Bayangan yang terbentuk oleh cermin cekung dari sebuah benda setinggi h yang ditempatkan pada jarak lebih kecil

Lebih terperinci

Kompetensi. 1.Mahasiswa mampu menentukan perbedaan fasa antara dua buah gelombang. 2.Mahasiswa mampu menentukan pola gelap-terang hasil interferensi.

Kompetensi. 1.Mahasiswa mampu menentukan perbedaan fasa antara dua buah gelombang. 2.Mahasiswa mampu menentukan pola gelap-terang hasil interferensi. 04:55:45 Kompetensi 1.Mahasiswa mampu menentukan perbedaan fasa antara dua buah gelombang. 2.Mahasiswa mampu menentukan pola gelap-terang hasil interferensi. 04:56:01 Merupakan superposisi gelombang harmonik.

Lebih terperinci

BAB II LANDASAN TEORI. pada permukaannya digoreskan garis-garis sejajar dengan jumlah sangat besar.

BAB II LANDASAN TEORI. pada permukaannya digoreskan garis-garis sejajar dengan jumlah sangat besar. 5 BAB II LANDASAN TEORI 2.1. Kisi Difraksi Kisi difraksi adalah suatu alat yang terbuat dari pelat logam atau kaca yang pada permukaannya digoreskan garis-garis sejajar dengan jumlah sangat besar. Suatu

Lebih terperinci

Cahaya merupakan gelombang transversal yang termasuk gelombang elektromagnetik. Cahaya dapat merambat dalam ruang hampa dengan kecepatan 3 x 10 8 m/s.

Cahaya merupakan gelombang transversal yang termasuk gelombang elektromagnetik. Cahaya dapat merambat dalam ruang hampa dengan kecepatan 3 x 10 8 m/s. CAHAYA 1. Siat Gelombang Cahaya Cahaya merupakan gelombang transversal yang termasuk gelombang elektromagnetik. Cahaya dapat merambat dalam ruang hampa dengan kecepatan 3 x 10 8 m/s. Siat2 cahaya : Dapat

Lebih terperinci

Makalah Gelombang Optik. Difraksi dan Aplikasinya

Makalah Gelombang Optik. Difraksi dan Aplikasinya Makalah Gelombang Optik Difraksi dan Aplikasinya KOMANG SUARDIKA (0913021034) JURUSAN PENDIDIKAN FISIKA FAKULTAS MIPA UNIVERSITAS PENDIDIKAN GANESHA SINGARAJA 2012 1 BAB I PENDAHULUAN 1.1 Latar Belakang

Lebih terperinci

Interferometer Michelson

Interferometer Michelson 1 Interferometer Michelson I. Tujuan Percobaan : 1. Memahami interferensi pada interferometer Michelson. 2. Menentukan panjang gelombang sumber cahaya dengan pola interferensi. II. Landasan Teori Interferensi

Lebih terperinci

Kumpulan Soal Fisika Dasar II.

Kumpulan Soal Fisika Dasar II. Kumpulan Soal Fisika Dasar II http://personal.fmipa.itb.ac.id/agussuroso http://agussuroso102.wordpress.com Topik Gelombang Elektromagnetik Interferensi Difraksi 22-04-2017 Soal-soal FiDas[Agus Suroso]

Lebih terperinci

BAB GELOMBANG ELEKTROMAGNETIK

BAB GELOMBANG ELEKTROMAGNETIK 1 BAB GELOMBANG ELEKTROMAGNETIK.1 Gelombang Elektromagnetik Energi gelombang elektromagnetik terbagi sama dalam bentuk medan magnetik dan medan listrik. Maxwell menyatakan bahwa gangguan pada gelombang

Lebih terperinci

KISI DIFRAKSI (2016) Kisi Difraksi

KISI DIFRAKSI (2016) Kisi Difraksi KISI DIFRAKSI (2016) 1-6 1 Kisi Difraksi Rizqi Ahmad Fauzan, Chi Chi Novianti, Alfian Putra S, dan Gontjang Prajitno Jurusan Fisika, Fakultas MIPA, Institut Teknologi Sepuluh Nopember Jl. Arief Rahman

Lebih terperinci

1. Jika periode gelombang 2 sekon maka persamaan gelombangnya adalah

1. Jika periode gelombang 2 sekon maka persamaan gelombangnya adalah 1. Jika periode gelombang 2 sekon maka persamaan gelombangnya adalah A. y = 0,5 sin 2π (t - 0,5x) B. y = 0,5 sin π (t - 0,5x) C. y = 0,5 sin π (t - x) D. y = 0,5 sin 2π (t - 1/4 x) E. y = 0,5 sin 2π (t

Lebih terperinci

BAB 24. CAHAYA : OPTIK GEOMETRIK

BAB 24. CAHAYA : OPTIK GEOMETRIK DAFTAR ISI DAFTAR ISI...1 BAB 24. CAHAYA : OPTIK GEOMETRIK...2 24.1 Prinsip Huygen dan Difraksi...2 24.2 Hukum-Hukum Pembiasan...2 24.3 Interferensi Cahaya...3 24.4 Dispersi...5 24.5 Spektrometer...5 24.6

Lebih terperinci

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS )

LEMBARAN SOAL. Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) LEMBARAN SOAL Mata Pelajaran : FISIKA Sat. Pendidikan : SMA/MA Kelas / Program : XII ( DUA BELAS ) PETUNJUK UMUM 1. Tulis nomor dan nama Anda pada lembar jawaban yang disediakan 2. Periksa dan bacalah

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

11/4/2011 KOHERENSI. koheren : memiliki θ yang tetap (tidak berubah terhadap waktu) y 1 y 2

11/4/2011 KOHERENSI. koheren : memiliki θ yang tetap (tidak berubah terhadap waktu) y 1 y 2 11/4/011 1 11/4/011 KOHERENSI koheren : memiliki θ yang tetap (tiak berubah terhaap waktu) θ = π y 1 y θ = 0 y 1 y 11/4/011 INTERFERENSI CELAH GANDA G G T 4 T 3 T G T 1 T pusat T 1 G T T 3 T 4 Cahaya bersifat

Lebih terperinci

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i

Sifat gelombang elektromagnetik. Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Sifat gelombang elektromagnetik Pantulan (Refleksi) Pembiasan (Refraksi) Pembelokan (Difraksi) Hamburan (Scattering) P o l a r i s a s i Pantulan (Refleksi) Pemantulan gelombang terjadi ketika gelombang

Lebih terperinci

MAKALAH PENJELASAN INTERFERENSI GELOMBANG

MAKALAH PENJELASAN INTERFERENSI GELOMBANG MAKALAH PENJELASAN INTERFERENSI GELOMBANG Untuk Memenuhi Salah Satu Tugas Mata Kuliah Fisika Dasar Dosen Pembimbing: Laily Maghfirotunnisa Disusun oleh KELOMPOK 13 1. Muhammad Irfan Maulana (16611073)

Lebih terperinci

MODUL 1 INTERFEROMETER DAN PRINSIP BABINET

MODUL 1 INTERFEROMETER DAN PRINSIP BABINET MODUL 1 INTERFEROMETER DAN PRINSIP BABINET 1. Tujuan a. Merangkai Interferometer Michelson Morley dan Mach Zehnder b. Menggunakan Interferometer Michelson Morley dan Mach Zehnder untuk meneliti dan memahami

Lebih terperinci

LAPORAN PERCOBAAN FISIKA DASAR

LAPORAN PERCOBAAN FISIKA DASAR LAPORAN PERCOBAAN FISIKA DASAR Nama : Rita Yulianda NPM : 0906489486 Group Fakultas/Departemen Nomor Percobaan Nama Percobaan : B17 : Teknik/ Teknik Kimia : OR03 : Distribusi Intensitas Difraksi Unit Pelaksanaan

Lebih terperinci

Laporan Praktikum Fisika Dasar 2

Laporan Praktikum Fisika Dasar 2 Judul Percobaan : NAMA : YONATHAN ANDRIANTO SUROSO NIM : 12300041 Jurusan Fisika Universitas Negeri Manado Fakultas Matematika dan Ilmu Pengetahuan Alam Program Studi Geothermal A. TUJUAN PERCOBAAN Laporan

Lebih terperinci

iammovic.wordpress.com PEMBAHASAN SOAL ULANGAN AKHIR SEKOLAH SEMESTER 1 KELAS XII

iammovic.wordpress.com PEMBAHASAN SOAL ULANGAN AKHIR SEKOLAH SEMESTER 1 KELAS XII PEMBAHASAN SOAL ULANGAN AKHIR SEKOLAH SEMESTER 1 KELAS XII - 014 1. Dari besaran fisika di bawah ini, yang merupakan besaran pokok adalah A. Massa, berat, jarak, gaya B. Panjang, daya, momentum, kecepatan

Lebih terperinci

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG Cahaya

DINAS PENDIDIKAN KOTA PADANG SMA NEGERI 10 PADANG Cahaya 1. EBTANAS-06-22 Berikut ini merupakan sifat-sifat gelombang cahaya, kecuali... A. Dapat mengalami pembiasan B. Dapat dipadukan C. Dapat dilenturkan D. Dapat dipolarisasikan E. Dapat menembus cermin cembung

Lebih terperinci

Sifat-sifat gelombang elektromagnetik

Sifat-sifat gelombang elektromagnetik GELOMBANG II 1 MATERI Gelombang elektromagnetik (Optik) Refleksi, Refraksi, Interferensi gelombang optik Pembentukan bayangan cermin dan lensa Alat-alat yang menggunakan prinsip optik 1 Sifat-sifat gelombang

Lebih terperinci

Xpedia Fisika. Optika Fisis - Soal

Xpedia Fisika. Optika Fisis - Soal Xpedia Fisika Optika Fisis - Soal Doc. Name: XPFIS0802 Version: 2016-05 halaman 1 01. Gelombang elektromagnetik dapat dihasilkan oleh. (1) muatan listrik yang diam (2) muatan listrik yang bergerak lurus

Lebih terperinci

SOAL SOAL TERPILIH 1 SOAL SOAL TERPILIH 2

SOAL SOAL TERPILIH 1 SOAL SOAL TERPILIH 2 SOAL SOAL TERPILIH 1 1. Sebuah prisma mempunyai indeks bias 1,5 dan sudut pembiasnya 60 0. Apabila pada prisma itu dijatuhkan seberkas cahaya monokromatik pada salah satu sisi prisma dengan sudut datang

Lebih terperinci

Untuk terang ke 3 maka Maka diperoleh : adalah

Untuk terang ke 3 maka Maka diperoleh : adalah JAWABAN LATIHAN UAS 1. INTERFERENSI CELAH GANDA YOUNG Dua buah celah terpisah sejauh 0,08 mm. Sebuah berkas cahaya datang tegak lurus padanya dan membentuk pola gelap terang pada layar yang berjarak 120

Lebih terperinci

Studi Difraksi Fresnel Untuk Menentukan Panjang Gelombang Sumber Cahaya Monokromatis Menggunakan Celah Bentuk Lingkaran

Studi Difraksi Fresnel Untuk Menentukan Panjang Gelombang Sumber Cahaya Monokromatis Menggunakan Celah Bentuk Lingkaran Studi Difraksi Fresnel Untuk Menentukan Panjang Gelombang Sumber Cahaya Monokromatis Menggunakan Celah Bentuk ingkaran Oleh : Arinar Rosyidah / JD 00 186 008 ABSTRAK Telah dilakukan studi difraksi Fresnel

Lebih terperinci

GELOMBANG CAHAYA. Pikiran-pikiran tersebut adalah miskonsepsi. Secara lebih rinci, berikut disajikan konsepsi ilmiah terkait dengan gelombang cahaya.

GELOMBANG CAHAYA. Pikiran-pikiran tersebut adalah miskonsepsi. Secara lebih rinci, berikut disajikan konsepsi ilmiah terkait dengan gelombang cahaya. GELOMBANG CAHAYA PENDAHULUAN Dalam kehidupan sehari-hari sering Anda mengamati pelangi. Apa yang Anda ketahui tentang pelangi? Mengapa pelangi terjadi pada saat gerimis atau setelah hujan turun dan matahari

Lebih terperinci

LAPORAN PRAKTIKUM Pengukuran Panjang Gelombang Laser

LAPORAN PRAKTIKUM Pengukuran Panjang Gelombang Laser LAPORAN PRAKTIKUM Pengukuran Panjang Gelombang Laser Nama : Ari Kusumawardhani NPM : 1406572302 Fakultas : Teknik Departemen/Prodi : Teknik Sipil/Teknik Sipil Kelompok Praktikum : 9 Kode Praktikum : OR01

Lebih terperinci

BIMBEL ONLINE 2016 FISIKA

BIMBEL ONLINE 2016 FISIKA BIMBEL ONLINE 2016 FISIKA Rabu, 16 Maret 2016, Pkl. 19.00 20.30 WIB. online.sonysugemacollege.com Onliner : Pak Wasimudin S. 1. Sifat umum dari gelombang antara lain: (1) dapat mengalami interferensi (2)

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Optika Fisis - Latihan Soal Doc Name: AR12FIS0399 Version : 2012-02 halaman 1 01. Gelombang elektromagnetik dapat dihasilkan oleh. (1) Mauatan listrik yang diam (2) Muatan listrik

Lebih terperinci

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) KD Standar Kompetensi 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah.

RENCANA PELAKSANAAN PEMBELAJARAN (RPP) KD Standar Kompetensi 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah. RENCANA PELAKSANAAN PEMBELAJARAN (RPP) KD 1.3 1. Identitas Mata pelajaran a. Nama Sekolah : SMA N 6 Yogyakarta b. Kelas / Semester : XII (Dua belas) c. Semester : I d. Jurusan : IPA e. Mata Pelajaran :

Lebih terperinci

BAB III DASAR DASAR GELOMBANG CAHAYA

BAB III DASAR DASAR GELOMBANG CAHAYA BAB III DASAR DASAR GELOMBANG CAHAYA Tujuan Instruksional Umum Pada bab ini akan dijelaskan mengenai perambatan gelombang, yang merupakan hal yang penting dalam sistem komunikasi serat optik. Pembahasan

Lebih terperinci

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM)

Disusun oleh : MIRA RESTUTI PENDIDIKAN FISIKA (RM) Disusun oleh : MIRA RESTUTI 1106306 PENDIDIKAN FISIKA (RM) PROGRAM STUDI PENDIDIKAN FISIKA JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI PADANG 2013 Kompetensi Dasar :

Lebih terperinci

BAB II TINJAUAN UMUM HUKUM-HUKUM OPTIK

BAB II TINJAUAN UMUM HUKUM-HUKUM OPTIK BAB II TINJAUAN UMUM HUKUM-HUKUM OPTIK Tujuan Instruksional Umum Bab II menjelaskan konsep-konsep dasar optika yang diterapkan pada komunikasi serat optik. Tujuan Instruksional Khusus Pokok-pokok bahasan

Lebih terperinci

ANALISIS POLA INTERFERENSI CELAH BANYAK UNTUK MENENTUKAN PANJANG GELOMBANG LASER He-Ne DAN LASER DIODA

ANALISIS POLA INTERFERENSI CELAH BANYAK UNTUK MENENTUKAN PANJANG GELOMBANG LASER He-Ne DAN LASER DIODA 26 S.L. Handayani, Analisis Pola Interferensi Celah Banyak ANALISIS POLA INTERFERENSI CELAH BANYAK UNTUK MENENTUKAN PANJANG GELOMBANG LASER He-Ne DAN LASER DIODA Sri Lestari Handayani Pascasarjana Universitas

Lebih terperinci

Gambar I. 5 Gambar I. 6

Gambar I. 5 Gambar I. 6 L A M P I R A N LAMPIRAN I : Gambar Animasi Gambar I. 1 Gambar I. Gambar I. 3 Gambar I. 4 Gambar I. 5 Gambar I. 6 Gambar I. 7 Gambar I. 8 Gambar I. 9 Gambar I. 10 Gambar I. 11 Gambar I. 1 Gambar I. 13

Lebih terperinci

GELOMBANG MEKANIK. Gambar anak yang sedang menggetarkan tali. Gambar 1

GELOMBANG MEKANIK. Gambar anak yang sedang menggetarkan tali. Gambar 1 GELOMBANG MEKANIK Pada pembelajaran ini kita akan mem pelajari gelombang mekanik Gelombang mekanik dapat dipelajari gejala gelombang pada tali melalui Pernahkah kalian melihat sekumpulan anak anak yang

Lebih terperinci

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG ELEKTROMAGNET - G ELO MB ANG ELEK TRO M AG NETIK

LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR - - GELOMBANG ELEKTROMAGNET - G ELO MB ANG ELEK TRO M AG NETIK LEMBAR KERJA SISWA (LKS) /TUGAS TERSTRUKTUR Diberikan Tanggal :. Dikumpulkan Tanggal : Nama : Kelas/No : / Elektromagnet - - GELOMBANG ELEKTROMAGNET - G ELO MB ANG ELEK TRO M AG NETIK Interferensi Pada

Lebih terperinci

Apakah Gelombang Elektromagnetik?? Gelombang Elektromagnetik adalah gelombang yang dapat merambat walau tidak ada medium

Apakah Gelombang Elektromagnetik?? Gelombang Elektromagnetik adalah gelombang yang dapat merambat walau tidak ada medium MATERI Gelombang elektromagnetik (Optik) Releksi, Reraksi, Intererensi gelombang optik Eksperimen Young Prinsip Huygen Pembentukan bayangan cermin dan lensa Alat-alat yang menggunakan prinsip optik Apa

Lebih terperinci

BAB GEJALA GELOMBANG I. SOAL PILIHAN GANDA. C. 7,5 m D. 15 m E. 30 m. 01. Persamaan antara getaran dan gelombang

BAB GEJALA GELOMBANG I. SOAL PILIHAN GANDA. C. 7,5 m D. 15 m E. 30 m. 01. Persamaan antara getaran dan gelombang 1 BAB GEJALA GELOMBANG I. SOAL PILIHAN GANDA 01. Persamaan antara getaran dan gelombang adalah (1) keduanya memiliki frekuensi (2) keduanya memiliki amplitude (3) keduanya memiliki panjang gelombang A.

Lebih terperinci

spektrometer yang terbatas. Alat yang sulit untuk diperoleh membuat penelitian tentang spektrum cahaya jarang dilakukan. Padahal penelitian tentang

spektrometer yang terbatas. Alat yang sulit untuk diperoleh membuat penelitian tentang spektrum cahaya jarang dilakukan. Padahal penelitian tentang spektrometer yang terbatas. Alat yang sulit untuk diperoleh membuat penelitian tentang spektrum cahaya jarang dilakukan. Padahal penelitian tentang spektrum merupakan suatu hal yang penting dalam ilmu

Lebih terperinci

Referensi : 1.Fisika Universitas edisi kesepuluh, schaum 2.Optics, Sears 3.Fundamental of Optics, Jenkin and White

Referensi : 1.Fisika Universitas edisi kesepuluh, schaum 2.Optics, Sears 3.Fundamental of Optics, Jenkin and White SILABUS : 1.Konsep Pemantulan Cahaya a. Cermin Datar b. Cermin Lengkung 2.Pembiasan Cahaya a. Gejala Pembiasan b. Lensa Datar c. Lensa Lengkung 3.Alat-alat Optik a. Mata dan Kacamata b. Lup c. Mikroskop

Lebih terperinci

Penentuan Nilai Panjang Koherensi Laser Menggunakan Interferometer Michelson

Penentuan Nilai Panjang Koherensi Laser Menggunakan Interferometer Michelson Penentuan Nilai Panjang Koherensi Laser Menggunakan Interferometer Mihelson Agustina Setyaningsih Jurusan Fisika Fakultas MIPA Universitas Diponegoro ABSTRACT Interferometer Mihelson method has been used

Lebih terperinci

PENGAMATAN PENJALARAN GELOMBANG MEKANIK

PENGAMATAN PENJALARAN GELOMBANG MEKANIK PENGAMATAN PENJALARAN GELOMBANG MEKANIK Elinda Prima F.D 1, Muhamad Naufal A 2, dan Galih Setyawan, M.Sc 3 Prodi D3 Metrologi dan Instrumentasi, Sekolah Vokasi, Universitas Gadjah Mada, Yogyakarta, Indonesia

Lebih terperinci

Jenis dan Sifat Gelombang

Jenis dan Sifat Gelombang Jenis dan Sifat Gelombang Gelombang Transversal, Gelombang Longitudinal, Gelombang Permukaan Gelombang Transversal Gelombang transversal merupakan gelombang yang arah pergerakan partikel pada medium (arah

Lebih terperinci

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1 KELAS XII LC FISIKA SMA KOLESE LOYOLA M1-1 MODUL 1 STANDAR KOMPETENSI : 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah KOMPETENSI DASAR 1.1. Mendeskripsikan gejala dan ciri-ciri

Lebih terperinci

BAB GELOMBANG MEKANIK. Pada pembelajaran pertama ini kita akan mempelajari. mekanik.

BAB GELOMBANG MEKANIK. Pada pembelajaran pertama ini kita akan mempelajari. mekanik. BAB 1 GELOMBANG MEKANIK Pada pembelajaran pertama ini kita akan mempelajari gelombang mekanik. Gelombang mekanik dapat kita pelajari melalui gejala gelombang pada slinky dan tali yang digetarkan. Ya. Setelah

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

Gejala Gelombang. gejala gelombang. Sumber:

Gejala Gelombang. gejala gelombang. Sumber: Gejala Gelombang B a b B a b 1 gejala gelombang Sumber: www.alam-leoniko.or.id Jika kalian pergi ke pantai maka akan melihat ombak air laut. Ombak itu berupa puncak dan lembah dari getaran air laut yang

Lebih terperinci

INTERFERENSI GELOMBANG

INTERFERENSI GELOMBANG INERFERENSI GELOMBANG Gelombang merupakan perambatan dari getaran. Perambatan gelombang tidak disertai dengan perpindahan materi-materi medium perantaranya. Gelombang dalam perambatannya memindahkan energi.

Lebih terperinci

Polarisasi. Dede Djuhana Departemen Fisika FMIPA-UI 0-0

Polarisasi. Dede Djuhana Departemen Fisika FMIPA-UI 0-0 Polarisasi Dede Djuhana E-mail:dede@fisika.ui.ac.id Departemen Fisika FMIPA-UI 0-0 Teori Korpuskuler (Newton) Cahaya Cahaya adalah korpuskel korpuskel yang dipancarkan oleh sumber dan merambat lurus dengan

Lebih terperinci

INTERFEROMETER DAN PRINSIP BABINET

INTERFEROMETER DAN PRINSIP BABINET INTERFEROMETER DAN PRINSIP BABINET Arief Rachman Pribadi, Leni Indah Sri Fitriyani, Nabila Khrisna Dewi, Pribadi Mumpuni Adhi 10208029,10208109,10208041,10208069 Program Studi Fisika, Institut Teknologi

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

EKSPERIMEN RIPPLE TANK. Kusnanto Mukti W M Jurusan Fisika, Fakultas MIPA Universitas Sebelas Maret Surakarta ABSTRAK

EKSPERIMEN RIPPLE TANK. Kusnanto Mukti W M Jurusan Fisika, Fakultas MIPA Universitas Sebelas Maret Surakarta ABSTRAK EKSPERIMEN RIPPLE TANK Kusnanto Mukti W M0209031 Jurusan Fisika, Fakultas MIPA Universitas Sebelas Maret Surakarta ABSTRAK Eksperimen ripple tank ini dilakukan dengan mengamati bentuk-bentuk gelombang

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika bersifat universal dan banyak kaitannya dengan kehidupan nyata. Matematika berperan sebagai ratu ilmu sekaligus sebagai pelayan ilmu-ilmu yang lain. Kajian

Lebih terperinci

ALAT OPTIK. Bagian-bagian Mata

ALAT OPTIK. Bagian-bagian Mata ALAT OPTIK Alat optik adalah alat yang bekerja dengan memanfaatkan sifat-sifat cahaya seperti pemantulan dan pembiasan. Pada dasarnya alat optik merupakan alat penglihatan manusia baik secara alami maupun

Lebih terperinci

KUMPULAN SOAL UJIAN NASIONAL DAN SPMB

KUMPULAN SOAL UJIAN NASIONAL DAN SPMB . Cahaya adalah gelombang elektromagnetik yang mempunyai sifatsifat. ) merupakan gelombang medan listrik dan medan magnetik ) merupakan gelombang longitudinal ) dapat dipolarisasikan ) rambatannya memerlukan

Lebih terperinci

D. 30 newton E. 70 newton. D. momentum E. percepatan

D. 30 newton E. 70 newton. D. momentum E. percepatan 1. Sebuah benda dengan massa 5 kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari 1,5 m Jika kecepatan sudut tetap 2 rad/s,

Lebih terperinci

Analisis Pola Interferensi Pada Interferometer Michelson untuk Menentukan Panjang Gelombang Sumber Cahaya

Analisis Pola Interferensi Pada Interferometer Michelson untuk Menentukan Panjang Gelombang Sumber Cahaya Analisis Pola Interferensi Pada Interferometer Michelson untuk Menentukan Panjang Gelombang Sumber Cahaya Masroatul Falah Jurusan Fisika Fakultas MIPA Universitas Diponegoro ABSTRACT An interferometer

Lebih terperinci

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 39 JAKARTA

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 39 JAKARTA PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA DINAS PENDIDIKAN SEKOLAH MENENGAH ATAS NEGERI 9 JAKARTA Jl. RA Fadillah Cijantung Jakarta Timur Telp. 840078, Fax 87794718 REMEDIAL ULANGAN TENGAH SEMESTER

Lebih terperinci

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis

B.1. Menjumlah Beberapa Gaya Sebidang Dengan Cara Grafis BAB II RESULTAN (JUMLAH) DAN URAIAN GAYA A. Pendahuluan Pada bab ini, anda akan mempelajari bagaimana kita bekerja dengan besaran vektor. Kita dapat menjumlah dua vektor atau lebih dengan beberapa cara,

Lebih terperinci

B a b 2. Vektor. Sumber:www.tallship.org

B a b 2. Vektor. Sumber:www.tallship.org a b 2 Vektor Sumber:www.tallship.org Pada bab ini, nda akan diajak untuk dapat menerapkan konsep besaran Fisika dan pengukurannya dengan cara melakukan penjumlahan vektor. Pernahkah nda mengarungi lautan

Lebih terperinci

4. Sebuah mobil bergerak dengan kecepatan konstan 72 km/jam. Jarak yang ditempuh selama selang waktu 20 sekon adalah...

4. Sebuah mobil bergerak dengan kecepatan konstan 72 km/jam. Jarak yang ditempuh selama selang waktu 20 sekon adalah... Kelas X 1. Tiga buah vektor yakni V1, V2, dan V3 seperti gambar di samping ini. Jika dua kotak mewakili satu satuan vektor, maka resultan dari tiga vektor di atas adalah. 2. Dua buah vektor A dan, B masing-masing

Lebih terperinci

M-5 PENENTUAN PANJANG GELOMBANG CAHAYA TAMPAK

M-5 PENENTUAN PANJANG GELOMBANG CAHAYA TAMPAK M-5 PENENTUAN PANJANG GELOMBANG CAHAYA TAMPAK I. TUJUAN Tujuan percobaan ini adalah untuk menentukan besar panjang gelombang dari cahaya tampak dengan menggunakan konsep difraksi dan interferensi. II.

Lebih terperinci

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor

Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor Besaran skalar adalah besaran yang hanya memiliki nilai saja. Contoh :

Lebih terperinci

BAB 23. CAHAYA : OPTIK GEOMETRIK

BAB 23. CAHAYA : OPTIK GEOMETRIK DAFTA ISI DAFTA ISI... BAB 3. CAHAYA : OPTIK GEOMETIK... 3. Model Berkas Cahaya... 3. Pantulan...3 3.3 Indeks Bias...4 3.4 Pembiasan : Hukum Snell...4 3.5 Lensa Tipis...7 3.6 Persamaan Lensa...9 3.7 Quis...0

Lebih terperinci

O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I

O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I CAHAYA O L E H : B H E K T I K U M O R O W AT I T R I W A H Y U N I W I N D Y S E T Y O R I N I M A R I A M A G D A L E N A T I T I S A N I N G R O H A N I PETA KONSEP Cahaya Dualisme Cahaya Kelajuan Cahaya

Lebih terperinci

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R

SANGAT RAHASIA. 30 o. DOKUMEN ASaFN 2. h = R DOKUMEN ASaFN. Sebuah uang logam diukur ketebalannya dengan menggunakan jangka sorong dan hasilnya terlihat seperti pada gambar dibawah. Ketebalan uang tersebut adalah... A. 0,0 cm B. 0, cm C. 0, cm D.

Lebih terperinci

Gelombang Cahaya. Spektrum Gelombang Cahaya

Gelombang Cahaya. Spektrum Gelombang Cahaya Gelombang Cahaya Sifat-Sifat Cahaya Cahaya merupakan salah satu spektrum gelombang elektromagnetik, yaitu gelombang yang merambat tanpa memerlukan medium. Cahaya memiliki sifat-sifat-sifat sebagai berikut:

Lebih terperinci

Pengukuran Panjang Koherensi Menggunakan Interferometer Michelson

Pengukuran Panjang Koherensi Menggunakan Interferometer Michelson Berkala Fisika ISSN : 1410-966 Vol 10, No.4, Oktober 007 hal. 169-173 Pengukuran Panjang Koherensi Menggunakan Interferometer Mihelson Agustina Setyaningsih, Indras Marhaendrajaya, K. Sofjan Firdausi Laboratorium

Lebih terperinci

2). Besaran Dasar Gelombang Y arah rambat ( v) A P T 0 Q S U. * Hubungan freakuensi (f) dengan pereode (T).f = n/t n = f.t dan T = t/n n = t/t

2). Besaran Dasar Gelombang Y arah rambat ( v) A P T 0 Q S U. * Hubungan freakuensi (f) dengan pereode (T).f = n/t n = f.t dan T = t/n n = t/t Modul Pembelajaran Fisika XII-IPA 1 BAB 1 GEJALA GELOMBANG A. Persamaan Dasar Gelombang 1). Pengertian Gelombang Gelombang adalah usikan yang merambat secara terus menerus. Medium yang dilalui gelombang

Lebih terperinci

Review Studi Difraksi Fresnel Menggunakan Celah Bentuk Lingkaran

Review Studi Difraksi Fresnel Menggunakan Celah Bentuk Lingkaran Berkala Fisika ISSN : 1410-966 Vol 11., No., April 008, hal 39-43 Review Studi Difraksi Fresnel Menggunakan Celah Bentuk Lingkaran Arinar Rosyidah, Indras Marhaendrajaya, K.Sofjan Firdausi Jurusan Fisika,

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

LAPORAN R-LAB. Pengukuran Panjang Gelombang Laser

LAPORAN R-LAB. Pengukuran Panjang Gelombang Laser LAPORAN R-LAB Pengukuran Panjang Gelombang Laser Nama : Humuntar Russell N H NPM : 1106052493 Fakultas Departemen Kode Praktikum : Teknik : Teknik Mesin : OR01 Tanggal Praktikum : 19 Oktober 2012 Kelompok

Lebih terperinci

Matematika Semester IV

Matematika Semester IV F U N G S I KOMPETENSI DASAR Mendeskripsikan perbedaan konsep relasi dan fungsi Menerapkan konsep fungsi linear Menggambar fungsi kuadrat Menerapkan konsep fungsi kuadrat Menerapkan konsep fungsi trigonometri

Lebih terperinci

BAB - 14 C A H A Y A

BAB - 14 C A H A Y A BAB - 14 C A H A Y A Sifat gelombang dari cahaya Gelombang elektromagnetik Kecepatan cahaya Panjang gelombang 10-17 sampai 10 4 m dan yang dapat dideteksi oleh mata manusia 4.10-4 m sampai 7. 10-4 m yang

Lebih terperinci

g. Lensa Cembung Jadi kalau pada cermin pembahasan hanya pada pemantulan maka pada lensa pembahasan hanya pada pembiasan

g. Lensa Cembung Jadi kalau pada cermin pembahasan hanya pada pemantulan maka pada lensa pembahasan hanya pada pembiasan g. Lensa Cembung Lensa adalah benda bening yang dibatasi oleh bidang lengkung. Pada pembahasan lensa dianggap tipis sehingga dapat diabaikan apa yang terjadi dengan sinar didalam lensa dan pembahasan hanya

Lebih terperinci

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. (

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. ( Gelombang Stasioner 16:33 Segala ada No comments Apa yang terjadi jika ada dua gelombang berjalan dengan frekuensi dan amplitudo sama tetapi arah berbeda bergabung menjadi satu? Hasil gabungan itulah yang

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

Fisika UMPTN Tahun 1986

Fisika UMPTN Tahun 1986 Fisika UMPTN Tahun 986 UMPTN-86-0 Sebuah benda dengan massa kg yang diikat dengan tali, berputar dalam suatu bidang vertikal. Lintasan dalam bidang itu adalah suatu lingkaran dengan jari-jari, m. Jika

Lebih terperinci

Lampiran I. Soal. 2. Gambarkan garis normal apabila diketahui sinar datangnya! 3. Gambarkan garis normal apabila diketahui sinar datangnya!

Lampiran I. Soal. 2. Gambarkan garis normal apabila diketahui sinar datangnya! 3. Gambarkan garis normal apabila diketahui sinar datangnya! LAMPIRAN Tahap I : Menggambarkan garis normal dari bidang batas yang datar No. Soal No. Soal 1. Gambarkan garis normal apabila diketahui sinar datangnya! 2. Gambarkan garis normal apabila diketahui sinar

Lebih terperinci

Cahaya. Bab. Peta Konsep. Gambar 17.1 Pensil yang dicelupkan ke dalam air. Cermin datar. pada. Pemantulan cahaya. Cermin lengkung.

Cahaya. Bab. Peta Konsep. Gambar 17.1 Pensil yang dicelupkan ke dalam air. Cermin datar. pada. Pemantulan cahaya. Cermin lengkung. Bab 7 Cahaya Sumber: Dokumen Penerbit Gambar 7. Pensil yang dicelupkan ke dalam air Coba kamu perhatikan Gambar 7.. Sebatang pensil yang dicelupkan ke dalam gelas berisi air akan tampak bengkok jika dilihat

Lebih terperinci

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi.

DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi. DEFINISI Gelombang adalah suatu usikan (gangguan) pada sebuah benda, sehingga benda bergetar dan merambatkan energi. MACAM GELOMBANG Gelombang dibedakan menjadi : Gelombang Mekanis : Gelombang yang memerlukan

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci