Percobaan 9 MULTIPLEKSER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Ukuran: px
Mulai penontonan dengan halaman:

Download "Percobaan 9 MULTIPLEKSER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY"

Transkripsi

1 Percobaan 9 MULTIPLEKSER Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY sumarna@uny.ac.id Tujuan :. Mempelajari fungsi multiplekser, 2. Mempelajari cara kerja suatu multiplekser, 3. Membuktikan tabel kebenaran suatu multiplekser, 4. Menyusun suatu multiplekser. Alat-alat : Catu daya dc +5 volt, breadboard, IC-7450, IC-745, IC-7453, IC-7457, resistor, LED, multimeter, dan kabel penghubung. Dasar Teori : Multiplekser Kebalikan fungsi dari demultiplekser adalah multiplekser. Multiplekser merupakan suatu piranti untuk memilih salah satu masukan dari beberapa masukan yang tersedia untuk disalurkan ke satu keluaran. Multiplekser identik dengan saklar putar (rotary) satu kutub banyak posisi. Multiplekser juga disebut sebagai pemilih data (data selector). Ide dasar multiplekser ditunjukkan pada Gambar di bawah ini. Data Masukan (paralel) L L H H L A Multiplekser Kendali (alamat) LHHLLL Data keluaran (serial) Gambar : Multiplekser identik dengan saklar putar 22

2 Salah satu masukan dipilih memalui kendali (alamat) dengan cara memutar saklar pada sudut tertentu. Data pada masukan yang dipilih akan muncul pada keluarannya. Multiplekser seperti pada gambar di atas merupakan multiplekser analog yang terdiri dari saklar 6 posisi. Sedangkan multiplekser yang akan kita bahas adalah multiplekser digital yang dapat disusun dari gerbang-gerbang logika. Agar dapat memilih salah satu masukan di antara beberapa masukan yang tersedia diperlukan jalur pengendali. Banyaknya jalur pengendali ditentukan oleh banyaknya jalur masukan. Misalkan ada 4 jalur masukan yang masing-masing X 0, X, X 2, dan X 3 maka diperlukan 2 jalur pengendali yaitu S 0, dan S. Karena nilai logika 2 jalur pengendali itu dapat menghasilkan 4 kombinasi keadaan yang berbeda yaitu 00, 0, 0, dan. Model aturan yang biasa digunakan untuk pemilihan jalur masukan yang dipilih seperti terlihat pada tabel berikut. Nilai pada dua jalur pengendali Jalur masukan yang dipilih (disalurkan ke keluaran) 00 X 0 0 X 0 X 2 X 3 Diagram blok dari multiplekser 4 masukan keluaran (dan tentunya dengan 2 jalur pengendali) terlihat pada Gambar berikut. 4 jalur masukan X 0 X X 2 X 3 Y ( jalur keluaran) S 0 S Gambar : Diagram blok multiplekser 4 masukan Dengan cara yang sama, untuk multiplekser 8 masukan diperlukan 3 jalur pengendali, dan seterusnya. Dengan demikian secara umum dapat dikatakan 23

3 bahwa n jalur pengendali dapat memilih satu masukan secara tegas di antara 2 n masukan. Tentu saja 2 n tersebut merupakan jumlah maksimum yang dapat dipilih. Sebagaimana demultiplekser, pada umumnya multiplekser juga dilengkapi dengan jalur strobe atau enable. Jalur ini merupakan jalur perintah yang memungkinkan multiplekser bekerja atau tidak bekerja. Untuk membuat multiplekser digital, terlebih dahulu perlu mengingat kembali sifat-sifat dari gerbang logika dasar, terutama gerbang-gerbang NOT, AND, dan OR. Karena gerbang- gerbang tersebut yang akan kita gunakan untuk menyusun suatu multiplekser. NOT : Jika masukan rendah maka keluarannya tinggi, dan sebaliknya jika masukan tinggi maka keluarannya rendah. AND: Keluaran tinggi, bila dan hanya bila semua masukannya tinggi. OR : Keluaran rendah, bila dan hanya bila semua masukannya rendah. Atau keluaran tinggi jika satu atau lebih masukannya tinggi. Selanjutnya, marilah menyusun multiplekser digital 4 masukan ke keluaran yang dilengkapi dengan jalur enable dan pengendali (control). Karena setiap jalur masukan berkaitan dengan jalur data, jalur enable, dan tentunya 2 jalur pengendali, maka masing-masing jalur masukan merupakan gerbang AND 4 masukan. Agar diperoleh keluaran, maka perlu gerbang OR 4 masukan untuk menampung 4 keluaran dari setiap gerbang AND. Untuk lebih jelasnya perhatikan Gambar di bawah ini. 24

4 Pengendali S S 0 Enable 0 X 0 X X 2 2 Y Keluaran X 3 3 Gambar : Rangkaian multiplekser digital 4 masukan Ke keluaran dengan gerbang NOT, AND, dan OR. Multiplekser pada gambar tersebut, bila enable = maka pemilihan masukan dilaksanakan, dan sebaliknya bila enable = 0 maka pemilihan masukan tidak dilaksanakan. Tentu saja dapat dibuat keadaan enable = 0 agar pemilihan masukan dilaksanakan dan enable = agar pemilihan masukan tidak dilaksanakan. Setelah memahami cara kerja multiplekser, kita dapat memanfaatkannya untuk berbagai keperluan sebatas kemampuan multiplekser tersebut. Multiplekser sering dimanfaatkan sebagai rangkaian pengubah data paralel ke serial (paralel to serial converter). Misalkan tersedia data 4 bit dalam bentuk paralel, lihat kembali gambar di atas. Data 4 bit tersebut dikenakan pada masukan multiplekser 4 masukan ke keluaran. Bit ke 0 dikenakan pada X 0, bit ke dikenakan pada X, bit ke 2 dikenakan pada X 2, dan bit ke 3 dikenakan pada X 3. Melalui jalur pengendali (2 jalur) maka data 4 bit tadi disalurkan ke keluarannya secara berurutan. Pada periode pertama, ketika jalur pengendali bernilai 00, maka X 0 disalurkan ke keluaran. Pada periode ke dua, jalur pengendali bernilai 0, maka X disalurkan ke keluaran. Demikian seterusnya sehingga pada keluarannya 25

5 terjadi gelombang sebagai data serial yang semula dimasukkan secara paralel. Untuk menyalurkan data paralel 4 bit ke keluaran secara utuh memerlukan selang waktu 4 periode. Secara umum data paralel N bit (X (n-), X (n-2),..., X 2, X, X 0 ) dapat dikeluarkan secara serial dari X 0, X, X 2,..., X (n-2), X (n-) diperlukan selang waktu N periode. Manfaat lain multiplekser adalah dapat digunakan untuk merealisasikan suatu rangkaian logika. Multiplekser dengan N jalur pengendali dapat digunakan untuk membentuk rangkaian logika dengan N variabel masukan. Sebagai contoh, dengan menggunakan multiplekser 3 bit (8 masukan) kita hendak membuat suatu rangkaian logika yang memiliki persamaan logika sebagai berikut : Y = f (A, B, C, D) = Sm (0,,3,5,7,8,,3,4). Terlebih dahulu kita pilih 3 di antara 4 variabel masukan (A,B,C,D) untuk kita hubungkan dengan 3 jalur pengendali (S 0, S, S 2 ) pada multiplekser, misalkan kita pilih D, C, dan B. Selanjutnya hubungkan D, C, B tersebut berturut-turut dengan S 2, S, S 0 seperti yang terlihat pada Gambar di bawah ini. Untuk menentukan nilai masukan X i (i = 0,,2,3,4,5,6,7) agar keluaran Y sesuai dengan fungsi logika yang diinginkan, buatlah peta Karnough dari Y, perhatikan gambar (b) berikut. Pada peta tersebut tampak ada 8 bagian (dibatasi oleh kotak) yang masing masing berkaitan dengan DCB (variabel yang kita pilih). 26

6 A A X 0 X X 2 X 3 X 4 X 5 X 6 X 7 B A B A BA B A D C X 0 X D C X 2 X 3 DC X 8 X 7 DC X 4 X 5 S 2 S S 0 (a) D C B (b) Gambar : Multiplekser 3 bit untuk membuat fungsi logika Y = m (0,,3,5,7,8,,3,4) (a) Realisasi rangkaian, (b) Peta Karnough. Untuk nilai DCB = S 3 S 2 S = 000, oleh karena Y = X 0, maka bagian kotak yang berkaiatan dengan nilai tersebut diberi tanda X 0. Demikian juga untuk nilai DCB = S 3 S 2 S = 00, karena Y = X, maka kotak yang berkaiatan dengan harga tersebut diberi tanda X, dan seterusnya. Pada kotak X 0 oleh karena Y pada kedua kotak tersebut bernilai, maka masukan X 0 dihubungkan dengan nilai. Untuk kotak X, oleh karena Y = X = jika A =, dan Y = X = 0 jika A = 0, yang berarti X = A, maka masukan X dari multiplekser dihubungkan dengan A. Hasil yang sama akan diperoleh untuk kotak-kotak X 2, X 3, X 5, dan X 6. Sedangkan untuk kotak X 4 dan X 7, oleh karena Y bernilai berkaitan dengan A = 0, maka X 4 dan X 7 dihubungkan dengan komplemen A, yaitu A. Sekali lagi, yang dihubungkan dengan masukan pengendali tidak harus DCB, tetapi dapat memilih 3 di antara 4 variabel A, B, C, dan D. Sebenarnya, untuk rangkaian logika dengan N variabel masukan dapat digunakan multiplekser yang memiliki jumlah jalur pengendali kurang dari N, tetapi perlu tambahan gerbang pada bagian masukannya. Untuk keperluan pengendalian yang lebih besar kadang diperlukan multiplekser dengan jalur masukan yang besar juga. Multiplekser yang demikian 27

7 itu selanjutnya dikenal sebagai multiplekser orde tinggi. Multiplekser orde tinggi sangat sulit ditemukan di pasaran, atau bahkan tidak tersedia dalam satu kemasan. Tetapi kita dapat menyusun multiplekser orde tinggi dari multipleksermultiplekser orde yang lebih rendah. Sebagai contoh marilah kita merancang multiplekser 6 saluran masukan dan keluaran dari beberapa multiplekser 4 saluran masukan dan keluaran. Kita perlu 5 buah multiplekser orde yang lebih rendah tersebut. Perhatikan baik-baik Gambar berikut. X 0 X X 2 X 3 S S X 0 X X 2 X 3 S S Keluaran X 0 X X 2 X 3 S S S S X 0 X X 2 X 3 S S Gambar : Multiplekser 6 masukan keluaran yang tersusun dari multiplekser-multiplekser 4 masukan keluaran. 28

8 Rangkaian Terpadu (IC) Dekoder/demultiplekser dan multiplekser Selain untuk memenuhi keperluan khusus dan dalam keadaan terpaksa, untuk keperluan praktis kita tidak perlu membuat dekoder/demultiplekser dan multiplekser dari gerbang gerbang logika, karena di pasaran telah tersedia piranti tersebut dalam kemasan standar, yaitu dalam bentuk IC. Selanjutnya akan dikemukakan beberapa dekoder/demultiplekser dan multiplekser bentuk IC yang mudah diperoleh di toko-toko elektronika. Perhatikan Tabel berikut. No. Kode IC Deskripsi , 7444, 7445 Decoder BCD ke desimal atau dekoder ke 0 Dekoder ke , 7447, 7448 Dekode/driver BCD ke 7-segment , 7438 Dekoder/demultiplekser ke Dekoder ke 4, di dalam IC tersedia 2 dekoder Multiplekser 6 masukan (6 saluran ke saluran) 6 745, 7452 Multiplekser 8 masukan (8 saluran) Multiplekser 4 masukan, di dalam IC ada Dekoder/demultiplekser ke 6 (4 saluran ke 6 saluran) , 7456 Dekoder/demultiplekser ke 4, di dalam IC ada , 7458 Multiplekser 2 masukan, di dalam IC ada Multiplekser 8 masukan Multiplekser 4 masukan, di dalam IC ada , Multiplekser 2 masukan, di dalam IC ada 4 Tidak semua IC dekoder/demultiplekser dan multiplekser terdaftar pada tabel di atas. Masih banyak IC sejenis yang belum tercantum dalan tabel tersebut. Bahkan karena pesatnya perkembangan teknologi IC dimungkinkan lahir IC sejenis yang baru. Tetapi dengan menguasai prinsip-prinsip dasarnya, dan dengan usaha yang cukup, Anda dapat memahami IC lain yang sejenis. Oleh karena banyaknya jenis IC dekoder/demultiplekser dan multiplekser, sebagai gambaran 29

9 dipilih dua di antaranya. IC 7438 untuk mewakili dekoder/demultiplekser, dan IC 745 yang mewakili multiplekser. IC 7438 merupakan dekoder/demultiplekser dari ke 8 saluran. Karena kecepatannya yang tinggi IC tersebut sangat baik untuk keperluan pengkode alamat. Tiga masukan Enable-nya memungkinkan IC itu disusun menjadi dekoder ke 24 saluran. Bahkan 4 buah IC 7438 dapat membentuk dekoder ke 32 saluran dengan tambahan satu gerbang NOT. IC 7438 memiliki 6 kaki. Dua kaki untuk V dan GND, 3 kaki untuk saluran pengendali (A 2 A A 0 ), 3 kaki untuk masukan Enable (E 3 E 2 E ), dan 8 kaki sisanya untuk saluaran keluaran (O 7 O 6 O 5 O 4 O 3 O 2 O O 0 ). Diagram IC 7438 tampak pada Gambar berikut. E E 2 E 3 A 2 A A 0 +Vcc 3 2 E O 7 O 6 O 5 O 4 O 3 O 2 O O 0 Gambar : Diagram dekoder/demultiplekser Dekoder/demultiplekser 7438 menerima tiga masukan biner berbobot (A 2 A A 0 ) untuk memilih (mengaktifkan) di antara 8 keluarannya (O 7 O 6 O 5 O 4 O 3 O 2 O O 0 ). Keluaran 7438 adalah aktif rendah (active low). Jika A 2 A A 0 = 000 = 0, maka yang aktif keluaran O 0. Jika A 2 A A 0 = 00 =, maka yang aktif keluaran O. Jika A 2 A A 0 = 00 = 2, maka yang aktif keluaran O 2, dan seterusnya. Untuk lebih jelasnya, perhatikan tabel kebenaran dari IC 7438 yang tertera pada Tabel di bawah ini. 30

10 Masukan Keluaran E E 2 E A 0 A A 2 O 0 O O 2 O 3 O 4 O 5 O 6 O 7 X X X X X 0 X X X X X X X X X : tingkat tegangan tinggi 0 : tingkat tegangan rendah X : tidak peduli. Selanjutnya, sebagai contoh multiplekser dipilih IC 745 yang merupakan multiplekser digital 8 masukan dengan kecepatan tinggi. dengan IC 745 memungkinkan untuk memilih satu jalur data dari 8 sumber yang tersedia. IC 745 memiliki 6 kaki. Seperti pada umumnya IC, 2 kaki untuk V dan GND, 3 kaki untuk masukan pemilih (S 2 S S 0 ), kaki enable aktif rendah ( E ), 2 kaki untuk jalur keluaran yang saling komplemen ( Z, Z), dan 8 kaki sisanya untuk jalur masukan (I 7 I 6 I 5 I 4 I 3 I 2 I I 0 ). Pemilihan jalur data masukan yang disalurkan ke keluaran dilakukan melalui masukan pemilih (S 2 S S 0 ). Jika S 2 S S 0 = 000 = 0, maka masukan I 0 yang disalurkan. Jika S 2 S S 0 = 00 =, maka masukan I yang disalurkan. Jika S 2 S S 0 = 00 = 2, maka masukan I 2 yang disalurkan. Demikian seterusnya. Diagram IC 745 tampak pada Gambar berikut. Sedangkan tabel kebenarannya dapat diperhatikan pada Tabel di bawah ini. 3

11 I 7 I 6 I 5 I 4 I 3 I 2 I I 0 +Vcc S 0 S S C Z Gambar : Diagram multiplekser 745. Masukan Keluaran E S 0 S S 2 Z Z x x X I 0 I I I I 2 I I 3 I I 4 I I 5 I I 6 I 6 0 I 7 I 7 : tingkat tegangan tinggi 0 : tingkat tegangan rendah Demikianlah gambaran singkat tentang rangkaia terpadu (IC) dari dekoder/demultiplekser dan multiplekser. Informasi yang lebih lengkap tentang IC- IC tersebut sebaiknya dilihat pada buku data (data book) atau lembaran data (data sheet) tetang IC tadi. 32

12 Langkah-langkah Percobaan : A. IC Pasanglah IC-7450 pada breadboard dengan benar. Hubungkan pin 2 dengan gnd dan hubungkan pin 24 dengan Vcc (catu daya dc +5 volt). Simbol logik dari IC-7450 adalah sebagai berikut : I 0 I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 0 I I 2 I 3 I 4 I E S 3 S S S 0 O 0 2. Saluran select pada pin-pin 5 (S 0 ), 4 (S ), 3 (S 2 ), dan (S 3 ). Pin 9 ( E ) sebagai enable atau strobe. Saluran sebagai masukan data adalah pinpin 8 (I 0 ), 7 (I ), 6 (I 2 ), 5 (I 3 ), 4 (I 4 ), 3 (I 5 ), 2 (I 6 ), (I 7 ), 23 (I 8 ), 22 (I 9 ), 2 (I 0 ), 20 (I ), 9 (I 2 ), 8 (I 3 ), 7 (I 4 ), dan 6 (I 5 ). Pin 0 (O) sebagai keluaran. 3. Carilah data pada pin masukan mana yang diteruskan/disalurkan ke keluaran. Lakukan pengamatan dengan keadaan logik sebagaimana tercantum pada tabel kebenaran berikut : 33

13 Masukan E S 3 Select S 2 S S 0 x x x x Keluaran O Pin masukan yang diteruskan B. IC-745. Pasanglah IC-745 pada breadboard dengan benar. Hubungkan pin 8 dengan gnd dan hubungkan pin 6 dengan Vcc (catu daya dc +5 volt). Simbol logik dari IC-745 adalah sebagai berikut : I 0 I I 2 I 3 I 4 I 5 I 6 I E S S S 0 O O

14 2. Saluran select pada pin-pin (S 0 ), 0 (S ), dan 9 (S 2 ). Pin 7 ( E ) sebagai enable atau strobe. Sebagai saluran masukan data adalah pin-pin 4 (I 0 ), 3 (I ), 2 (I 2 ), (I 3 ), 5 (I 4 ), 4 (I 5 ), 3 (I 6 ), dan 2 (I 7 ). Pin 5 (O) dan 6 ( O ) sebagai keluaran. 3. Carilah data pada pin masukan mana yang diteruskan/disalurkan ke keluaran. Lakukan pengamatan dengan keadaan logik sebagaimana tercantum pada tabel kebenaran berikut : Masukan E S 2 Select S S 0 x x x Keluaran O O Pin masukan yang diteruskan C. IC Pasanglah IC-7453 pada breadboard dengan benar. Hubungkan pin 8 dengan gnd dan hubungkan pin 6 dengan Vcc (catu daya dc +5 volt). Simbol logik dari IC-7453 adalah sebagai berikut : E a I 0a I a I 2a I 3a I 0b I b I 2b I 3b E b 7453 S S 0 O a O b

15 2. Saluran select pada pin-pin 4 (S 0 ), dan 2 (S ). Pin ( E a ) dan pin 5 ( E b ) masing-masing sebagai enable atau strobe untuk multiplekser a dan multiplekser b. Sebagai saluran masukan data multiplekser a adalah pin-pin 6 (I 0a ), 5 (I a ), 4 (I 2a ), 3 (I 3a ), dan sebagai saluran masukan data multiplekser b adalah pin-pin 0 (I 0b ), (I b ), 2 (I 2b ), 3 (I 3b ). Pin 7 (O a ) sebagai keluaran multiplekser a dan pin 9 (O b ) sebagai keluaran multiplekser b. 3. Carilah data pada pin masukan mana yang diteruskan/disalurkan ke keluaran. Lakukan pengamatan untuk masing-masing multiplekser dengan keadaan logik sebagaimana tercantum pada tabel kebenaran berikut : Masukan Keluaran Select Enable Multiplekser a atau b S S 0 I 3 I 2 I I 0 O x x x x x x x x x x x x 0 0 x x 0 x 0 0 x x x 0 0 x 0 x x 0 0 x x x 0 0 x x x 0 x x x D. IC Pasanglah IC-7457 pada breadboard dengan benar. Hubungkan pin 8 dengan gnd dan hubungkan pin 6 dengan Vcc (catu daya dc +5 volt). Simbol logik dari IC-7457 adalah sebagai berikut : I 0a I a I 0b I b I 0c I c I 0d I d 5 E 7457 S O a O b O c O d

16 2. Saluran select pada pin (S). Pin 5 ( E ) sebagai enable atau strobe untuk semua multiplekser. Sebagai saluran masukan data multiplekser a adalah pin-pin 2 (I 0a ), 3 (I a ), multiplekser b adalah pin-pin 5 (I 0b ), 6 (I b ), masukan data multiplekser c adalah pin-pin 4 (I 0c ), 3 (I c ), dan multiplekser d adalah pin-pin (I 0d ), 0 (I d ). Pin 4 (O a ) sebagai keluaran multiplekser a, pin 7 (O b ) sebagai keluaran multiplekser b, pin 2 (O c ) sebagai keluaran multiplekser c, dan pin 9 (O d ) sebagai keluaran multiplekser d. 3. Carilah data pada pin masukan mana yang diteruskan/disalurkan ke keluaran. Lakukan pengamatan untuk masing-masing multiplekser dengan keadaan logik sebagaimana tercantum pada tabel kebenaran berikut : Enable Select Masukan Keluaran Multiplekser a, b, c, atau d I I 0 O x x x 0 0 x 0 x 0 0 x x Perhatian : Untuk setiap tabel kebenaran tersebut di atas, berdasarkan hasil percobaan dan pengamatan yang telah dilakukan kemudian buatlah kesimpulannya. 37

Percobaan 8 DEMULTIPLEKSER / DEKODER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 8 DEMULTIPLEKSER / DEKODER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 8 DEMULTIPLEKER / DEKODER Oleh : umarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mempelajari fungsi demultiplekser/dekoder,. Mempelajari cara kerja dan menyusun suatu demultiplekser/dekoder,.

Lebih terperinci

Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Mengenal cara kerja dari peraga 7-segmen 2. Mengenal cara kerja rangkaian

Lebih terperinci

Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, urdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mempelajari cara kerja pencacah biner sinkron dan tak sinkron, 2. Merealisasikan pencacah biner

Lebih terperinci

GERBANG LOGIKA. Percobaan 1. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Tujuan :

GERBANG LOGIKA. Percobaan 1. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY   Tujuan : Percobaan 1 GERNG LOGIK Oleh : Sumarna, Jurdik Fisika, FMIP, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Membiasakan mengenali letak dan fungsi pin (kaki) pada IC gerbang logika dasar. 2. Memahami cara

Lebih terperinci

Percobaan 2 GERBANG KOMBINASIONAL DAN KOMPARATOR. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 2 GERBANG KOMBINASIONAL DAN KOMPARATOR. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 2 GERNG KOMINSIONL DN KOMPRTOR Oleh : Sumarna, Jurdik Fisika, FMIP, UN E-mail : sumarna@uny.ac.id Tujuan : 1. Membiasakan mengenali letak dan fungsi pin (kaki) pada IC gerbang logika. 2. Menyusun

Lebih terperinci

PERCOBAAN DAC TANGGA R-2R ( DAC 0808 )

PERCOBAAN DAC TANGGA R-2R ( DAC 0808 ) PERCOBAAN DAC TANGGA R- ( DAC 0808 ) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id A. TUJUAN 1. Mempelajari cara kerja DAC yang menggunakan metode Tangga R-. 2. Merancang rangkaian

Lebih terperinci

Percobaan 3 RANGKAIAN PENJUMLAH BINER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 3 RANGKAIAN PENJUMLAH BINER. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 3 RNGKIN PENJUMLH INER Oleh : umarna, Jurdik Fisika, FMIP, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mengenal cara kerja rangkaian penjumlah biner, 2. Dapat menyusun rangkaian penjumlah Half dder

Lebih terperinci

Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 7 REGISTER (PENCATAT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Mengenal beberapa jenis register. 2. Menyusun rangkaian register. 3. Mempelajari cara kerja

Lebih terperinci

BAB VI RANGKAIAN KOMBINASI

BAB VI RANGKAIAN KOMBINASI BAB VI RANGKAIAN KOMBINASI Di dalam perencanaan rangkaian kombinasi, terdapat beberapa langkah prosedur yang harus dijalani, yaitu :. Pernyataan masalah yang direncanakan 2. Penetapan banyaknya variabel

Lebih terperinci

BAB IX RANGKAIAN PEMROSES DATA

BAB IX RANGKAIAN PEMROSES DATA BAB IX RANGKAIAN PEMROSES DATA 9.1 MULTIPLEXER Multiplexer adalah suatu rangkaian yang mempunyai banyak input dan hanya mempunyai satu output. Dengan menggunakan selector, dapat dipilih salah satu inputnya

Lebih terperinci

GERBANG UNIVERSAL. I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran

GERBANG UNIVERSAL. I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran GERBANG UNIVERSAL I. Tujuan : I.1 Merangkai NAND Gate sebagai Universal Gate I.2 Membuktikan table kebenaran II. PENDAHULUAN Gerbang universal adalah salah satu gerbang dasar yang dirangkai sehingga menghasilkan

Lebih terperinci

Gambar 4.1. Rangkaian Dasar MUX.

Gambar 4.1. Rangkaian Dasar MUX. PERCOBAAN DIGITAL 4 MULTIPLEXER DAN DEMULTIPLEXER 4.. TUJUAN PERCOBAAN. Mengenal, mengerti, dan memahami cara kerja Multiplekser dan Demultiplekser.. Mengenal berbagai macam rangkaian terintegrasi Multiplekser

Lebih terperinci

Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Mempelajari cara kerja berbagai rangkaian flip flop 2. Membuat rangkaian

Lebih terperinci

Modul 3 : Rangkaian Kombinasional 1

Modul 3 : Rangkaian Kombinasional 1 Fakultas Ilmu Terapan, Universitas Telkom 1 Modul 3 : Rangkaian Kombinasional 1 3.1 Tujuan Mahasiswa mampu mengetahui cara kerja decoder dengan IC, dan membuat rangkaiannya. 3.2 Alat & Bahan 1. IC Gerbang

Lebih terperinci

Percobaan 11 RANGKAIAN ANALOG PEMBANGUN GERBANG LOGIKA. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 11 RANGKAIAN ANALOG PEMBANGUN GERBANG LOGIKA. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 11 RNGKIN NLOG PEMNGUN GERNG LOGIK Oleh : Sumarna, Jurdik Fisika, FMIP, UN E-mail : sumarna@uny.ac.id Tujuan : 1. Menyusun gerbang logika dari komponen diskrit, 2. Mengamati hubungan antara keadaan

Lebih terperinci

BAB VI ENCODER DAN DECODER

BAB VI ENCODER DAN DECODER BAB VI ENCODER DAN DECODER 6.1. TUJUAN EKSPERIMEN Memahami prinsip kerja dari rangkaian Encoder Membedakan prinsip kerja rangkaian Encoder dan Priority Encoder Memahami prinsip kerja dari rangkaian Decoder

Lebih terperinci

Dari tabel kebenaran half adder, diperoleh rangkaian half adder sesuai gambar 4.1.

Dari tabel kebenaran half adder, diperoleh rangkaian half adder sesuai gambar 4.1. PERCOBAAN DIGITAL 03 PENJUMLAH (ADDER) 3.1. TUJUAN PERCOBAAN Mahasiswa mengenal, mengerti, dan memahami: 1. Operasi half adder dan full adder. 2. Operasi penjumlahan dan pengurangan biner 4 bit. 3.2. TEORI

Lebih terperinci

MODUL I GERBANG LOGIKA

MODUL I GERBANG LOGIKA MODUL PRAKTIKUM ELEKTRONIKA DIGITAL 1 MODUL I GERBANG LOGIKA Dalam elektronika digital sering kita lihat gerbang-gerbang logika. Gerbang tersebut merupakan rangkaian dengan satu atau lebih dari satu sinyal

Lebih terperinci

PRAKTIKUM 2 DECODER-ENCODER. JOBSHEET UNTUK MEMENUHI TUGAS MATA KULIAH Digital dan Mikroprosesor Yang dibina oleh Drs. Suwasono, M.T.

PRAKTIKUM 2 DECODER-ENCODER. JOBSHEET UNTUK MEMENUHI TUGAS MATA KULIAH Digital dan Mikroprosesor Yang dibina oleh Drs. Suwasono, M.T. PRAKTIKUM 2 DECODER-ENCODER JOBSHEET UNTUK MEMENUHI TUGAS MATA KULIAH Digital dan Mikroprosesor Yang dibina oleh Drs. Suwasono, M.T. Nama : Fachryzal Candra Trisnawan NIM : 160533611466 Prog. Studi - Off

Lebih terperinci

LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER)

LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER) LAB PTE - 05 (PTEL626) JOBSHEET 8 (ADC-ANALOG TO DIGITAL CONVERTER) A. TUJUAN 1. Mahasiswa dapat mengetahui prinsip kerja dan karakteristik rangkaian ADC 8 Bit. 2. Mahasiswa dapat merancang rangkaian ADC

Lebih terperinci

TSK205 Sistem Digital. Eko Didik Widianto

TSK205 Sistem Digital. Eko Didik Widianto TSK205 Sistem Digital Eko Didik Teknik Sistem Komputer - Universitas Diponegoro Review Kuliah Di kuliah sebelumnya dibahas tentang representasi bilangan, operasi aritmatika (penjumlahan dan pengurangan),

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808)

INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 14 (DAC 0808) I. TUJUAN 1. Mahasiswa dapat memahami karakteristik pengkondisi sinyal DAC 0808 2. Mahasiswa dapat merancang rangkaian pengkondisi sinyal DAC 0808

Lebih terperinci

ADC-DAC 28 IN-3 IN IN-4 IN IN-5 IN IN-6 ADD-A 5 24 IN-7 ADD-B 6 22 EOC ALE msb ENABLE CLOCK

ADC-DAC 28 IN-3 IN IN-4 IN IN-5 IN IN-6 ADD-A 5 24 IN-7 ADD-B 6 22 EOC ALE msb ENABLE CLOCK ADC-DAC A. Tujuan Kegiatan Praktikum - : Setelah mempraktekkan Topik ini, anda diharapkan dapat :. Mengetahui prinsip kerja ADC dan DAC.. Mengetahui toleransi kesalahan ADC dan ketelitian DAC.. Memahami

Lebih terperinci

Percobaan 10 MULTIVIBRATOR (ASTABIL, MONOSTABIL, DAN PICU-SCHMITT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 10 MULTIVIBRATOR (ASTABIL, MONOSTABIL, DAN PICU-SCHMITT) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 10 MULTIVIBTO (STBIL, MONOSTBIL, DN PIU-SHMITT) Oleh : Sumarna, Jurdik Fisika, FMIP, UNY E-mail : sumarna@uny.ac.id Tujua : 1. Mempelajari cara kerja rangkaian multivibrator, 2. Menyusun rangkaian

Lebih terperinci

MEMORI. (aktif LOW). Kaki 9 A0 D A1 D A2 D A3 D A4 D A5 D A6 D A7 D7 23 A8 22 A9 19 A10 21 W 20 G 18 E 6116

MEMORI. (aktif LOW). Kaki 9 A0 D A1 D A2 D A3 D A4 D A5 D A6 D A7 D7 23 A8 22 A9 19 A10 21 W 20 G 18 E 6116 MEMORI A. Tujuan Kegiatan Praktikum : Setelah mempraktekkan Topik ini, anda diharapkan dapat :. Mengetahui prinsip kerja penulisan dan pembacaan data dalam memori.. Mengetahui dan memahami pengalamatan

Lebih terperinci

GERBANG LOGIKA DIGITAL

GERBANG LOGIKA DIGITAL LAPORAN PRAKTIKUM ELEKTRONIKA PERCOBAAN 09 GERBANG LOGIKA DIGITAL Disusun oleh : Kelompok : 1 Nama : Achmad Mushoffa 3.31.11.0.01 Agus Bekti Rohmadi 3.31.11.0.02 Alex Samona 3.31.11.0.03 Angger Eka Samekta

Lebih terperinci

MODUL 3 GERBANG LOGIKA DASAR

MODUL 3 GERBANG LOGIKA DASAR MODUL 3 GERBANG LOGIKA DASAR A. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN. Tema : Gerbang Logika Dasar 2. Fokus Pembahasan Materi Pokok :. Definisi Gerbang Logika Dasar 2. Gerbang-gerbang Logika Dasar 3. Tujuan

Lebih terperinci

Jobsheet Praktikum ENCODER

Jobsheet Praktikum ENCODER 1 ENCODER A. Tujuan Kegiatan Praktikum 5 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : 1) Merangkai rangkaian ENCODER. 2) Mengetahui karakteristik rangkaian ENCODER. B. Dasar Teori Kegiatan

Lebih terperinci

Jobsheet Praktikum REGISTER

Jobsheet Praktikum REGISTER REGISTER A. Tujuan Kegiatan Praktikum - : Setelah mempraktekkan Topik ini, anda diharapkan dapat :. Mengetahui fungsi dan prinsip kerja register.. Menerapkan register SISO, PISO, SIPO dan PIPO dalam rangkaian

Lebih terperinci

RANGKAIAN LOGIKA DISKRIT

RANGKAIAN LOGIKA DISKRIT RANGKAIAN LOGIKA DISKRIT Materi 1. Gerbang Logika Dasar 2. Tabel Kebenaran 3. Analisa Pewaktuan GERBANG LOGIKA DASAR Gerbang Logika blok dasar untuk membentuk rangkaian elektronika digital Sebuah gerbang

Lebih terperinci

Kuliah#13 TKC205 Sistem Digital. Eko Didik Widianto. 11 Maret 2017

Kuliah#13 TKC205 Sistem Digital. Eko Didik Widianto. 11 Maret 2017 Kuliah#13 TKC205 Sistem Digital Eko Didik Widianto Departemen Teknik Sistem Komputer, Universitas Diponegoro 11 Maret 2017 http://didik.blog.undip.ac.id/buku/sistem-digital/ @2017,Eko Didik 1 Pengantar

Lebih terperinci

Papan Pergantian Pemain Sepak Bola Berbasis Digital Menggunakan IC4072 dan IC7447

Papan Pergantian Pemain Sepak Bola Berbasis Digital Menggunakan IC4072 dan IC7447 Volume 10 No 1, April 2017 Hlm. 44-50 ISSN 0216-9495 (Print) ISSN 2502-5325 (Online) Papan Pergantian Pemain Sepak Bola Berbasis Digital Menggunakan IC4072 dan IC7447 Teguh Arifianto Program Studi Teknik

Lebih terperinci

Y Y A B. Gambar 1.1 Analogi dan simbol Gerbang NOR Tabel 1.1 tabel kebenaran Gerbang NOR A B YOR YNOR

Y Y A B. Gambar 1.1 Analogi dan simbol Gerbang NOR Tabel 1.1 tabel kebenaran Gerbang NOR A B YOR YNOR A. Judul : GERBANG NOR B. Tujuan Kegiatan Belajar 5 : Setelah mempraktekkan Topik ini, anda diharapkan dapat : 1) Mengetahui tabel kebenaran gerbang logika NOR. 2) Menguji piranti hardware gerbang logika

Lebih terperinci

LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR)

LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR) LAPORAN PRAKTIKUM GERBANG LOGIKA (AND, OR, NAND, NOR) Diajukan untuk memenuhi salah satu tugas mata kuliah Elektronika Lanjut Dosen Pengampu : Ahmad Aminudin, M.Si Oleh : Aceng Kurnia Rochmatulloh (1305931)

Lebih terperinci

BAB I PENDAHULUAN. elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang

BAB I PENDAHULUAN. elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang BAB I PENDAHULUAN A. Latar Belakang Masalah Gerbang Logika merupakan blok dasar untuk membentuk rangkaian elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang harus kita pelajari

Lebih terperinci

RANGKAIAN PEMBANDING DAN PENJUMLAH

RANGKAIAN PEMBANDING DAN PENJUMLAH RANGKAIAN PEMBANDING DAN PENJUMLAH Gerbang-gerbang logika digunakan dalam peralatan digital dan sistem informasi digital untuk : a. mengendalikan aliran informasi, b. menyandi maupun menerjemahkan sandi

Lebih terperinci

Kuliah#12 TKC205 Sistem Digital. Eko Didik Widianto. 11 Maret 2017

Kuliah#12 TKC205 Sistem Digital. Eko Didik Widianto. 11 Maret 2017 Kuliah#12 TKC205 Sistem Digital Eko Didik Widianto Departemen Teknik Sistem Komputer, Universitas Diponegoro 11 Maret 2017 http://didik.blog.undip.ac.id/buku/sistem-digital/ @2017,Eko Didik 1 Pengantar

Lebih terperinci

COUNTER ASYNCHRONOUS

COUNTER ASYNCHRONOUS COUNTER ASYNCHRONOUS A. Tujuan Kegiatan Praktikum 3 : Setelah mempraktekkan Topik ini, anda diharapkan dapat : ) Merangkai rangkaian SYNCHRONOUS COUNTER 2) Mengetahui cara kerja rangkaian SYNCHRONOUS COUNTER

Lebih terperinci

PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA

PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA PERCOBAAN DIGITAL GERBANG LOGIKA DAN RANGKAIAN LOGIKA .. TUJUAN PERCOBAAN. Mengenal berbagai jenis gerbang logika 2. Memahami dasar operasi logika untuk gerbang AND, NAND, OR, NOR. 3. Memahami struktur

Lebih terperinci

MULTIPLEKSER DAN DEMULTIPLEKSER

MULTIPLEKSER DAN DEMULTIPLEKSER MULTIPLEKSER DAN DEMULTIPLEKSER 1. Multiplekser Multiplexer (MUX) atau selector data adalah suatu rangkaian logika yang menerima beberapa input data, dan untuk suatu saat tertentu hanya mengizinkan satu

Lebih terperinci

Laporan Praktikum. Gerbang Logika Dasar. Mata Kuliah Teknik Digital. Dosen pengampu : Pipit Utami

Laporan Praktikum. Gerbang Logika Dasar. Mata Kuliah Teknik Digital. Dosen pengampu : Pipit Utami Laporan Praktikum Gerbang Logika Dasar Mata Kuliah Teknik Digital Dosen pengampu : Pipit Utami Oeh : Aulia Rosiana Widiardhani 13520241044 Kelas F1 Pendidikan Teknik Informatika Fakultas Teknik Universitas

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur

BAB II PENDEKATAN PEMECAHAN MASALAH. Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur 6 BAB II PENDEKATAN PEMECAHAN MASALAH A. Tombol Kuis dengan Pengatur dan Penampil Nilai Tombol kuis dengan Pengatur dan Penampil Nilai diharapkan memiliki fiturfitur sebagai berikut: 1. tombol pengolah

Lebih terperinci

Percobaan 9 Gerbang Gerbang Logika

Percobaan 9 Gerbang Gerbang Logika Percobaan 9 Gerbang 9. Tujuan : Setelah mempraktekkan Topik ini, anda diharapkan dapat : Mengetahui macam-macam Gerbang logika dasar dalam sistem digital. Mengetahui tabel kebenaran masing-masing gerbang

Lebih terperinci

TRAINER VOLTMETER DIGITAL SEBAGAI MEDIA PEMBELAJARAN TEKNIK DIGITAL SEKUENSIAL PADA KOMPETENSI KEAHLIAN TEKNIK AUDIO VIDEO DI SMK N 2 YOGYAKARTA

TRAINER VOLTMETER DIGITAL SEBAGAI MEDIA PEMBELAJARAN TEKNIK DIGITAL SEKUENSIAL PADA KOMPETENSI KEAHLIAN TEKNIK AUDIO VIDEO DI SMK N 2 YOGYAKARTA TRAINER VOLTMETER DIGITAL SEBAGAI MEDIA PEMBELAJARAN TEKNIK DIGITAL SEKUENSIAL PADA KOMPETENSI KEAHLIAN TEKNIK AUDIO VIDEO DI SMK N 2 YOGYAKARTA DIGITAL VOLTMETER TRAINER AS A LEARNING MEDIA OF DIGITAL

Lebih terperinci

BAB III RANGKAIAN LOGIKA

BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau 1 (rendah atau tinggi).

Lebih terperinci

BAB I : APLIKASI GERBANG LOGIKA

BAB I : APLIKASI GERBANG LOGIKA BAB I : APLIKASI GERBANG LOGIKA Salah satu jenis IC dekoder yang umum di pakai adalah 74138, karena IC ini mempunyai 3 input biner dan 8 output line, di mana nilai output adalah 1 untuk salah satu dari

Lebih terperinci

Gambar 1.1 Konfigurasi pin IC 74LS138

Gambar 1.1 Konfigurasi pin IC 74LS138 A. Judul : DEMULTIPLEKSER B. Tujuan Kegiatan Belajar 13 : Setelah mempraktekkan Topik ini, anda diharapkan dapat : 1) Merangkai rangkaian DEMULTIPLEKSER. 2) Mengetahui cara kerja rangkaian DEMULTIPLEKSER

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab tiga ini akan dijelaskan mengenai perancangan dari perangkat keras dan perangkat lunak yang digunakan pada alat ini. Dimulai dari uraian perangkat keras lalu uraian perancangan

Lebih terperinci

PENCACAH. Gambar 7.1. Pencacah 4 bit

PENCACAH. Gambar 7.1. Pencacah 4 bit DIG 7 PENCACAH 7.. TUJUAN. Mengenal, mengerti dan memahami operasi dasar pencacah maju maupun pencacah mundur menggunakan rangkaian gerbang logika dan FF. 2. Mengenal beberapa jenis IC pencacah. 7.2. TEORI

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015,

III. METODE PENELITIAN. Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015, III. METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian ini mulai dilaksanakan pada bulan April 2015 sampai dengan Mei 2015, pembuatan alat dan pengambilan data dilaksanakan di Laboratorium

Lebih terperinci

Gambar 1.1 Analogi dan simbol Gerbang NAND Tabel 1.1 tabel kebenaran Gerbang NAND: A B YAND YNAND

Gambar 1.1 Analogi dan simbol Gerbang NAND Tabel 1.1 tabel kebenaran Gerbang NAND: A B YAND YNAND A. Judul : GERANG NAND. Tujuan Kegiatan elajar 4 : Setelah mempraktekkan Topik ini, anda diharapkan dapat : 1) Mengetahui tabel kebenaran gerbang logika NAND. 2) Menguji piranti hardware gerbang logika

Lebih terperinci

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN

BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN BAB III PERANCANGAN DAN CARA KERJA RANGKAIAN 3.1 Diagram Blok Rangkaian Secara Detail Pada rangkaian yang penulis buat berdasarkan cara kerja rangkaian secara keseluruhan penulis membagi rangkaian menjadi

Lebih terperinci

Aplikasi Gerbang Logika untuk Pembuatan Prototipe Penjemur Ikan Otomatis Vivi Oktavia a, Boni P. Lapanporo a*, Andi Ihwan a

Aplikasi Gerbang Logika untuk Pembuatan Prototipe Penjemur Ikan Otomatis Vivi Oktavia a, Boni P. Lapanporo a*, Andi Ihwan a Aplikasi Gerbang Logika untuk Pembuatan Prototipe Penjemur Ikan Otomatis Vivi Oktavia a, Boni P. Lapanporo a*, Andi Ihwan a a Jurusan Fisika FMIPA Universitas Tanjungpura Jl. Prof. Dr. H. Hadari Nawawi

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan di Laboratorium Teknik Kendali Jurusan Teknik Elektro Fakultas Teknik Universitas Lampung yang dilaksanakan mulai dari bulan

Lebih terperinci

Demultiplexer dan Multiplexer Oleh : Khany Nuristian Defi Setiawati Tugas Sistem Digital DEMULTIPLEKSER

Demultiplexer dan Multiplexer Oleh : Khany Nuristian Defi Setiawati Tugas Sistem Digital DEMULTIPLEKSER Demultiplexer dan Multiplexer Oleh : Khany Nuristian 0917041035 Defi Setiawati 1017041025 Tugas Sistem Digital DEMULTIPLEKSER Sebuah Demultiplexer adalah rangkaian logika yang menerima satu input data

Lebih terperinci

Gambar 1.1 Analogi dan simbol Gerbang AND. Tabel 1.1 kebenaran Gerbang AND 2 masukan : Masukan Keluaran A B YAND

Gambar 1.1 Analogi dan simbol Gerbang AND. Tabel 1.1 kebenaran Gerbang AND 2 masukan : Masukan Keluaran A B YAND A. Judul : GERBANG AND B. Tujuan Kegiatan Belajar 1 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : 1) Mengetahui tabel kebenaran gerbang logika AND. 2) Menguji piranti hardware gerbang

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini membahas perencanaan dan pembuatan dari alat yang akan dibuat yaitu Perencanaan dan Pembuatan Pengendali Suhu Ruangan Berdasarkan Jumlah Orang ini memiliki 4 tahapan

Lebih terperinci

MULTIPLEXER. Pokok Bahasan : 1. Pendahuluan 2. Dasar-dasar rangkaian Multiplexer. 3. Mendesain rangkaian Multiplexer

MULTIPLEXER. Pokok Bahasan : 1. Pendahuluan 2. Dasar-dasar rangkaian Multiplexer. 3. Mendesain rangkaian Multiplexer MULTIPLEXER Pokok Bahasan :. Pendahuluan 2. Dasar-dasar rangkaian Multipleer. 3. Mendesain rangkaian Multipleer Tujuan Instruksional Khusus :. Mahasiswa dapat menerangkan dan memahami rangkaian Multipleer.

Lebih terperinci

BAB IV VOLTMETER DIGITAL DENGAN MENGGUNAKAN ICL7107

BAB IV VOLTMETER DIGITAL DENGAN MENGGUNAKAN ICL7107 BAB IV VOLTMETER DIGITAL DENGAN MENGGUNAKAN ICL7107 Berkaitan dengan pembuatan alat percobaan efek fotolistrik, diperlukan sebuah alat ukur yang bisa mengukur arus dan tegangan DC dengan polarisasi positif

Lebih terperinci

MODUL I TEGANGAN KERJA DAN LOGIKA

MODUL I TEGANGAN KERJA DAN LOGIKA MODUL I TEGANGAN KERJA DAN LOGIKA I. Tujuan instruksional khusus 1. Menyelidiki Tegangan Kerja dari Integrated Cicuit (IC) Digital keluarga TTL. 2. Membuktikan Tegangan Logika IC Digital keluarga TTL II.

Lebih terperinci

INSTRUMENTASI INDUSTRI (NEKA421)

INSTRUMENTASI INDUSTRI (NEKA421) INSTRUMENTASI INDUSTRI (NEKA421) JOBSHEET 13 (ADC 2 Bit) I. TUJUAN 1. Mahasiswa dapat mengetahui prinsip kerja dan karakteristik rangkaian ADC 2 Bit. 2. Mahasiswa dapat merancang rangkaian ADC 2 Bit dengan

Lebih terperinci

MODUL I PENGENALAN ALAT

MODUL I PENGENALAN ALAT MODUL PRAKTIKUM SISTEM DIGITAL 1 I. DASAR TEORI 1. Konsep Dasar Breadboard MODUL I PENGENALAN ALAT Breadboard digunakan untuk mengujian dan eksperimen rangkaian elektronika. Breadboard sangat baik sekali

Lebih terperinci

BAB III RANGKAIAN LOGIKA

BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau

Lebih terperinci

Dalam pengukuran dan perhitungannya logika 1 bernilai 4,59 volt. dan logika 0 bernilai 0 volt. Masing-masing logika telah berada pada output

Dalam pengukuran dan perhitungannya logika 1 bernilai 4,59 volt. dan logika 0 bernilai 0 volt. Masing-masing logika telah berada pada output BAB IV HASIL DAN PEMBAHASAN 4.1 Pengukuran Alat Dalam pengukuran dan perhitungannya logika 1 bernilai 4,59 volt dan logika 0 bernilai 0 volt. Masing-masing logika telah berada pada output pin kaki masing-masing

Lebih terperinci

BAB V UNTAI NALAR KOMBINATORIAL

BAB V UNTAI NALAR KOMBINATORIAL TEKNIK DIGITAL-UNTAI NALAR KOMBINATORIAL/HAL. BAB V UNTAI NALAR KOMBINATORIAL Sistem nalar kombinatorial adalah sistem nalar yang keluaran dari untai nalarnya pada suatu saat hanya tergantung pada harga

Lebih terperinci

COUNTER ASYNCHRONOUS

COUNTER ASYNCHRONOUS COUNTER ASYNCHRONOUS A. Tujuan Kegiatan Praktikum 2 : Setelah mempraktekkan Topik ini, anda diharapkan dapat : ) Merangkai rangkaian ASYNCHRONOUS COUNTER 2) Mengetahui cara kerja rangkaian ASYNCHRONOUS

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM 25 BAB III PERANCANGAN SISTEM Sistem monitoring ini terdiri dari perangkat keras (hadware) dan perangkat lunak (software). Perangkat keras terdiri dari bagian blok pengirim (transmitter) dan blok penerima

Lebih terperinci

MODUL DASAR TEKNIK DIGITAL

MODUL DASAR TEKNIK DIGITAL MODUL DASAR TEKNIK DIGITAL ELECTRA ELECTRONIC TRAINER alexandernugroho@gmail.com HP: 08112741205 2/23/2015 BAB I GERBANG DASAR 1. 1 TUJUAN PEMBELAJARAN Peserta diklat / siswa dapat : Memahami konsep dasar

Lebih terperinci

BAB IV ANALISIS DAN PENGUJIAN. Pada bab ini akan dijelaskan mengenai pengujian terhadap keseluruhan

BAB IV ANALISIS DAN PENGUJIAN. Pada bab ini akan dijelaskan mengenai pengujian terhadap keseluruhan BAB IV ANALISIS DAN PENGUJIAN Pada bab ini akan dijelaskan mengenai pengujian terhadap keseluruhan sistem. Materi pengujian meliputi pengujian sistem terhadap berbagai macam pengujian pemilih saluran,

Lebih terperinci

Jurnal Skripsi. Mesin Mini Voting Digital

Jurnal Skripsi. Mesin Mini Voting Digital Jurnal Skripsi Alat mesin mini voting digital ini adalah alat yang digunakan untuk melakukan pemilihan suara, dikarenakan dalam pelaksanaanya banyaknya terjadi kecurangan dalam perhitungan jumlah hasil

Lebih terperinci

Rangkaian Digital Kombinasional. S1 Informatika ST3 Telkom Purwokerto

Rangkaian Digital Kombinasional. S1 Informatika ST3 Telkom Purwokerto Rangkaian Digital Kombinasional S1 Informatika ST3 Telkom Purwokerto Logika kombinasi Comparator Penjumlah Biner Multiplexer Demultiplexer Decoder Comparator Equality Non Equality Comparator Non Equality

Lebih terperinci

GERBANG LOGIKA & SISTEM BILANGAN

GERBANG LOGIKA & SISTEM BILANGAN GERBANG LOGIKA & SISTEM BILANGAN I. GERBANG LOGIKA Gerbang-gerbang dasar logika merupakan elemen rangkaian digital dan rangkaian digital merupakan kesatuan dari gerbang-gerbang logika dasar yang membentuk

Lebih terperinci

ABSTRAK. Kata Kunci : Counter, Counter Asinkron, Clock

ABSTRAK. Kata Kunci : Counter, Counter Asinkron, Clock ABSTRAK Counter (pencacah) adalah alat rangkaian digital yang berfungsi menghitung banyaknya pulsa clock atau juga berfungsi sebagai pembagi frekuensi, pembangkit kode biner Gray. Pada counter asinkron,

Lebih terperinci

A0 B0 Σ COut

A0 B0 Σ COut A. Judul : PARALEL ADDER B. Tujuan Kegiatan Belajar 8 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : ) Merangkai rangkaian PARALEL ADDER. ) Mempelajari penjumlahan dan pengurangan bilangan

Lebih terperinci

EMULASI GERBANG LOGIKA TUNGGAL MULTIFUNGSI MENGGUNAKAN MIKROPENGENDALI ATMEGA8A

EMULASI GERBANG LOGIKA TUNGGAL MULTIFUNGSI MENGGUNAKAN MIKROPENGENDALI ATMEGA8A EMULASI GERBANG LOGIKA TUNGGAL MULTIFUNGSI MENGGUNAKAN MIKROPENGENDALI ATMEGA8A Arief Hendra Saptadi Jurusan Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Semarang Jl. Kasipah no 10-12 Semarang

Lebih terperinci

MODUL I GERBANG LOGIKA DASAR

MODUL I GERBANG LOGIKA DASAR MODUL I GERBANG LOGIKA DASAR I. PENDAHULUAN Gerbang logika adalah rangkaian dengan satu atau lebih masukan tetapi hanya menghasilkan satu keluaran berupa tegangan tinggi ( 1 ) dan tegangan rendah ( 0 ).

Lebih terperinci

MODUL PRAKTIKUM SISTEM DIGITAL. Oleh : Miftachul Ulum, ST., MT Riza Alfita, ST., MT

MODUL PRAKTIKUM SISTEM DIGITAL. Oleh : Miftachul Ulum, ST., MT Riza Alfita, ST., MT MODUL PRAKTIKUM SISTEM DIGITAL Oleh : Miftachul Ulum, ST., MT Riza Alfita, ST., MT PROGRAM STUDI S TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS TRUNOJOYO MADURA 23-24 KATA PENGANTAR Puji syukur kami panjatkan

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET PRAKTIK TEKNIK DIGITAL Gerbang Logika Dasar, Universal NAND dan Semester 3

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA LAB SHEET PRAKTIK TEKNIK DIGITAL Gerbang Logika Dasar, Universal NAND dan Semester 3 1. Kompetensi FAKULTAS TEKNIK No. LST/PTI/PTI6205/02 Revisi: 00 Tgl: 8 September 2014 Page 1 of 6 Dengan mengikuti perkuliahan praktek, diharapkan mahasiswa memiliki kedisiplinan, tanggung jawab dan dapat

Lebih terperinci

Jobsheet Praktikum DECODER

Jobsheet Praktikum DECODER 1 DECODER A. Tujuan Kegiatan Praktikum 6 : Setelah mempraktekkan Topik ini, mahasiswa diharapkan dapat : 1) Merangkai rangkaian DECODER. 2) Mengetahui karakteristik rangkaian DECODER. B. Dasar Teori Kegiatan

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Uraian Umum Dalam perancangan alat akses pintu keluar masuk menggunakan pin berbasis mikrokontroler AT89S52 ini, penulis mempunyai pemikiran untuk membantu mengatasi

Lebih terperinci

Comparator, Parity Generator, Converter, Decoder

Comparator, Parity Generator, Converter, Decoder Comparator, Parity Generator, Converter, Decoder Disusun oleh: Tim dosen SLD Diedit ulang oleh: Endro Ariyanto Prodi S1 Teknik Informatika Fakultas Informatika Universitas Telkom Oktober 2015 Bahan Presentasi

Lebih terperinci

MODUL TEKNIK DIGITAL MODUL III GERBANG LOGIKA

MODUL TEKNIK DIGITAL MODUL III GERBANG LOGIKA MODUL TEKNIK DIGITAL MODUL III GERBANG LOGIKA YAYASAN SANDHYKARA PUTRA TELKOM SMK TELKOM SANDHY PUTRA MALANG 28 MODUL III GERBANG LOGIKA & RANGKAIAN KOMBINASIONAL Mata Pelajaran : Teknik Digital Kelas

Lebih terperinci

4/27/2012 GALAT/ ERROR SIMPANGAN ATAU SELISIH DARI NILAI SEBENARNYA PADA VARIABEL YANG DIUKUR GALAT BERBEDA DENGAN SALAH GALAT DALAM PENGUKURAN

4/27/2012 GALAT/ ERROR SIMPANGAN ATAU SELISIH DARI NILAI SEBENARNYA PADA VARIABEL YANG DIUKUR GALAT BERBEDA DENGAN SALAH GALAT DALAM PENGUKURAN GALAT/ ERROR SIMPANGAN ATAU SELISIH DARI NILAI SEBENARNYA PADA VARIABEL YANG DIUKUR GALAT DALAM PENGUKURAN GALAT BERBEDA DENGAN SALAH SALAH BERHUBUNGAN ERAT DENGAN BAGAIMANA PENGUKURAN ITU DILAKUKAN, CONTOH:

Lebih terperinci

LAPORAN PRAKTIKUM DIGITAL DISUSUN OLEH: ARDITYA HIMAWAN EK2A/04 ARIF NUR MAJID EK2A/05 AULIADI SIGIT H EK2A/06

LAPORAN PRAKTIKUM DIGITAL DISUSUN OLEH: ARDITYA HIMAWAN EK2A/04 ARIF NUR MAJID EK2A/05 AULIADI SIGIT H EK2A/06 LAPORAN PRAKTIKUM DIGITAL DISUSUN OLEH: ARDITYA HIMAWAN EKA/0 ARIF NUR MAJID EKA/0 AULIADI SIGIT H EKA/0 POLITEKNIK NEGERI SEMARANG 009 PERCOBAAN JUDUL : MONOSTABLE MULTIVIBRATOR(ONE SHOT) TUJUAN :. Mahasiswa

Lebih terperinci

BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar

BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED. Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar BAB III RANCANG BANGUN SISTEM KARAKTERISASI LED 3.1. Rancang Bangun Perangkat Keras Rancangan sistem karakterisasi LED diperlihatkan pada blok diagram Gambar 3.1. Sistem ini terdiri dari komputer, antarmuka

Lebih terperinci

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. ketiga juri diarea pertandingan menekan keypad pada alat pencatat score, setelah

BAB IV CARA KERJA DAN PERANCANGAN SISTEM. ketiga juri diarea pertandingan menekan keypad pada alat pencatat score, setelah BAB IV CARA KERJA DAN PERANCANGAN SISTEM 4.1 Diagram Blok Sistem Blok diagram dibawah ini menjelaskan bahwa ketika juri dari salah satu bahkan ketiga juri diarea pertandingan menekan keypad pada alat pencatat

Lebih terperinci

DISUSUN OLEH : WAHYU RUDI SANTOSO

DISUSUN OLEH : WAHYU RUDI SANTOSO DISUSUN OLEH : WAHYU RUDI SANTOSO 2016 Kata Pengantar Tiada ungkapan ayng lebih mulia selai ungkapan rasa syukur kehadirat ALLAH SWT. Atas limpah berkahnya, rahmat, taufik dan hidayahnya sehingga saya

Lebih terperinci

Review Kuliah. TKC305 - Sistem Digital Lanjut. Eko Didik Widianto

Review Kuliah. TKC305 - Sistem Digital Lanjut. Eko Didik Widianto Desain TKC305 - Sistem Lanjut Desain Eko Didik Sistem Komputer - Universitas Diponegoro Review Kuliah Sebelumnya dibahas tentang metodologi desain sistem digital menggunakan Xilinx ISE dan pengantar HDL

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dijelaskan mengenai pengujian dan analisis alat peraga sistem kendali pendulum terbalik yang meliputi pengujian dimensi mekanik, pengujian dimensi dan massa

Lebih terperinci

DIG 04 RANGKAIAN PENJUMLAH

DIG 04 RANGKAIAN PENJUMLAH DIG 04 RNGKIN PENJUMLH 4.1. TUJUN PERCON Mahasiswa mengenal, mengerti, dan memahami : 1. Operasi penjumlahan tak lengkap. 2. Operasi penjumlahan lengkap. 3. Ragam IC penjumlah biner. 4. Operasi penjumlahan

Lebih terperinci

BAB III ANALISIS DAN DESAIN SISTEM

BAB III ANALISIS DAN DESAIN SISTEM BAB III ANALISIS DAN DESAIN SISTEM III.1. Analisis Masalah Dalam perancangan argo becak motor berbasis arduino dan GPS ini, terdapat beberapa masalah yang harus dipecahkan. Permasalahan-permasalahan tersebut

Lebih terperinci

BAB IV : RANGKAIAN LOGIKA

BAB IV : RANGKAIAN LOGIKA BAB IV : RANGKAIAN LOGIKA 1. Gerbang AND, OR dan NOT Gerbang Logika adalah rangkaian dengan satu atau lebih dari satu sinyal masukan tetapi hanya menghasilkan satu sinyal berupa tegangan tinggi atau tegangan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Hasil dari perancangan perangkat keras sistem penyiraman tanaman secara

IV. HASIL DAN PEMBAHASAN. Hasil dari perancangan perangkat keras sistem penyiraman tanaman secara IV. HASIL DAN PEMBAHASAN A. Realisasi Perangkat Keras Hasil dari perancangan perangkat keras sistem penyiraman tanaman secara otomatis menggunakan sensor suhu LM35 ditunjukkan pada gambar berikut : 8 6

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT 21 BAB III PERANCANGAN ALAT 3.1 Perancangan Alat Perancangan merupakan suatu tahap yang sangat penting dalam pembuatan suatu alat, sebab dengan menganalisa komponen yang digunakan maka alat yang akan dibuat

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN

BAB III ANALISIS DAN PERANCANGAN BAB III ANALISIS DAN PERANCANGAN III.1. Analisis Permasalahan Dalam Perancangan dan Implementasi Penyaji Minuman Otomatis Berbasis Mikrokontroler ini, terdapat beberapa masalah yang harus dipecahkan. Permasalahan-permasalahan

Lebih terperinci

RANGKAIAN MULTIPLEXER

RANGKAIAN MULTIPLEXER RANGKAIAN MULTIPLEXER RANGKAIAN DEMULTIPLEXER HALAMAN SAMPUL Penulis : - Editor materi : Ulfathul Muslimah Editor Bahasa : - Ilustrasi sampul : - Desain dan ilustrasi buku : - Hak cipta 2016, oleh Ulfathul

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI ALAT. modulator 8-QAM seperti pada gambar 3.1 berikut ini: Gambar 3.1 Blok Diagram Modulator 8-QAM

BAB III PERANCANGAN DAN REALISASI ALAT. modulator 8-QAM seperti pada gambar 3.1 berikut ini: Gambar 3.1 Blok Diagram Modulator 8-QAM BAB III PERANCANGAN DAN REALISASI ALAT 3.1 Pembuatan Modulator 8-QAM Dalam Pembuatan Modulator 8-QAM ini, berdasarkan pada blok diagram modulator 8-QAM seperti pada gambar 3.1 berikut ini: Gambar 3.1 Blok

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN. Pengujian dilakukan terhadap 8 sensor photodioda. mendeteksi garis yang berwarna putih dan lapangan yang berwarna hijau.

BAB V HASIL DAN PEMBAHASAN. Pengujian dilakukan terhadap 8 sensor photodioda. mendeteksi garis yang berwarna putih dan lapangan yang berwarna hijau. BAB V HASIL DAN PEMBAHASAN 5.1 Pengujian Sensor Photodioda 5.1.1 Tujuan Pengujian dilakukan terhadap 8 sensor photodioda. Adapun tujuan dari pengujian sensor photodioda adalah digunakan untuk mendeteksi

Lebih terperinci

Makalah Elektronika MULTIPLEXER DAN DEMULTIPLEXER

Makalah Elektronika MULTIPLEXER DAN DEMULTIPLEXER Makalah Elektronika MULTIPLEXER DAN DEMULTIPLEXER Disusun Oleh : Muhammad Bintang Adh 2413100093 Achmad Reza 2413100096 Az Zahroh 2413100102 Frely Novianti Rahayu 2413100105 JURUSAN TEKNIK FISIKA FAKULTAS

Lebih terperinci

Semarang, 10 Oktober Hormat Kami. Penulis KATA PENGANTAR

Semarang, 10 Oktober Hormat Kami. Penulis KATA PENGANTAR KATA PENGANTAR Puji syukur kehadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmat dankarunianya sehingga dapat menyelesaikan makalah elektronika mengenai encoder dandecoder.dalam pembuatan makalah

Lebih terperinci