KATA PENGANTAR. rahmat-nya saya dapat menyelesaikan makalah untuk Laboratorium Pengantar

Ukuran: px
Mulai penontonan dengan halaman:

Download "KATA PENGANTAR. rahmat-nya saya dapat menyelesaikan makalah untuk Laboratorium Pengantar"

Transkripsi

1 KATA PENGANTAR Puji dan syukur saya panjatkan ke hadhirat Allah SWT, karena dengan rahmat-nya saya dapat menyelesaikan makalah untuk Laboratorium Pengantar Digital ini. Selawat dan salam kami hantarkan ke pangkuan nabi Muhammad SAW yang telah membawa kita dari alam kebodohan ke alam yang penuh dengan ilmu pengetahuan seperti pada saat ini. Terima kasih kami kepada Asisten Laboratorium yang telah membimbing kami dalam menyusun makalah ini. Makalah ini kami susun berdasarkan bahanbahan yang kami peroleh dari beberapa buku dan situs internet. Kami juga mengucapkan terima kasih kepada teman-teman yang telah ikut membantu kami selama penulisan makalah ini. Akhir kata, kami sadar bahwa makalah ini masih jauh dari kata sempurna. Karena itu kami sangat mengharapkan kritik dan saran dari temanteman semua yang bersifat membangun makalah ini ke depannya agar menjadi lebih baik. Dan kami harap semoga makalah ini bisa bermanfaat bagi kita semua. Amin. Oktober, 28 Penulis

2 DAFTAR ISI Kata Pengantar... Daftar Isi... 2 BAB I. GERBANG LOGIKA... 3 BAB II. ALJABAR BOOLEAN... BAB III. SISTEM BILANGAN... 2 BAB IV. MULTIPLEXER... 9 BAB V. MULTIVIBRATOR BAB VI. FLIP FLOP Daftar Pustaka 2

3 BAB I GERBANG LOGIKA Gerbang logika adalah rangkaian dasar yang membentuk komputer. Jutaan transistor di dalam mikroprosesor membentuk ribuan gerbang logika. Sebuah gerbang logika sederhana mempunyai satu terminal output dan satu atau lebih terminal input. Keluarannya dapat tinggi () atau rendah (), tergantung level digital yang diberikan pada terminal input. Ada 7 jenis gerbang logika yaitu OR, AND, NAND, NOR, Inverter, EXOR, dan EXNOR. Gerbang logika NOT, NAND, dan NOR adalah gerbang logika dasar pada teknologi CMOS, sedangkan gerbang logika NOT, AND dan OR adalah gerbang logika yang diturunkan dari gerbang logika dasar tersebut. Hal ini karena proses pembuatan gerbang logika, jumlah transistor yang dipakai pada pembuatan NAND lebih sedikit sehingga lebih sederhana daripada AND, begitu pula dengan NOR. Gerbang Inverter (NOT) Gerbang NOT atau juga bisa disebut dengan pembalik (inverter) memiliki fungsi membalik logika tegangan input nya pada outputnya. Membalik dalam hal ini adalah mengubah menjadi lawannya. Karena dalam logika tegangan hanya ada dua kondisi yaitu tinggi dan rendah atau satu dan nol, maka membalik logika tegangan berarti mengubah satu menjadi nol atau sebaliknya mengubah nol menjadi satu. Keadaan awal dari rangkaian tersebut adalah: saklar terbuka dan saklar 2 tertutup yang berarti lampu menyala. Yang perlu dicatat disini adalah relay yang dipakai normal on, artinya dalam keadaan tak bekerja relay menyebaban saklar 2 3

4 menutup, sebaliknya bila ia bekerja saklar 2 justru terbuka. Saklar dianggap sebagai input gerbang sedangkan lampu sebagai outputnya. Bila saklar ditutup (input berlogika satu), tegangan akan masuk ke relay dan menyebabkan bekerja membuka saklar 2, yang berarti memadamkan lampu (output berlogika nol).sebaliknya bila saklar dibuka (input berlogika nol), relay menjadi tak bekerja sehingga saklar kembali menutup dan menyalakan lampu (output berlogika satu). Tabel Kebenaran INV A B Gerbang AND Gerbang AND mempunyai dua atau lebih dari dua sinyal masukan tetapi hanya satu sinyal keluaran. Dalam gerbang AND, untuk menghasilkan sinyal keluaran tinggi maka semua sinyal masukan harus bernilai tinggi. Gerbang Logika AND pada Datasheet nama lainnya IC TTL 748. Sama dengan gerbang OR, gerbang AND minimal memiliki 2 input. Berbeda dengan ilustrasi untuk gerbang 4

5 OR, disini saklar dipasang secara seri sehingga lampu akan menyala (output berlogika satu) hanya jika kedua saklar ditutup (kedua input berlogika satu). Untuk kombinasi penutupan saklar yang lain, lampu akan tetap padam (output berlogika nol). tabel kebenarannya ditunjukkan pada tabel. Dari tabel ini bisa dilihat bahwa output akan berlogika satu hanya bila kedua inputnya berlogika satu. Dari sini dapat disimpulkan bahwa gerbang AND memiliki fungsi mengalikan logika dari kedua inputnya. Tabel Kebenaran AND A B C 5

6 Gerbang OR Gerbang OR akan memberikan sinyal keluaran tinggi jika salah satu atau semua sinyal masukan bernilai tinggi, sehingga dapat dikatakan bahwa gerbang OR hanya memiliki sinyal keluaran rendah jika semua sinyal masukan bernilai rendah. Gerbang Logika OR pada Datasheet nama lainnya IC TTL Gerbang OR berbeda dengan gerbang NOT yang hanya memiliki satu input, gerbang ini memiliki paling sedikit 2 jalur input. Artinya inputnya bisa lebih dari dua, misalnya empat atau delapan. Yang jelas adalah semua gerbang logika selalu mempunyai hanya satu output. Disini input untuk rangkaian adalah saklar dan 2, bila rangkaian ditutup (Input berlogika satu) dan saklar 2 terbuka (input 2 berlogika nol) maka lampu akan menyala (output berlogika satu). Demikian pula bila saklar dibuka (input berlogika nol) dan saklar 2 ditutup (input 2 berlogika ) lampu akan tetap menyala (output berlogika satu). Bila kedua saklar dibuka(kedua input berlogika nol) lampu akan padam (output berlogika nol). Tabel Kebenaran OR A B C 6

7 Gerbang NAND (NOT And) Gerbang NAND adalah suatu NOT-AND, atau suatu fungsi AND yang dibalikkan. Dengan kata lain bahwa gerbang NAND akan menghasilkan sinyal keluaran rendah jika semua sinyal masukan bernilai tinggi. Gerbang Logika NAND pada Datasheet nama lainnya IC TTL 74. Gerbang NAND adalah pengembangan dari gerbang AND. Gerbang ini sebenarnya adalah gerbang AND yang pada outputnya dipasang gerbang NOT. Tabel Kebenaran NAND A B C 7

8 Gerbang NOR Gerbang NOR adalah suatu NOT-OR, atau suatu fungsi OR yang dibalikkan sehingga dapat dikatakan bahwa gerbang NOR akan menghasilkan sinyal keluaran tinggi jika semua sinyal masukannya bernilai rendah. Gerbang Logika NOR pada Datasheet nama lainnya IC TTL 742. Gerbang NOR adalah pengembangan dari gerbang OR.Pengembangan ini berupa pemasangan gerbang NOT pada output dari gerbang OR. Tabel Kebenaran NOR A B C Gerbang XOR Gerbang X-OR akan menghasilkan sinyal keluaran rendah jika semua sinyal masukan bernilai rendah atau semua masukan bernilai tinggi atau dengan kata lain bahwa X-OR akan menghasilkan sinyal keluaran rendah jika sinyal masukan 8

9 bernilai sama semua. Gerbang Logika XOR pada Datasheet nama lainnya IC TTL Tabel Kebenaran XOR A B C 2.7. Gerbang X-NOR Gerbang X-NOR akan menghasilkan sinyal keluaran tinggi jika semua sinyal masukan bernilai sama (kebalikan dari gerbang X-OR). Gerbang Logika X- NOR pada Datasheet nama lainnya IC TTL

10 Tabel Kebenaran X-Nor A B C

11 BAB II ALJABAR BOOLEAN Aljabar boolean merupakan aljabar yang terdiri atas suatu himpunan dengan dua operator biner yang didefinisikan pada himpunan tersebut. Dengan aljabar boolean dimaksudkan suatu sistem yang dibentuk oleh himpunan B dengan dua operator biner (. dan +), satu operasi singular (yang diberi notasi.. ), dan dua elemen khusus ( dan ) sedemikian rupa sehingga membentuk aksioma. Aljabar Boolean menggunakan beberapa hukum yang sama seperti aljabar biasa. fungsi OR (X = A + B) adalah Boolean penambahan dan fungsi AND (X = AB) adalah Boolean perkalian. Ikuti tiga hukum yang sama untuk aljabar Boolean seperti aljabar biasa ini:. Hukum Pertukaran (Commulative) Contohnya penambahan A+B = B+A, dan perkalian AB = BA. Hukum ini berarti menghubungkan beberapa variable OR atau AND tidak bermasalah. 2. Hukum Pengelompokkan (Associative) Contohnya penambahan A+(B+C) = (A+B)+C dan perkalian A(BC) = (AB)C. hukum ini berarti menggabungkan beberapa variable OR atau AND bersamaan tidak masalah. 3. Hukum Distribusi (Distributive) Contohnya A(B+C) = AB + AC, dan (A+B)(C+D) = AC+AD+BC+BD. Hukum ini menampilkan metode untuk mengembangkan persamaan yang mengandung OR dan AND.

12 Tiga hukum ini mempunyai kebenaran untuk beberapa variable. Sebagai contoh hukum penambahan dapat dipakai pada X = A+BC+D untuk persamaan X = BC+ A+D. Hukum Aljabar Boolean. Hukum aljabar Boolean. A+B = B+A AB = BA 2. A+(B+C) = (A+B)+C A(BC) = (AB)C 3. A(B+C) = AB+AC (A+B) (C+D) = AC+AD +BC+BD Peraturan Aljabar Boolean. A. = 2. A. = 3. A + = A 4. A + = 5. A + A = A 6. A. A = A 7. A. A = 8. A + A = 9. A = A. a. A + A B = A + B b. A + AB = A + B Aljabar Boolean menyediakan operasi dan aturan untuk bekerja dengan himpunan {, }. Akan dibahas 3 buah operasi : komplemen Boolean, penjumlahan Boolean, dan perkalian Boolean Komplemen Boolean dituliskan dengan bar/garis atas dengan aturan sebagai berikut : = dan = 2

13 Penjumlahan Boolean dituliskan dengan + atau OR, mempunyai aturan sbb : + =, + =, + =, + = Sedangkan perkalian Boolean yang dituliskan dengan atau AND, mempunyai aturan sbb: =, =, =, = 3

14 BAB III SISTEM BILANGAN Untuk memahami cara kerja komputer, kita membutuhkan konsep mengenai sistem bilangan dan sistem pengkodean (coding systems). Hal ini dikarenakan ada perbedaan antar sistem bilangan desimal yang umum digunakan oleh manusia dengan sistem bilangan yang dikenal oleh komputer, yaitu sistem bilangan biner. Bilangan biner yang direpresentasikan dalam logika dan itulah yang akan dikenal rangkaian digital. Rangkaian digital mempunyai peranan yang sangat penting untuk menciptakan sebuah komputer, dan tentunya hampir semua rangkaian dalam komputer adalah rangkaian digital. Dengan memahami teknologi digital dan analog kita dapat mengembangkan desain digital dan mikroprosesor dengan baik. Banyak sistem bilangan yang dapat dan telah dipakai dalam melaksanakan perhitungan. Tetapi ada sistem bilangan yang sudah jarang dipakai ataupun tidak dipakai lagi sama sekali dan ada pula sistem bilangan yang hanya dipakai pada hal-hal tertentu saja. Sistem bilangan limaan (quinary) dipergunakan oleh orang Eskimo dan orang Indian di Amerika Utara zaman dahulu. Sistem bilangan Romawi yang sangat umum dipakai pada zaman kuno, kini pemakaiannya terbatas pada pemberian nomor urut seperti I untuk pertama, II untuk kedua, V untuk kelima dan seterusnya; kadang-kadang dipakai juga untuk penulisan tahun seperti MDCCCIV untuk menyatakan tahun 84. Sistem bilangan dua belasan (duodecimal) sampai kini masih banyak dipakai seperti kaki = 2 Inci, lusin = 2 buah dan sebagainya. Namun yang paling umum dipakai kini adalah sistem bilangan puluhan (decimal) yang kita pakai dalam kehidupan sehari-hari. Karena komponen-komponen komputer digital yang merupakan sistem digital bersifat saklar (switch), sistem bilangan 4

15 yang paling sesuai untuk komputer digital adalah sistem bilangan biner (binary). Keserdehanaan pengubahan bilangan biner ke bilangan oktal atau heksadesimal dan sebaliknya, membuat bilangan oktal dan heksadesimal juga banyak dipakai dalam dunia komputer, terutama dalam hubungan pengkodean. Bilangan Biner, Oktal dan Heksadesimal akan dibahas dalam bab ini didahului dengan pembahasan singkat tentang bilangandesimal sebagai pengantar Sistem Bilangan Puluhan Sistem bilangan puluhan atau desimal (decimal system) adalah sistem bilanganyang kita pergunakan sehari-hari. Sistem bilangan ini disusun oleh sepuluh simbol angka yang mempunyai nilai yang berbeda satu sama lain dan karena itu dikatakan bahwa dasar/basis atau akar (base, radix) dari pada sistem bilangan ini adalah sepuluh. Kesepuluh angka dasar tersebut, sebagaimana telah kita ketahui, adalah:,, 2, 3, 4, 5, 6, 7, 8, 9. Nilai yang terkandung dalam setiap simbol angka secara terpisah (berdiri sendiri) disebut nilai mutlak (absolute value). Jelaslah bahwa harga maksimum yang dapat dinyatakan oleh hanya satu angka adalah 9. Harga-harga yang lebih besar dapat dinyatakan hanya dengan memakai lebih dari satu angka secara bersama-sama. Nilai yang dikandung oleh setiap angka di dalam suatu bilangan demikian ditentukan oleh letak angka itu di dalam deretan di samping oleh nilai mutlaknya. Cara penulisan ini disebut sebagai sistem nilai (berdasarkan) letak/posisi (positional value system). Angka yang berada paling kanan dari suatu bilangan bulat tanpa bagian pecahan disebut berada pada letak ke dan yang di kirinya adalah ke, ke 2 dan seterusnya sampai dengan ke (n-) jika bilangan itu terdiri dari n angka. Nilai letak dari pada angka paling kanan, yaitu kedudukan ke, adalah terkecil, yaitu =. Nilai letak ke adalah, nilai letak ke 2 adalah 2 =, dan seterusnya nilai letak ke n- adalah n-. 5

16 Untuk bilangan yang mengandung bagian pecahan, bagian bulat dan pecahannya dipisahkan oleh tanda koma (tanda titik di Inggris, Amerika, dan lainlain).angka di kanan tanda koma puluhan (decimal point) disebut pada kedudukan negatif, yaitu letak ke -, ke -2 dan seterusnya dan nilai letaknya adalah -, -2, dan seterusnya -m untuk kedudukan ke (-m) di kanan koma puluhan. Nilai yang diberikan oleh suatu angka pada suatu bilangan adalah hasilkali dari pada nilai mutlak dan nilai letaknya. Jadi, nilai yang diberikan oleh angka 5 pada bilangan 253,476 adalah5x = 5 dan yang diberikan oleh angka 7 adalah 7x-2 =,7.Secara umum, suatu bilangan puluhan yang terdiri atas n angka di kiri tanda koma puluhan dan m angkadi kanantanda koma puluhan, yang dapat dinyatakan dalam bentuk:n = an- an-2... a a, a- a-2... a-m,mempunyai harga yang dapat dinyatakan dalam bentuk:n = an- n- + an-2 n a + a + a- - + a a-m -m Sistem Bilangan Biner Sistem Bilangan Biner (Binary Numbering System) dengan basis 2, menggunakan 2 macam symbol bilangan. Menggunakan 2 macam simbol bilangan berbentuk 2 digit angka, yaitu dan. Komputer memproses data atau program dari memori komputer berupa sejumlah bilangan biner uang menyatakan dalam keadaan hidup atau mati (on or off) dengan angka dan. Sehingga semua yang diproses komputer hanya angka dan, sehingga sistem biner (bilangan berdasar 2) sangatlah penting. Cara mengkonversi bilangan biner ke bilangan desimal adalah dengan mengalikan dua dengan pangkat N (suku ke-n). Contoh : Angka bilangan desimalnya adalah : ( x 2 4 ) + ( x 2 3 ) + ( x 2 2 ) + ( x 2 ) + ( x 2 ) = 26 6

17 Angka bilangan desimalnya adalah : ( x 2 5 ) + ( x 2 4 ) + ( x 2 3 ) + ( x 2 2 ) + ( x 2 ) + ( x 2 ) = Operasi tambah pada sistem biner Aturan operasi tambah : Bilangan pertama Bilangan kedua Hasil Contoh : Biner + = Desimal = 2 Biner + = Desimal = 28 Hal-hal penting : Setiap digit bilangan biner disebut satu bit Setiap empat digit bilangan biner disebut satu nibble Setiap delapan digit bilangan biner disebut satu byte Setiap enambleas digit bilangan biner disebut satu word Setiap tiga puluh dua digit bilangan biner disebut satu double word Setiap 28 digit bilangan biner disebut satu para Setiap 256 byte (248 bit) disebut satu page (halaman). 7

18 Sistem Bilangan Oktal Sistem Bilangan Octal (Octenary Numbering System) dengan basis 8 menggunakan 8 macam simbol bilangan yaitu :,, 2, 3, 4, 5, 6, dan 7. Position value sistem bilangan oktal merupakan perpangkatan dari nilai 8. Konversi bilangan oktal ke desimal mempunyai cara yang sama bila anda melakukan konversi bilangan biner ke desimal, hanya saja menggunakan dasar delapan. Contoh : 355 bilangan oktal ke desimal : ( 3 x 8 2 ) + ( 5 x 8 ) + ( 5 x 8 ) = 237 Desimal 24 bilangan oktal ke desimal : (2 x 8 2 ) + ( x 8 ) + ( 4 x 8 ) = 32 Desimal Sistem Bilangan Hexadesimal Sistem Bilangan Hexadesimal (Hexadenary Numbering System) dengan basis 6 menggunakan 6macam simbol bilangan yaitu :,, 2, 3, 4, 5,6, 7, 8, 9, A, B, C, D, E dan F. Digunakan terutama pada komputer2 mini, misalnya : IBM System 36, Data General s Nova, PDP- DEC, Honeywell, dan beberapa komputer mini lainnya. Merupakan bilangan yang mutlak dipahami dalam memakai bahasa Assembler. Hal ini disebabkan berbagai perintah assembler baik dalam program yang digunakan dengan utility 'DEBUG' (DOS) dan 'COMPILER TURBO ASSEMBLER'. 8

19 Cara mengkonversi bilangan desimal ke bilangan hexadesimal : 3A bilangan desimalnya adalah : ( 3 x 6 ) + ( A x 6 ) 48 + = 58 Desimal A34 bilangan desimalnya adalah : ( x 6 3 ) + ( 3 x 6 2 ) + ( 4 x 6 ) + ( x 6 ) = 4793 Desimal Konversi Bilangan Konversi bilangan desimal ke sistem biner diperlukan dalam menerjemahkan keinginan manusia kedalam kode-kode yang dikenal oleh sistem digital, terutama komputer digital. Konversi dari biner ke desimal diperlukan untuk menterjemahkan kode hasil pengolahan sistem digital ke informasi yang dikenal oleh manusia. Pengubahan (konversi) dari biner ke oktal dan heksadesimal dan sebaliknya merupakan pengantara konversi dari/ke biner ke/dari desimal. Konversi ini banyak dilakukan karena disamping cacah angka biner yang disebut juga "bit", singkatan dari "binary digit", jauh lebih besar dibandingkan dengan angka-angka pada sistem oktal dan heksadesimal, juga karena konversi itu sangat mudah. Konversi dari biner, oktal dan heksadesimal ke sistem bilangan desimal, seperti telah dijelaskan di bagian depan dapat dilakukan dengan memakai persamaan. Konversi sebaliknya akan diterangkan berikut ini. Konversi Desimal-Biner Kalau kita perhatikan konversi dari biner ke desimal, maka dapat dilihat bahwa untuk bagian bulat (di kiri tanda koma) kita peroleh dengan melakukan 9

20 perkalian dengan 2 setiap kita bergerak ke kiri.untuk bagian pecahan, kita melakukan pembagian dengan 2 setiap kita bergerak ke kanan. Untuk melakukan konversi dari desimal ke biner kita melakukan sebaliknya, yaitu untuk bagian bulat bilangan desimal kita bagi dengan 2 secara berturut-turut dan sisa pembagian pertama sampai yang terakhir merupakan angka-angka biner paling kanan ke paling kiri. Untuk bagian pecahan, bilangan desimal dikalikan2 secara berturut-turut dan angka di kiri koma desimal hasil setiap perkalian merupakanangka biner yang dicari, berturut-turut dari kiri ke kanan. Contoh berikut ini memperjelas proses itu. Contoh. Tentukanlah bilangan biner yang berharga sama dengan bilangan desimal 8. Pembagian secara berturut-turut akan menghasilkan: 8 : 2 = 59 sisa 7 : 2 = 3 sisa 59 : 2 = 29 sisa 3 : 2 = sisa 29 : 2 = 4 sisa : 2 = sisa 4 : 2 = 7 sisa : 2 = sisa Jadi, (8) = () 2 Perhatikan bahwa walaupun pembagian diteruskan, hasil berikutnya akan tetap dan sisanya juga tetap. Ini benar karena penambahan angka di kiri bilangan tidak mengubah harganya. Konversi Biner-Oktal-Heksadesimal Kemudahan konversi biner-oktal-heksadesimal secara timbal balik terletak pada kenyataan bahwa 3 bit tepat dapat menyatakan angka terbesar dalam oktal, yaitu 7, dan 4 bit tepat dapat menyatakan angka terbesar dalam heksadesimal, yaitu F=(5). 2

21 Ini berarti bahwa untuk mengubah bilangan biner ke oktal, bilangan biner dapat dikelompokkan atas 3 bit setiap kelompok dan untuk mengubah biner ke heksadesimal, bilangan biner dikelompokkan atas 4 bit setiap kelompok. Pengelompokan harus dimulai dari kanan bergerak ke kiri. Sebagai contoh, untuk memperoleh setara dalam oktal dan heksadesimal, bilangan biner dapat dikelompokkan sebagai berikut: ( 3 7) 8 (2 C F ) 6 Konversi sebaliknya, dari oktal dan heksadesimal ke biner juga dapat dilakukan dengan mudah dengan menggantikan setiap angka dalam oktal dan heksadesimal dengan setaranya dalam biner. Contoh. (3456)8 = ( )2 (72E)6 = ( )2 Dari contoh ini dapat dilihat bahwa konversi dari oktal ke heksadesimal dan sebaliknya akan lebih mudah dilakukan dengan mengubahnya terlebih dahulu ke biner. Konversi Desimal-Oktal dan Heksadesimal Konversi desimal ke oktal dan desimal ke heksadesimal dapat dilakukan dengan melakukan pembagian berulang-ulang untuk bagian bulat dan perkalian berulang-ulang untuk bagian pecahan seperti yang dilakukan pada konversi desimal-biner di bagian depan. Sebenarnya cara ini berlaku untuk semua dasar sistem bilangan. Contoh : Untuk (25,5) Oktal: Heksadesimal: 2

22 25 : 8 = 25 sisa 5 25 : 6 = 2 sisa 3 = D 25 : 8 = 3 sisa 2 : 6 = sisa 2 = C 3 : 8 = sisa 3,5 x 8 =,4,5 x 6 =,8,4 x 8 = 3,2,8 x 6 = 2,8 (2 = C),2 x 8 =,6,8 x 6 = 2,8,6 x 8 = 4,8,8 x 8 = 6,4,4 x 8 = 3,2,2 x 8 =,6 Jadi, (25,5) = (35, ) 8 = (CD,CCCC..) 6 22

23 BAB VI MULTIPLEXER Multiplexer adalah kombinasi sirkuit yang diberikan nomor tertentu (biasanya satu kuasa dua) masukan data. Mari kita berkata 2 n dan n alamat digunakan sebagai masukan nomor binari untuk memilih salah satu masukan data. Multiplexer yang memiliki satu output, yang memiliki nilai sama yang dipilih sebagai masukan data. Dengan kata lain, yang bekerja seperti multiplexer input selector rumah musik dari sistem. Hanya satu masukan dipilih sekaligus, dan masukan yang dipilih adalah dikirim ke satu output. Sedangkan pada sistem musik, pemilihan input dibuat secara manual, yang multiplexer dengan memilih masukan berdasarkan nomor binari, masukan alamat. Dalam elektronik, telekomunikasi, dan jaringan komputer, multipleksing adalah istilah yang digunakan untuk menunjuk ke sebuah proses di mana beberapa sinyal pesan analog atau aliran data digital digabungkan menjadi satu sinyal. Tujuannya adalah untuk berbagi sumber daya yang mahal. Contohnya, dalam elektronik, multipleksing mengijinkan beberapa sinyal analog untuk diproses oleh satu analog-to-digital converter (ADC), dan dalam telekomunikasi, beberapa panggilan telepon dapat disalurkan menggunakan satu kabel. Dalam komunikasi, sinyal yang telah dimultipleks disalurkan ke sebuah saluran komunikasi, yang mungkn juga merupakan medium transmisi fisik. Multipleksing membagi kapasitas saluran komunikasi tingkat-rendah menjadi beberapa saluran logik tingkat-tinggi, masing-masing satu untuk setiap sinyal 23

24 pesan atau aliran data yang ingin disalurkan. Sebuah proses kebalikannya, dikenal dengan demultipleksing, dapat mengubah data asli di sisi penerima. Sebuah alat yang melakukan multipleksing disebut multiplekser (MUX) dan alat yang melakukan proses yang berlawanan disebut demultiplekser, (DEMUX). Bentuk paling dasar dari multipleksing adalah time-division multipleksing (TDM) dan frequency-division multiplexing (FDM). Dalam komunikasi optik, FDM sering disebut sebagai wavelength-division multiplexing (WDM). Multiplexing adalah suatu teknik mengirimkan lebih dari satu (:banyak) informasi melalui satu saluran. Istilah ini adalah istilah dalam dunia telekomunikasi. Tujuan utamanya adalah untuk menghemat jumlah saluran fisik misalnya kabel, pemancar & penerima (transceiver), atau kabel optik. Contoh aplikasi dari teknik multiplexing ini adalah pada jaringan transmisi jarak jauh, baik yang menggunakan kabel maupun yang menggunakan media udara (wireless atau radio). Sebagai contoh, satu helai kabel optik Surabaya-Jakarta bisa dipakai untuk menyalurkan ribuan percakapan telepon. Idenya adalah bagaimana menggabungkan ribuan informasi percakapan (voice) yang berasal dari ribuan pelanggan telepon tanpa saling bercampur satu sama lain. Teknik multiplexing ada beberapa cara. Yang pertama, multiplexing dengan cara menata tiap informasi (suara percakapan pelanggan) sedemikian rupa sehingga menempati satu alokasi frekuensi selebar sekitar 4 khz. Teknik ini dinamakan Frequency Division Multiplexing (FDM). Teknologi ini digunakan di Indonesia hingga tahun 9-an pada jaringan telepon analog dan sistem satelit analog sebelum digantikan dengan teknologi digital. 24

25 Pada tahun 2-an ini, ide dasar FDM digunakan dalam teknologi saluran pelanggan digital yang dikenal dengan modem ADSL (asymetric digital subscriber loop). Yang kedua adalah multiplexing dengan cara tiap pelanggan menggunakan saluran secara bergantian. Teknik ini dinamakan Time Division Multiplexing (TDM). Tiap pelanggan diberi jatah waktu (time slot) tertentu sedemikian rupa sehingga semua informasi percakapan bisa dikirim melalui satu saluran secara bersama-sama tanpa disadari oleh pelanggan bahwa mereka sebenarnya bergantian menggunakan saluran. Kenapa si pelanggan tidak merasakan pergantian itu? Karena pergantiannya terjadi setiap 25 microsecond; berapapun jumlah pelanggan atau informasi yang ingin di-multiplex, setiap pelanggan akan mendapatkan giliran setiap 25 microsecond, hanya jatah waktunya semakin cepat. Teknik multiplexing yang ketiga adalah yang digunakan dalam saluran kabel optik yang disebut Wavelength Division Multiplexing (WDM), yaitu satu kabel optik dipakai untuk menyalurkan lebih dari satu sumber sinar dimana satu sinar dengan lamda tertentu mewakili satu sumber informasi. 25

26 BAB V MULTIVIBRATOR Multivibrator adalah suatu rangkaian elektronika yang pada waktu tertentu hanya mempunyai satu dari dua tingkat tegangan keluaran, kecuali selama masa transisi. Peralihan (switching) di antara kedua tingkat tegangan keluaran tersebut terjadi secara cepat. Dua keadaan tingkat tegangan keluaran multivibrator tersebut, yaitu stabil (stable) dan Quasistable. Disebut stabil apabila rangkaian multivibrator tidak akan mengubah tingkat tegangan keluarannya ke tingkat lain jika tidak ada pemicu (trigger) dari luar rangkaian. Disebut quasistable apabila rangkaian multivibrator membentuk suatu pulsa tegangan keluaran sebelum terjadi peralihan tingkat tegangan keluaran ke tingkat lainnya tanpa satupun pemicu dari luar. Pulsa tegangan itu terjadi selama periode (T ), yang lamanya ditentukan oleh komponen-komponen penyusun rangkaian multivibrator tersebut. Ketika rangkaian multivibrator mengalami peralihan di antara dua tingkat keadaan tegangan keluarannya maka keadaan tersebut disebut sebagai keadaan unstable atau kondisi transisi. Selain definisi-definisi tentang tingkat keadaan atau kondisi tegangan keluaran rangkaian multivibrator, juga terdapat definisi-definisi tentang rangkaian multivibrator itu sendiri, yaitu: a. Multivibrator bistable (flip-flop) Disebut sebagai multivibrator bistable apabila kedua tingkat tegangan keluaran yang dihasilkan oleh rangkaian multivibrator tersebut adalah stabil dan rangkaian multivibrator hanya akan mengubah kondisi tingkat tegangan keluarannya pada saat dipicu. 26

27 b. Multivibrator monostable (one-shot) Disebut sebagai multivibrator monostable apabila satu tingkat tegangan keluaran-nya adalah stabil sedangkan tingkat tegangan keluaran yang lain adalah quasistable. Rangkaian tersebut akan beristirahat pada saat tingkat tegangan keluarannya dalam keadaan stabil sampai dipicu menjadi keadaan quasistable. Keadaan quasistable dibentuk oleh rangkaian multivibrator untuk suatu periode T yang telah ditentukan sebelum berubah kembali ke keadaan stabil. Sebagai catatan bahwa selama periode T adalah tetap, waktu antara pulsa-pulsa tersebut tergantung pada pemicu. c. Multivibrator astable Disebut sebagai multivibrator astable apabila kedua tingkat tegangan keluaran yang dihasilkan oleh rangkaian multivibrator tersebut adalah quasistable. Rangkaian tersebut hanya mengubah keadaan tingkat tegangan keluarannya di antara 2 keadaan, masing-masing keadaan memiliki periode yang tetap. Rangkaian multivibrator tersebut akan bekerja secara bebas dan tidak lagi memerlukan pemicu. Tegangan keluaran multivibrator ini ditunjukkan dalam Gambar c. Periode waktu masing-masing level tegangan keluarannya ditentukan oleh komponen-komponen penyusun rangkaian tersebut. Banyak metode digunakan untuk membentuk rangkaian multivibrator astabil, di antaranya adalah dengan menggunakan Operational Amplifier, menggunakan IC 555, atau transistor NPN. Rangkaian multivibrator astabil yang dibuat dengan teknologi film tebal ini memanfaatkan kombinasi dua buah transistor NPN, dua buah kapasitor, dan empat buah resistor. Pada rangkaian multivibrator astabil ini. Dua buah transistor yang digunakan akan dioperasikan sebagai suatu saklar (switch). Nilai-nilai 4 27

28 buah resistor yang digunakan, yaitu 2 buah digunakan sebagai resistansi kolektor dan 2 buah digunakan sebagai resistansi basis haruslah memiliki nilai resistansi yang tepat untuk memastikan transistor akan on pada saat transistor berada dalam keadaan saturasi (on) dan akan off pada saat berada dalam keadaan cutoff (tersumbat). Resistor-resistor tersebut akan menentukan besarnya arus basis transistor, nilai arus basis ini yang akan menentukan apakah transistor akan berada dalam keadaan saturasi atau berada dalam keadaan tersumbat. Untuk menentukan periode masing-masing level tegangan keluaran, digunakan resistor dan kapasitor dengan nilai tertentu. Rangkaian multivibrator astabil tersebut disusun dengan menggunakan sepasang transistor NPN yang disusun secara menyilang sebagai common emitter amplifier. Apabila satu dari dua transistor tersebut memulai untuk menghantar, maka sinyal umpan balik kepada basis transistor akan meningkat dan transistor tersebut akan secepat mungkin berubah menjadi on. Dengan proses yang sama, transistor kedua akan secepat mungkin berubah menjadi off. Multivibrator (MV) adalah rangkaian pembangkit pulsa yang menghasilkan keluran gelombang segi empat. Multivibrator diklasifikasikan menjadi multivibrator astabil, bisatabil, dan monostabil. Suatu multivibrator astabil juga disebut dengan multivibrator bergerak bebas. Multivibrator astabil menghasilkan aliran kontinu pulsa-pulsa 28

29 BAB VI FLIP-FLOP Flip-flop adalah keluarga Multivibrator yang mempunyai dua keadaaan stabil atau disebut Bistobil Multivibrator. Rangkaian flip-flop mempunyai sifat sekuensial karena sistem kerjanya diatur dengan jam atau pulsa, yaitu sistemsistem tersebut bekerja secara sinkron dengan deretan pulsa berperiode T yang disebut jam sistem (System Clock atau disingkat menjadi CK). Flip-flop adalah rangkaian yang mempunyai fungsi pengingat (memory). Artinya rangkaian ini mampu melakukan proses penyimpanan data sesuai dengan kombinasi masukan yang diberikan kepadanya. Data yang tersimpan itu dapat dikeluarkan sesuai dengan kombinasi masukan yang diberikan. Ada beberapa macam flip-flop yang akan dibahas, yaitu flip-flop R-S, flipflop J-K, dan flip-flop D. Sebagai tambahan akan dibahas pula masalah pemicuan yang akan mengaktifkan kerja flip-flop. Hubungan input-output ideal yang dapat terjadi pada flip-flop adalah: ) Set, yaitu jika suatu kondisi masukan mengakibatkan keluaran (Q) bernilai logika positif () saat dipicu, apapun kondisi sebelumnya. 2) Reset, yaitu jika suatu kondisi masukan mengakibatkan keluaran (Q) bernilai logika negatif () saat dipicu, apapun kondisi sebelumnya. 3) Tetap, yaitu jika suatu kondisi masukan mengakibatkan keluaran (Q) tidak berubah dari kondisi sebelumnya saat dipicu. 4) Toggle, yaitu jika suatu kondisi masukan mengakibatkan logika keluaran (Q) berkebalikan dari kondisi sebelumnya saat dipicu. Secara ideal berdasar perancangan kondisi keluaran Q selalu berkebalikan dari kondisi keluaran Q. 29

30 Pemicuan Flip-Flop Pada flip-flop untuk menyerempakkan masukan yang diberikan pada kedua masukannya maka diperlukan sebuah clock untuk memungkinkan hal itu terjadi. Clock yang dimaksud di sini adalah sinyal pulsa yang beberapa kondisinya dapat digunakan untuk memicu flip-flop untuk bekerja. Ada beberapa kondisi clock yang biasa digunakan untuk menyerempakkan kerja flip-flop yaitu : ) Tepi naik : yaitu saat perubahan sinyal clock dari logika rendah () ke logika tinggi. 2) Tepi turun : yaitu saat perubahan sinyal clock dari logika tinggi () ke logika rendah (). 3) Logika tinggi : yaitu saat sinyal clock berada dalam logika. Logika rendah : yaitu saat sinyal clock berada dalam logika. Gambar.. Kondisi Pemicuan Clock Gambar.2. Simbol-simbol Pemicuan 3

31 Selanjutnya cara pengujian pemicuan suatu flip-flop akan dijelaskan dalam Tabel 3.2. Pada tabel tersebut, kita gunakan penerapan logika positif. Kondisi Clock High, yaitu saat clock ditekan sama artinya dengan logika, sedangkan saat clock dilepas sama artinya dengan logika. Jika pada langkah pengujian pertama keadaan sudah sesuai dengan tabel, pengujian dapat dihentikan, demikian seterusnya. Tabel.3. Pengujian Pemicuan Clock Langkah Pengujian Clock Input Output Jenis Pemicuan. Diubahubah Beruba h Logika Tinggi 2. Diubahubah Beruba h Logika rendah Diubahubah Tetap 3. ke (ditekan) Diubahubah Beruba h Tepi naik Diubahubah Tetap Diubahubah Tetap 4. ke (dilepas) Diubahubah Beruba h Tepi turun Diubahubah Tetap 3

32 Flip-Flop R-S Flip-flop R-S adalah rangkaian dasar dari semua jenis flip-flop yang ada. Terdapat berbagai macam rangkaian flip-flop R-S, pada percobaan ini flip-flop R- S disusun dari empat buah gerbang NAND 2 masukan. Dua masukan flip-flop ini adalah S (set) dan R (reset), serta dua keluarannya adalah Q dan Q. Kondisi keluaran akan tetap ketika kedua masukan R dan S berlogika. Sedangkan pada kondisi masukan R dan S berlogika maka kedua keluaran akan berlogika, hal ini sangat dihindari karena bila kondisi masukan diubah menjadi berlogika kondisi kelurannya tidak dapat diprediksi (bisa atau ). Keadaan ini disebut kondisi terlarang. Selanjutnya kondisi terlarang, pacu, dan tak tentu akan dijelaskan melalui Tabel 3.. Gambar.4. Rangkaian Percobaan Flip-Flop R-S 32

33 Gambar.4.a. rangkaian internal flip flop R-S Tabel.4.b. Kondisi terlarang, pacu, dan tak tentu, karena perubahan clock No. S R Clock Keterangan. Aktif () Kondisi terlarang 2. Tepi turun Kondisi pacu (Berubah dari ke ) 3. Tidak aktif () Kondisi tak tentu Tabel.4.c. Kondisi terlarang, pacu, dan tak tentu, karena perubahan clock dan masukan yang serempak No. S R Clock Keterangan. Aktif () Kondisi terlarang 2. Tepi turun Kondisi pacu 3. Tidak aktif () Kondisi tak tentu Flip-flop D Flip-flop D dapat disusun dari flip-flop S-R atau flip-flop J-K yang masukannya saling berkebalikan. Hal ini dimungkinkan dengan menambahkan salah satu masukannya dengan inverter agar kedua masukan flip-flop selalu dalam kondisi berlawanan. Flip-flop ini dinamakan dengan flip-flop data karena 33

34 keluarannya selalu sama dengan masukan yang diberikan. Saat flip-flop pada keadaan aktif, masukan akan diteruskan ke saluran keluaran. Gambar.5. Contoh rangkaian Flip-flop D (Picu logika tinggi) Gambar.5. Contoh rangkaian internal Flip-flop D Flip-flop J-K Flip-flop J-K merupakan penyempurnaan dari flip-flop R-S terutama untuk mengatasi masalah osilasi, yaitu dengan adanya umpan balik, serta masalah kondisi terlarang seperti yang telah dijelaskan di atas, yaitu pada kondisi masukan J dan K berlogika yang akan membuat kondisi keluaran menjadi 34

35 berlawanan dengan kondisi keluaran sebelumnya atau dikenal dengan istilah toggle. Sementara untuk keluaran berdasarkan kondisi-kondisi masukan yang lain semua sama dengan flip-flop R-S. Gambar.6. Flip-flop J-K Gambar.5. Contoh rangkaian internal Flip-flop J-K 4. Flip-flop T T Flip-flop merupakan rangkaian flip-flop yang dibangun dengan menggunakan flip-flop J-K yang kedua inputnya dihubungkan menjadi satu maka akan diperoleh flip-flop yang memiliki watak membalik output sebelumnya jika inputannya tinggi dan outputnya akan tetap jika inputnya rendah. Flip flop T atau flip flop toggle adalah flip flop J-K yang kedua masukannya (J dan K) digabungkan menjadi satu sehingga hanya ada satu jalan masuk. 35

36 Karakteristik dari flip flop ini adalah kondisi dari keluaran akan selalu toogle atau selalu berlawanan dengan kondisi sebelumnya apabila diberikan masukan logika. Sementara itu kondisi keluaran akan tetap atau akan sama dengan kondisi keluaran sebelumnya bila diberi masukan logika. Gambar.6. Contoh rangkaian internal Flip-flop T 36

37 DAFTAR PUSTAKA Firmansyah, sigit, Elektronika digital dan mikroprosesor, Penerbit ANDI, Yogyakarta, 25. Tokheim, Roger L, Elektronika Digital edisi kedua, Penerbit Erlangga, Jakarta,

BAB I SISTEM BILANGAN

BAB I SISTEM BILANGAN BAB I SISTEM BILANGAN Tujuan Mengetahui jenis-jenis bilangan yang dapat diselesaikan dengan menggunakan komputer digital Mencoba untuk menyelesaikan berbagai jenis bilangan untuk dikonversikan kedalam

Lebih terperinci

MAKALAH TEKNIK DIGITAL RANGKAIAN FLIP-FLOP DASAR

MAKALAH TEKNIK DIGITAL RANGKAIAN FLIP-FLOP DASAR MAKALAH TEKNIK DIGITAL RANGKAIAN FLIP-FLOP DASAR DISUSUN OLEH : Rendy Andriyanto (14102035) Sania Ulfa Nurfalah (14102039) LABORATORIUM TEKNIK ELEKTRONIKA DAN TEKNIK DIGITAL SEKOLAH TINGGI TEKNOLOGI TELEMATIKA

Lebih terperinci

MAKALAH SYSTEM DIGITAL GERBANG LOGIKA DI SUSUN OLEH : AMRI NUR RAHIM / F ANISA PRATIWI / F JUPRI SALINDING / F

MAKALAH SYSTEM DIGITAL GERBANG LOGIKA DI SUSUN OLEH : AMRI NUR RAHIM / F ANISA PRATIWI / F JUPRI SALINDING / F MAKALAH SYSTEM DIGITAL GERBANG LOGIKA DI SUSUN OLEH : AMRI NUR RAHIM / F 551 12 062 ANISA PRATIWI / F 551 12 075 JUPRI SALINDING / F 551 12 077 WIDYA / F 551 12 059 TEKNIK INFORMATIKA (S1) TEKNIK ELEKTRO

Lebih terperinci

MAKALAH MULTIPLEXER DAN DEMULTIPLEXER

MAKALAH MULTIPLEXER DAN DEMULTIPLEXER 2015/2016 MAKALAH MULTIPLEXER DAN DEMULTIPLEXER SISTEM Komputer DAFTAR ISI Pendahuluan Daftar Isi. i ii Pembahasan. 1 MULTIPLEXER Tujuan dan Keuntungan Multiplexing.. Beberapa alasan penggunan multiplex..

Lebih terperinci

1. FLIP-FLOP. 1. RS Flip-Flop. 2. CRS Flip-Flop. 3. D Flip-Flop. 4. T Flip-Flop. 5. J-K Flip-Flop. ad 1. RS Flip-Flop

1. FLIP-FLOP. 1. RS Flip-Flop. 2. CRS Flip-Flop. 3. D Flip-Flop. 4. T Flip-Flop. 5. J-K Flip-Flop. ad 1. RS Flip-Flop 1. FLIP-FLOP Flip-flop adalah keluarga Multivibrator yang mempunyai dua keadaaan stabil atau disebut Bistobil Multivibrator. Rangkaian flip-flop mempunyai sifat sekuensial karena sistem kerjanya diatur

Lebih terperinci

Sistem Digital. Sistem Angka dan konversinya

Sistem Digital. Sistem Angka dan konversinya Sistem Digital Sistem Angka dan konversinya Sistem angka yang biasa kita kenal adalah system decimal yaitu system bilangan berbasis 10, tetapi system yang dipakai dalam computer adalah biner. Sistem Biner

Lebih terperinci

=== PERANCANGAN RANGKAIAN SEKUENSIAL ===

=== PERANCANGAN RANGKAIAN SEKUENSIAL === === PERANCANGAN RANGKAIAN SEKUENSIAL === Rangkaian Sekuensial, adalah rangkaian logika yang keadaan keluarannya dipengaruhi oleh kondisi masukan dan kondisi rangkaian saat itu. Variabel Masukan Keadaan

Lebih terperinci

SISTEM BILANGAN DAN FORMAT DATA

SISTEM BILANGAN DAN FORMAT DATA SISTEM BILANGAN DAN FORMAT DATA 2.1. Sistem Bilangan Bilangan adalah representasi fisik dari data yang diamati. Bilangan dapat di representasikan dalam berbagai bentuk, yang kemudian digolongkan pada sebuah

Lebih terperinci

BAHAN AJAR SISTEM DIGITAL

BAHAN AJAR SISTEM DIGITAL BAHAN AJAR SISTEM DIGITAL JURUSAN TEKNOLOGI KIMIA INDUSTRI PENDIDIKAN TEKNOLOGI KIMIA INDUSTRI MEDAN Disusun oleh : Golfrid Gultom, ST Untuk kalangan sendiri 1 DASAR TEKNOLOGI DIGITAL Deskripsi Singkat

Lebih terperinci

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T Multiplexing Multiplexing adalah suatu teknik mengirimkan lebih dari satu (banyak) informasi melalui satu saluran. Tujuan utamanya adalah untuk menghemat jumlah saluran fisik misalnya kabel, pemancar &

Lebih terperinci

GERBANG LOGIKA. Keadaan suatu sistem Logika Lampu Switch TTL CMOS NMOS Test 1 Tinggi Nyala ON 5V 5-15V 2-2,5V TRUE 0 Rendah Mati OFF 0V 0V 0V FALSE

GERBANG LOGIKA. Keadaan suatu sistem Logika Lampu Switch TTL CMOS NMOS Test 1 Tinggi Nyala ON 5V 5-15V 2-2,5V TRUE 0 Rendah Mati OFF 0V 0V 0V FALSE I. KISI-KISI 1. Sistem Digital dan Sistem Analog 2. Sistem Bilangan Biner 3. Konversi Bilangan 4. Aljabar Boole II. DASAR TEORI GERBANG LOGIKA Sistem elektronika sekarang ini masih mengandalkan bahan semikonduktor

Lebih terperinci

6. Rangkaian Logika Kombinasional dan Sequensial 6.1. Rangkaian Logika Kombinasional Enkoder

6. Rangkaian Logika Kombinasional dan Sequensial 6.1. Rangkaian Logika Kombinasional Enkoder 6. Rangkaian Logika Kombinasional dan Sequensial Rangkaian Logika secara garis besar dibagi menjadi dua, yaitu rangkaian logika Kombinasional dan rangkaian logika Sequensial. Rangkaian logika Kombinasional

Lebih terperinci

R ANGKAIAN LOGIKA KOMBINASIONAL DAN SEQUENSIAL

R ANGKAIAN LOGIKA KOMBINASIONAL DAN SEQUENSIAL R ANGKAIAN LOGIKA KOMBINASIONAL DAN SEQUENSIAL Rangkaian Logika secara garis besar dibagi menjadi dua, yaitu Rangkaian logika Kombinasional dan rangkaian logika Sequensial. Rangkaian logika Kombinasional

Lebih terperinci

LEMBAR TUGAS MAHASISWA ( LTM )

LEMBAR TUGAS MAHASISWA ( LTM ) LEMBAR TUGAS MAHASISWA ( LTM ) RANGKAIAN DIGITAL Program Studi Teknik Komputer Jenjang Pendidikan Program Diploma III Tahun AMIK BSI NIM NAMA KELAS :. :.. :. Akademi Manajemen Informatika dan Komputer

Lebih terperinci

BAB IV : RANGKAIAN LOGIKA

BAB IV : RANGKAIAN LOGIKA BAB IV : RANGKAIAN LOGIKA 1. Gerbang AND, OR dan NOT Gerbang Logika adalah rangkaian dengan satu atau lebih dari satu sinyal masukan tetapi hanya menghasilkan satu sinyal berupa tegangan tinggi atau tegangan

Lebih terperinci

BAB I : APLIKASI GERBANG LOGIKA

BAB I : APLIKASI GERBANG LOGIKA BAB I : APLIKASI GERBANG LOGIKA Salah satu jenis IC dekoder yang umum di pakai adalah 74138, karena IC ini mempunyai 3 input biner dan 8 output line, di mana nilai output adalah 1 untuk salah satu dari

Lebih terperinci

FLIP-FLOP (BISTABIL)

FLIP-FLOP (BISTABIL) FLIP-FLOP (BISTABIL) Rangkaian sekuensial adalah suatu sistem digital yang keadaan keluarannya pada suatu saat ditentukan oleh : 1. keadaan masukannya pada saat itu, dan 2. keadaan masukan dan/atau keluaran

Lebih terperinci

PERTEMUAN 10 RANGKAIAN SEKUENSIAL

PERTEMUAN 10 RANGKAIAN SEKUENSIAL PERTEMUAN 10 RANGKAIAN SEKUENSIAL Sasaran Pertemuan 10 Mahasiswa diharapkan mengerti tentang Rangkaian Sequensial yang terdiri dari : FLIP-FLOP RS FF JK FF D FF T FF FLIP-FLOP Salah satu rangkaian logika

Lebih terperinci

DIKTAT SISTEM DIGITAL

DIKTAT SISTEM DIGITAL DIKTAT SISTEM DIGITAL Di Susun Oleh: Yulianingsih Fitriana Destiawati UNIVERSITAS INDRAPRASTA PGRI JAKARTA 2013 DAFTAR ISI BAB 1. SISTEM DIGITAL A. Teori Sistem Digital B. Teori Sistem Bilangan BAB 2.

Lebih terperinci

MODUL I GERBANG LOGIKA

MODUL I GERBANG LOGIKA MODUL PRAKTIKUM ELEKTRONIKA DIGITAL 1 MODUL I GERBANG LOGIKA Dalam elektronika digital sering kita lihat gerbang-gerbang logika. Gerbang tersebut merupakan rangkaian dengan satu atau lebih dari satu sinyal

Lebih terperinci

MODUL I GERBANG LOGIKA DASAR

MODUL I GERBANG LOGIKA DASAR MODUL I GERBANG LOGIKA DASAR I. PENDAHULUAN Gerbang logika adalah rangkaian dengan satu atau lebih masukan tetapi hanya menghasilkan satu keluaran berupa tegangan tinggi ( 1 ) dan tegangan rendah ( 0 ).

Lebih terperinci

KOMPETENSI DASAR : MATERI POKOK : Sistem Bilangan URAIAN MATERI 1. Representasi Data

KOMPETENSI DASAR : MATERI POKOK : Sistem Bilangan URAIAN MATERI 1. Representasi Data KOMPETENSI DASAR : 3.1. Memahami sistem bilangan Desimal, Biner, Oktal, Heksadesimal) 4.1. Menggunakan sistem bilangan (Desimal, Biner, Oktal, Heksadesimal) dalam memecahkan masalah konversi MATERI POKOK

Lebih terperinci

PENGANTAR TEKNOLOGI INFORMASI

PENGANTAR TEKNOLOGI INFORMASI PENGANTAR TEKNOLOGI INFORMASI SISTEM BILANGAN Khairil Anwar, ST Tujuan Belajar Memahami jenis-jenis sistem bilangan yang dikenal sistem komputer. Memahami cara melakukan konversi antar sistem bilangan.

Lebih terperinci

2. Dasar dari Komputer, Sistem Bilangan, dan Gerbang logika 2.1. Data Analog Digital

2. Dasar dari Komputer, Sistem Bilangan, dan Gerbang logika 2.1. Data Analog Digital 2. Dasar dari Komputer, Sistem Bilangan, dan Gerbang logika 2.1. Data Komputer yang dipakai saat ini adalah sebuah pemroses data. Fungsinya sangat sederhana : Untuk memproses data, kemudian hasil prosesnya

Lebih terperinci

Hanif Fakhrurroja, MT

Hanif Fakhrurroja, MT Pertemuan 4 Organisasi Komputer Rangkaian Logika Hanif Fakhrurroja, MT PIKSI GANESHA, 2013 Hanif Fakhrurroja @hanifoza hanifoza@gmail.com Agenda 1 Rangkaian Kombinasi 2 Rangkaian Sekuensial/flip-flop Pendahuluan

Lebih terperinci

ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya

ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya ARSITEKTUR DAN ORGANISASI KOMPUTER Aljabar Boolean, Gerbang Logika, dan Penyederhanaannya Disusun Oleh : Indra Gustiaji Wibowo (233) Kelas B Dosen Hidayatulah Himawan,ST.,M.M.,M.Eng JURUSAN TEKNIK INFORMATIKA

Lebih terperinci

BAB V MULTIVIBRATOR. A. Pendahuluan. 1. Deskripsi

BAB V MULTIVIBRATOR. A. Pendahuluan. 1. Deskripsi BAB V MULTIVIBRATOR A. Pendahuluan 1. Deskripsi Judul bab ini adalah Multivibrator. Melalui bab ini pembaca khususnya mahasiswa akan mendapatkan gambaran tentang konsep dasar Multivibrator. Konsep dasar

Lebih terperinci

METODE PENELITIAN. Elektro Universitas Lampung. Penelitian di mulai pada bulan Oktober dan berakhir pada bulan Agustus 2014.

METODE PENELITIAN. Elektro Universitas Lampung. Penelitian di mulai pada bulan Oktober dan berakhir pada bulan Agustus 2014. 22 III. METODE PENELITIAN 3. Waktu dan Tempat Penelitian Penelitian tugas akhir ini dilakukan di Laboratorium Terpadu Teknik Elektro Universitas ng. Penelitian di mulai pada bulan Oktober 202 dan berakhir

Lebih terperinci

BAB I PENDAHULUAN. 1.2 Rumusan Masalah 1. Apa pengertian Counter? 2. Apa saja macam-macam Counter? 3. Apa saja fungsi Counter?

BAB I PENDAHULUAN. 1.2 Rumusan Masalah 1. Apa pengertian Counter? 2. Apa saja macam-macam Counter? 3. Apa saja fungsi Counter? BAB I PENDAHULUAN 1.1 Latar Belakang Sebelum melakukan percobaan, ada baiknya kita mempelajari serta memahami setiap percobaan yang akan kita lakukan. Tanpa disadari dalam membuat suatu makalah kita pasti

Lebih terperinci

DASAR TEKNIK DIGITAL (1) GERBANG-GERBANG LOGIKA DASAR

DASAR TEKNIK DIGITAL (1) GERBANG-GERBANG LOGIKA DASAR DASAR TEKNIK DIGITAL (1) GERBANG-GERBANG LOGIKA DASAR Quad Edisi 4 quad@brawijaya.ac.id Lisensi Dokumen Copyright 2007 quad.brawijaya.ac.id PERINGATAN!!! Seluruh Artikel di quad.brawijaya.ac.id dapat digunakan,

Lebih terperinci

PERTEMUAN : 2 SISTEM BILANGAN

PERTEMUAN : 2 SISTEM BILANGAN PERTEMUAN : 2 SISTEM BILANGAN Deskripsi singkat : Dalam pertemuan ini akan dibahas mengenai pengenalan sistem Bilangan pada komputer dan bahasa assembly serta fungsi-fungsi yang dalam pengaksesan ke port

Lebih terperinci

MODUL DASAR TEKNIK DIGITAL

MODUL DASAR TEKNIK DIGITAL MODUL DASAR TEKNIK DIGITAL ELECTRA ELECTRONIC TRAINER alexandernugroho@gmail.com HP: 08112741205 2/23/2015 BAB I GERBANG DASAR 1. 1 TUJUAN PEMBELAJARAN Peserta diklat / siswa dapat : Memahami konsep dasar

Lebih terperinci

SISTEM DIGITAL 1. PENDAHULUAN

SISTEM DIGITAL 1. PENDAHULUAN SISTEM DIGITAL Perkembangan teknologi dalam bidang elektronika sangat pesat, kalau beberapa tahun lalu rangkaian elektronika menggunakan komponen tabung hampa, komponen diskrit, seperti dioda, transistor,

Lebih terperinci

DASAR DIGITAL ELK-DAS JAM

DASAR DIGITAL ELK-DAS JAM DASAR DIGITAL ELK-DAS.3 2 JAM Penyusun : TIM FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN

Lebih terperinci

MODUL 1 SISTEM BILANGAN

MODUL 1 SISTEM BILANGAN MODUL 1 SISTEM BILANGAN 1. Definisi Sistem Bilangan Sistem bilangan (number system) adalah suatu cara untuk mewakili besaran dari suatu item fisik. Sistem bilangan yang banyak dipergunakan oleh manusia

Lebih terperinci

PERTEMUAN 10 RANGKAIAN SEKUENSIAL

PERTEMUAN 10 RANGKAIAN SEKUENSIAL PERTEMUAN 10 RANGKAIAN SEKUENSIAL Sasaran Pertemuan 10 Mahasiswa diharapkan mengerti tentang Rangkaian Sequensial yang terdiri dari : - FLIP FLOP - RS FF - JK FF - D FF - T FF 1 Salah satu rangkaian logika

Lebih terperinci

SISTEM BILANGAN 1.1 Sistem Bilangan Puluhan

SISTEM BILANGAN 1.1 Sistem Bilangan Puluhan 1 SISTEM BILANGAN Banyak sistem bilangan yang dapat dan telah dipakai dalam melaksanakan perhitungan. Tetapi ada sistem bilangan yang sudah jarang dipakai ataupun tidak dipakai lagi sama sekali dan ada

Lebih terperinci

Laboratorium Sistem Komputer dan Otomasi Departemen Teknik Elektro Otomasi Fakultas Vokasi Institut Teknologi Sepuluh November

Laboratorium Sistem Komputer dan Otomasi Departemen Teknik Elektro Otomasi Fakultas Vokasi Institut Teknologi Sepuluh November PRAKTIKUM 1 COUNTER (ASINKRON) A. OBJEKTIF 1. Dapat merangkai rangkaian pencacah n bit dengan JK Flip-Flop 2. Dapat mendemonstrasikan operasi pencacah 3. Dapat mendemonstrasikan bagaimana modulus dapat

Lebih terperinci

Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 6 PENCACAH (COUNTER) Oleh : Sumarna, urdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan :. Mempelajari cara kerja pencacah biner sinkron dan tak sinkron, 2. Merealisasikan pencacah biner

Lebih terperinci

DASAR DIGITAL. Penyusun: Herlambang Sigit Pramono DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN

DASAR DIGITAL. Penyusun: Herlambang Sigit Pramono DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DASAR DIGITAL Penyusun: Herlambang Sigit Pramono DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN PROYEK PENGEMBANGAN SISTEM DAN STANDAR PENGELOLAAN SMK 2 KATA PENGANTAR Modul ini

Lebih terperinci

FLIP-FLOP. FF-SR merupakan dasar dari semua rangkaian flip flop. FF-SR disusun dari dua gerbang NAND atau dua gerbang NOR. Gambar Simbol SR Flip-Flop

FLIP-FLOP. FF-SR merupakan dasar dari semua rangkaian flip flop. FF-SR disusun dari dua gerbang NAND atau dua gerbang NOR. Gambar Simbol SR Flip-Flop FLIP-FLOP FLIP-FLOP merupakan suatu rangkaian yang terdiri sdari dua elemen aktif (Transistor) yang erjanya saling bergantian. Fungsinya adalah sebagai berikut: 1. Menyimpan bilangan biner 2. Mencacah

Lebih terperinci

SISTEM DIGITAL; Analisis, Desain dan Implementasi, oleh Eko Didik Widianto Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283

SISTEM DIGITAL; Analisis, Desain dan Implementasi, oleh Eko Didik Widianto Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 SISTEM DIGITAL; Analisis, Desain dan Implementasi, oleh Eko Didik Widianto Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: info@grahailmu.co.id

Lebih terperinci

Arsitektur Komputer. Rangkaian Logika Kombinasional & Sekuensial

Arsitektur Komputer. Rangkaian Logika Kombinasional & Sekuensial Arsitektur Komputer Rangkaian Logika Kombinasional & Sekuensial 1 Rangkaian Logika Rangkaian Logika secara garis besar dibagi menjadi dua, yaitu : Rangkaian Kombinasional adalah rangkaian yang kondisi

Lebih terperinci

Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 5 FLIP-FLOP (MULTIVIBRATOR BISTABIL) Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Mempelajari cara kerja berbagai rangkaian flip flop 2. Membuat rangkaian

Lebih terperinci

1. SISTEM BILANGAN. Teknik Digital Dasar 1

1. SISTEM BILANGAN. Teknik Digital Dasar 1 Teknik Digital Dasar 1 1. SISTEM BILANGAN Semua sistem bilangan dibatasi oleh apa yang dinamakan Radik atau Basis, yaitu notasi yang menunjukkan banyaknya angka atau digit suatu bilangan tersebut. Misalnya

Lebih terperinci

BAB I PENDAHULUAN. elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang

BAB I PENDAHULUAN. elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang BAB I PENDAHULUAN A. Latar Belakang Masalah Gerbang Logika merupakan blok dasar untuk membentuk rangkaian elektronika digital. Kita perlu mempelajarinya karena banyak logika-logika yang harus kita pelajari

Lebih terperinci

BAB III RANGKAIAN LOGIKA

BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau

Lebih terperinci

GERBANG LOGIKA & SISTEM BILANGAN

GERBANG LOGIKA & SISTEM BILANGAN GERBANG LOGIKA & SISTEM BILANGAN I. GERBANG LOGIKA Gerbang-gerbang dasar logika merupakan elemen rangkaian digital dan rangkaian digital merupakan kesatuan dari gerbang-gerbang logika dasar yang membentuk

Lebih terperinci

ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL

ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL ARITMATIKA ARSKOM DAN RANGKAIAN DIGITAL Oleh : Kelompok 3 I Gede Nuharta Negara (1005021101) Kadek Dwipayana (1005021106) I Ketut Hadi Putra Santosa (1005021122) Sang Nyoman Suka Wardana (1005021114) I

Lebih terperinci

Sistem Digital. Dasar Digital -4- Sistem Digital. Missa Lamsani Hal 1

Sistem Digital. Dasar Digital -4- Sistem Digital. Missa Lamsani Hal 1 Sistem Digital Dasar Digital -4- Missa Lamsani Hal 1 Materi SAP Gerbang-gerbang sistem digital sistem logika pada gerbang : Inverter Buffer AND NAND OR NOR EXNOR Rangkaian integrasi digital dan aplikasi

Lebih terperinci

TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1

TEORI DASAR DIGITAL OTOMASI SISTEM PRODUKSI 1 TEORI DASAR DIGITAL Leterature : (1) Frank D. Petruzella, Essentals of Electronics, Singapore,McGrraw-Hill Book Co, 1993, Chapter 41 (2) Ralph J. Smith, Circuit, Devices, and System, Fourth Edition, California,

Lebih terperinci

LAB #4 RANGKAIAN LOGIKA SEKUENSIAL

LAB #4 RANGKAIAN LOGIKA SEKUENSIAL LAB #4 RANGKAIAN LOGIKA SEKUENSIAL TUJUAN 1. Untuk mempelajari bagaimana dasar rangkaian logika sekuensial bekerja 2. Untuk menguji dan menyelidiki pengoperasian berbagai Latch dan sirkuit Flip- Flop PENDAHULUAN

Lebih terperinci

MAKALAH TEKNIK DIGITAL

MAKALAH TEKNIK DIGITAL MAKALAH TEKNIK DIGITAL FLIP FLOP DISUSUN OLEH : Bayu Rahmawan 14102012 Moh. Fajar Faisaldy 14102027 SEKOLAH TINGGI TEKNOLOGI TELEMATIKA TELKOM JL. DI. PANJAITAN 128 PURWOKERTO 2014 i KATA PENGANTAR Puji

Lebih terperinci

Rangkaian Sequensial. Flip-Flop RS

Rangkaian Sequensial. Flip-Flop RS Rangkaian Sequensial Rangkaian logika di kelompokkan dalam 2 kelompok besar, yaitu rangkaian logika kombinasional dan rangkaian logika sekuensial. Bentuk dasar dari rangkaian logika kombinasional adalah

Lebih terperinci

Sistem Bilangan & Kode Data

Sistem Bilangan & Kode Data Sistem Bilangan & Kode Data Sistem Bilangan (number system) adalah suatu cara untuk mewakili besaran dari suatu item fisik. Sistem bilangan yang banyak digunakan manusia adalah desimal, yaitu sistem bilangan

Lebih terperinci

BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data) "Pengantar Teknologi Informasi" 1

BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data) Pengantar Teknologi Informasi 1 BAB V b SISTEM PENGOLAHAN DATA KOMPUTER (Representasi Data) "Pengantar Teknologi Informasi" 1 SISTEM BILANGAN Bilangan adalah representasi fisik dari data yang diamati. Bilangan dapat direpresentasikan

Lebih terperinci

PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA

PERCOBAAN DIGITAL 01 GERBANG LOGIKA DAN RANGKAIAN LOGIKA PERCOBAAN DIGITAL GERBANG LOGIKA DAN RANGKAIAN LOGIKA .. TUJUAN PERCOBAAN. Mengenal berbagai jenis gerbang logika 2. Memahami dasar operasi logika untuk gerbang AND, NAND, OR, NOR. 3. Memahami struktur

Lebih terperinci

BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA

BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA BAB II ALJABAR BOOLEAN DAN GERBANG LOGIKA Alokasi Waktu : 8 x 45 menit Tujuan Instruksional Khusus : 1. Mahasiswa dapat menjelaskan theorema dan sifat dasar dari aljabar Boolean. 2. Mahasiswa dapat menjelaskan

Lebih terperinci

1. Konsep Sistem Bilangan 2. Konsep Gerbang Logika 3. Penyederhanaan logika 4. Konsep Flip-Flop (Logika Sequensial) 5. Pemicuan Flip-Flop 6.

1. Konsep Sistem Bilangan 2. Konsep Gerbang Logika 3. Penyederhanaan logika 4. Konsep Flip-Flop (Logika Sequensial) 5. Pemicuan Flip-Flop 6. 1. Konsep Sistem Bilangan 2. Konsep Gerbang Logika 3. Penyederhanaan logika 4. Konsep Flip-Flop (Logika Sequensial) 5. Pemicuan Flip-Flop 6. Pencacah (Counter) 7. Register Geser 8. Operasi Register 9.

Lebih terperinci

Perancangan Sistem Digital. Yohanes Suyanto

Perancangan Sistem Digital. Yohanes Suyanto Perancangan Sistem Digital 2009 Daftar Isi 1 SISTEM BILANGAN 1 1.1 Pendahuluan........................... 1 1.2 Nilai Basis............................. 2 1.2.1 Desimal.......................... 2 1.2.2

Lebih terperinci

BAB III PERANCANGAN DAN PENGUKURAN

BAB III PERANCANGAN DAN PENGUKURAN BAB III PERANCANGAN DAN PENGUKURAN 3.1 Perancangan Sistem Perancangan mixer audio digital terbagi menjadi beberapa bagian yaitu : Perancangan rangkaian timer ( timer circuit ) Perancangan rangkaian low

Lebih terperinci

GERBANG LOGIKA RINI DWI PUSPITA

GERBANG LOGIKA RINI DWI PUSPITA SMKN 3 BUDURN GERBNG LOGIK RINI DWI PUSPIT 207 J L. J E N G G O L O C S I D O R J O 0 BB I PENDHULUN. Deskripsi Relasi logik dan fungsi gerbang dasar merupakan salah satu kompetensi dasar dari mata pelajaran

Lebih terperinci

PRAKTIKUM TEKNIK DIGITAL

PRAKTIKUM TEKNIK DIGITAL MODUL PRAKTIKUM TEKNIK DIGITAL PROGRAM STUDI S1 TEKNIK INFORMATIKA ST3 TELKOM PURWOKERTO 2015 A. Standar Kompetensi MODUL I ALJABAR BOOLE DAN RANGKAIAN KOMBINASIONAL Mata Kuliah Semester : Praktikum Teknik

Lebih terperinci

PENCACAH (COUNTER) DAN REGISTER

PENCACAH (COUNTER) DAN REGISTER PENCACAH (COUNTER) DAN REGISTER Aplikasi flip-flop yang paling luas pemakaiannya adalah sebagai komponen pembangun pencacah dan register. Pencacah termasuk dalam kelompok rangkaian sekuensial yang merupakan

Lebih terperinci

Definisi Aljabar Boolean

Definisi Aljabar Boolean Aljabar Boolean 1 Definisi Aljabar Boolean Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf

Lebih terperinci

Konsep dasar perbedaan

Konsep dasar perbedaan PENDAHULUAN Konsep dasar perbedaan ANALOG DAN DIGITAL 1 ANALOG Tegangan Berat Suhu Panjang Kecepatan dlsb 2 DIGITAL Pulsa 0 dan 1 Digit Biner Bit Numerik 3 Benarkah definisi tersebut tadi? 4 ANALOG DIGITAL

Lebih terperinci

REGISTER DAN COUNTER.

REGISTER DAN COUNTER. REGISTER DAN COUNTER www.st3telkom.ac.id Register Register adalah rangkaian yang tersusun dari satu atau beberapa flip-flop yang digabungkan menjadi satu. Flip-Flop disebut juga sebagai register 1 bit.

Lebih terperinci

O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012

O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012 O L E H : H I DAYAT J U R U SA N TEKNIK KO M P U TER U N I KO M 2012 Outline Penjelasan tiga operasi logika dasar dalam sistem digital. Penjelasan Operasi dan Tabel Kebenaran logika AND, OR, NAND, NOR

Lebih terperinci

BAB II SISTEM BILANGAN DAN KODE BILANGAN

BAB II SISTEM BILANGAN DAN KODE BILANGAN BAB II SISTEM BILANGAN DAN KODE BILANGAN 2.1 Pendahuluan Komputer dan sistem digital lainnya mempunyai fungsi utama mengolah informasi. Sehingga diperlukan metode-metode dan sistem-sistem untuk merepresentasikan

Lebih terperinci

BAB 5. MULTIVIBRATOR

BAB 5. MULTIVIBRATOR BAB 5. MULTIVIBRATOR Materi :. Dasar rangkaian Clock / Multivibrator 2. Jenis-jenis multivibrator 3. Laju Pengisian dan Pengosongan Kapasitor 4. Multivibrator Astabil dari IC 555 5. Multivibrator Monostabil

Lebih terperinci

MODUL PRAKTIKUM SISTEM DIGITAL. Oleh : Miftachul Ulum, ST., MT Riza Alfita, ST., MT

MODUL PRAKTIKUM SISTEM DIGITAL. Oleh : Miftachul Ulum, ST., MT Riza Alfita, ST., MT MODUL PRAKTIKUM SISTEM DIGITAL Oleh : Miftachul Ulum, ST., MT Riza Alfita, ST., MT PROGRAM STUDI S TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS TRUNOJOYO MADURA 23-24 KATA PENGANTAR Puji syukur kami panjatkan

Lebih terperinci

PENGANTAR KOMPUTER DAN TEKNOLOGI INFORMASI 1A

PENGANTAR KOMPUTER DAN TEKNOLOGI INFORMASI 1A PENGANTAR KOMPUTER DAN TEKNOLOGI INFORMASI 1A REPRESENTASI DATA ALUR PEMROSESAN DATA SISTEM BILANGAN TEORI BILANGAN KOVERSI BILANGAN OPERASI ARITMATIKA Representasi Data Data adalah sesuatu yang belum

Lebih terperinci

Representasi Data. M. Subchan M

Representasi Data. M. Subchan M Representasi Data M. Subchan M DATA Fakta berupa angka, karakter, symbol, gambar, suara yang mepresentasikan keadaan sebenarnya yg selanjutnya dijadikan sbg masukan suatu sistem informasi Segala sesuatu

Lebih terperinci

ABSTRAK. Kata Kunci : Counter, Counter Asinkron, Clock

ABSTRAK. Kata Kunci : Counter, Counter Asinkron, Clock ABSTRAK Counter (pencacah) adalah alat rangkaian digital yang berfungsi menghitung banyaknya pulsa clock atau juga berfungsi sebagai pembagi frekuensi, pembangkit kode biner Gray. Pada counter asinkron,

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM 25 BAB III PERANCANGAN SISTEM Sistem monitoring ini terdiri dari perangkat keras (hadware) dan perangkat lunak (software). Perangkat keras terdiri dari bagian blok pengirim (transmitter) dan blok penerima

Lebih terperinci

Perlu diperhatikan bahwa perubahan sinyalnya sebenarnya tidaklah curam

Perlu diperhatikan bahwa perubahan sinyalnya sebenarnya tidaklah curam 6 FLIP-FLOP emua rangkaian logika yang telah diuraikan di bagian depan adalah rangkaian logika kombinasi yang keadaan keluarannya setiap saat hanya ditentukan oleh kombinasi masukan yang diberikan pada

Lebih terperinci

DDTD MODUL DASAR-DASAR TEKNIK DIGITAL. Kelas. Teknik Audio Video. Sekolah Menengah Kejuruan Program Studi Keahlian Teknik Elektronika

DDTD MODUL DASAR-DASAR TEKNIK DIGITAL. Kelas. Teknik Audio Video. Sekolah Menengah Kejuruan Program Studi Keahlian Teknik Elektronika MODUL DASAR-DASAR TEKNIK DIGITAL DDTD Kelas X Teknik Audio Video Sekolah Menengah Kejuruan Program Studi Keahlian Teknik Elektronika Disusun oleh : M.F. Husain Pembimbing : Y.B. Sutarman, S.Pd. Kata Pengantar

Lebih terperinci

Pengantar Teknologi Informasi Dan Komunikasi

Pengantar Teknologi Informasi Dan Komunikasi Pertemuan 3 Sistem Bilangan Dan Pengkodean Sistem Bilangan (number system) adalah suatu cara untuk mewakili besaran dari suatu item fisik. Sistem bilangan yang banyak digunakan manusia adalah desimal,

Lebih terperinci

BAB IV SISTEM BILANGAN DAN KODE-KODE

BAB IV SISTEM BILANGAN DAN KODE-KODE BAB IV SISTEM BILANGAN DAN KODE-KODE 4.. Konsep dasar sistem bilangan Sistem bilangan (number system) adalah suatu cara untuk mewakili besaran dari suatu item phisik. Sistem bilangan yang banyak dipergunakan

Lebih terperinci

Sistem Digital. Flip-Flop -6- Sistem Digital. Missa Lamsani Hal 1

Sistem Digital. Flip-Flop -6- Sistem Digital. Missa Lamsani Hal 1 Sistem Digital Flip-Flop -6- Missa Lamsani Hal 1 Kelompok Rangkaian Logika Kelompok rangkaian logika kombinasional Bentuk dasarnya adalah gerbang logika Kelompok rangkaian logika sekuensial Bentuk dasarnya

Lebih terperinci

Komputer yang dipakai saat ini adalah sebuah pemroses data. Fungsinya sangat sederhana Untuk memproses data, kemudian hasil prosesnya diselesaikan

Komputer yang dipakai saat ini adalah sebuah pemroses data. Fungsinya sangat sederhana Untuk memproses data, kemudian hasil prosesnya diselesaikan Komputer yang dipakai saat ini adalah sebuah pemroses data. Fungsinya sangat sederhana Untuk memproses data, kemudian hasil prosesnya diselesaikan secara elektronis didalam CPU (Central Processing Unit)

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN BAB I PENDAHULUAN. 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Sistem digital merupakan salah satu sistem yang digunakan dalam pemrosesan sinyal atau data. Sebelum dimulainya era digital, pemrosesan sinyal atau data dilakukan

Lebih terperinci

=== PENCACAH dan REGISTER ===

=== PENCACAH dan REGISTER === === PENCACAH dan REGISTER === Pencacah Pencacah adalah sebuah register yang mampu menghitung jumlah pulsa detak yang masuk melalui masukan detaknya, karena itu pencacah membutuhkan karakteristik memori

Lebih terperinci

Jurnal Skripsi. Mesin Mini Voting Digital

Jurnal Skripsi. Mesin Mini Voting Digital Jurnal Skripsi Alat mesin mini voting digital ini adalah alat yang digunakan untuk melakukan pemilihan suara, dikarenakan dalam pelaksanaanya banyaknya terjadi kecurangan dalam perhitungan jumlah hasil

Lebih terperinci

SISTEM BILANGAN. B. Sistem Bilangan Ada beberapa sistem bilangan yang digunakan dalam sistem digital, diantaranya yaitu

SISTEM BILANGAN. B. Sistem Bilangan Ada beberapa sistem bilangan yang digunakan dalam sistem digital, diantaranya yaitu SISTEM BILANGAN A. Pendahuluan Komputer dibangun dengan menggunakan sirkuit logika yang beroperasi pada informasi yang dipresentasikan dengan dua sinyal listrik. Dua nilai tersebut adalah dan 1. dan jumlah

Lebih terperinci

PERTEMUAN 12 PENCACAH

PERTEMUAN 12 PENCACAH PERTEMUAN 12 PENCACAH Sasaran Pertemuan 12 Mahasiswa diharapkan mengerti tentang Pencacah yang terdiri dari : - Riple Counter - Pencacah Sinkron - Pencacah Lingkar - Pencacah Turun naik - Pencacah Mod

Lebih terperinci

RANGKAIAN D FLIP-FLOP (Tugas Matakuliah Sistem Digital) Oleh Mujiono Afrida Hafizhatul ulum

RANGKAIAN D FLIP-FLOP (Tugas Matakuliah Sistem Digital) Oleh Mujiono Afrida Hafizhatul ulum RANGKAIAN D FLIP-FLOP (Tugas Matakuliah Sistem Digital) Oleh Mujiono Afrida Hafizhatul ulum JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG 2013 FLIP FLOP D BESERTA CONTOH

Lebih terperinci

Gambar 1.1 Logic diagram dan logic simbol IC 7476

Gambar 1.1 Logic diagram dan logic simbol IC 7476 A. Judul : FLIP-FLOP JK B. Tujuan Kegiatan Belajar 15 : Setelah mempraktekkan Topik ini, anda diharapkan dapat : 1) Mengetahui cara kerja rangkaian Flip-Flop J-K. 2) Merangkai rangkaian Flip-Flop J-K.

Lebih terperinci

Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY

Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN. Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY Percobaan 4 PENGUBAH SANDI BCD KE PERAGA 7-SEGMEN Oleh : Sumarna, Jurdik Fisika, FMIPA, UNY E-mail : sumarna@uny.ac.id Tujuan : 1. Mengenal cara kerja dari peraga 7-segmen 2. Mengenal cara kerja rangkaian

Lebih terperinci

PERANGKAT PEMBELAJARAN

PERANGKAT PEMBELAJARAN PERANGKAT PEMBELAJARAN ELEKTRONIKA DIGITAL Yohandri, Ph.D JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSTAS NEGERI PADANG 23 BAHAN AJAR (Hand Out) Bahan Kajian : Elektronika Digital

Lebih terperinci

SISTEM BILANGAN DAN KONVERSI BILANGAN. By : Gerson Feoh, S.Kom

SISTEM BILANGAN DAN KONVERSI BILANGAN. By : Gerson Feoh, S.Kom SISTEM BILANGAN DAN KONVERSI BILANGAN By : Gerson Feoh, S.Kom 1 BAB I PENDAHULUAN Konsep dasar sistem komputer yaitu adanya sistem biner, sistem desimal dan hexadesimal. Dalam sistem biner adalah sistem

Lebih terperinci

Pokok Pokok Bahasan :

Pokok Pokok Bahasan : Sistem Bilangan Arsitektur Komputer I Agus Aan Jiwa Permana, S.Kom, M.Cs Site s : agus E-mail : agus agus-aan.web.ugm.ac.id agus-aan@mail.ugm.ac.id 1 studywithaan@gmail.com 2 Pokok Pokok Bahasan : Bilangan

Lebih terperinci

Semarang, 10 Oktober Hormat Kami. Penulis KATA PENGANTAR

Semarang, 10 Oktober Hormat Kami. Penulis KATA PENGANTAR KATA PENGANTAR Puji syukur kehadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmat dankarunianya sehingga dapat menyelesaikan makalah elektronika mengenai encoder dandecoder.dalam pembuatan makalah

Lebih terperinci

Pengertian Multiplexing

Pengertian Multiplexing Pengertian Multiplexing Multiplexing adalah Teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi. Dimana perangkat yang melakukan Multiplexing disebut Multiplexer

Lebih terperinci

BAB III RANGKAIAN LOGIKA

BAB III RANGKAIAN LOGIKA BAB III RANGKAIAN LOGIKA Alat-alat digital dan rangkaian-rangkaian logika bekerja dalam sistem bilangan biner; yaitu, semua variabel-variabel rangkaian adalah salah satu 0 atau 1 (rendah atau tinggi).

Lebih terperinci

BAB I DASAR KOMPUTER DIGITAL

BAB I DASAR KOMPUTER DIGITAL TEKNIK DIGITAL/HAL. 1 BAB I DASAR KOMPUTER DIGITAL Bagian dasar dari Komputer digital : - Input = Keyboard - Control = Control Circuit - Memory = Memory, Storage - Aritmetic Logic Unit o Addition = Penjumlahan

Lebih terperinci

MULTIPLEXING DE MULTIPLEXING

MULTIPLEXING DE MULTIPLEXING MULTIPLEXING DE MULTIPLEXING Adri Priadana ilkomadri.com MULTIPLEXING DAN DEMULTIPLEXING MULTIPLEXING Adalah teknik menggabungkan beberapa sinyal untuk dikirimkan secara bersamaan pada suatu kanal transmisi.

Lebih terperinci

Gerbang AND Gerbang OR Gerbang NOT UNIT I GERBANG LOGIKA DASAR DAN KOMBINASI. I. Tujuan

Gerbang AND Gerbang OR Gerbang NOT UNIT I GERBANG LOGIKA DASAR DAN KOMBINASI. I. Tujuan I. Tujuan UNIT I GERBANG LOGIKA DASAR DAN KOMBINASI 1. Dapat membuat rangkaian kombinasi dan gerbang logika dasar 2. Memahami cara kerja dari gerbang logika dasar dan kombinasi 3. Dapat membuat table kebenaran

Lebih terperinci

BAB I SISTEM BILANGAN DAN PENGKODEAN

BAB I SISTEM BILANGAN DAN PENGKODEAN BAB I SISTEM BILANGAN DAN PENGKODEAN I.. Sistem Bilangan Untuk memahami cara kerja komputer, kita membutuhkan konsep mengenai sistem bilangan dan sistem pengkodean (coding systems) karena adanya perbedaan

Lebih terperinci

1). Synchronous Counter

1). Synchronous Counter Counter juga disebut pencacah atau penghitung yaitu rangkaian logika sekuensial yang digunakan untuk menghitung jumlah pulsa yang diberikan pada bagian masukan. Counterdigunakan untuk berbagai operasi

Lebih terperinci