BAB IV PEMODELAN DAN ANALISIS

dokumen-dokumen yang mirip
KESIMPULAN DAN SARAN

Pemodelan Aliran Permukaan 2 D Pada Suatu Lahan Akibat Rambatan Tsunami. Gambar IV-18. Hasil Pemodelan (Kasus 4) IV-20

Hasil dan Analisis. Simulasi Banjir Akibat Dam Break

BAB II STUDI PUSTAKA. Propagated wave area. Shallow water. Area of study. Gambar II-1. Ilustrasi Tsunami

BAB V ANALISIS HIDROLIKA DAN PERHITUNGANNYA

BAB III DESKRIPSI MODEL

SOBEK Hidrodinamik 1D2D (modul 2C)

Untuk mengkaji perilaku sedimentasi di lokasi studi, maka dilakukanlah pemodelan

BAB V HASIL DAN PEMBAHASAN

BAB 4 LOGICAL VALIDATION MELALUI PEMBANDINGAN DAN ANALISA HASIL SIMULASI

PEMODELAN ALIRAN PERMUKAAN 2 D PADA SUATU LAHAN AKIBAT RAMBATAN TSUNAMI TESIS MOHAMMAD BAGUS ADITYAWAN NIM :

1 BAB VI ANALISIS HIDROLIKA

BAB V ANALISIS PERAMALAN GARIS PANTAI

PEMODELAN GENESIS. KL 4099 Tugas Akhir. Bab 5. Desain Pengamananan Pantai Pulau Karakelang, Kabupaten Kepulauan Talaud, Provinsi Sulawesi Utara

BAB IV SIMULASI NUMERIK

1 BAB 4 ANALISIS DAN BAHASAN

Bab IV Metodologi dan Konsep Pemodelan

4. HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN

BAB III METODOLOGI PENELITIAN

BAB IV METODE PENELITIAN

MEKANIKA UNIT. Pengukuran, Besaran & Vektor. Kumpulan Soal Latihan UN

Pemodelan Perubahan Morfologi Pantai Akibat Pengaruh Submerged Breakwater Berjenjang

BAB IV METODOLOGI PENELITIAN A. Bagan Alir Rencana Penelitian

1. Sebuah benda diam ditarik oleh 3 gaya seperti gambar.

BAB II TEORI TERKAIT

BAB III METODOLOGI Rumusan Masalah

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pemodelan Hidrodinamika Arus dan Pasut Di Muara Gembong

3. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan April Oktober 2011 meliputi

BAB VI PEMILIHAN ALTERNATIF BANGUNAN PELINDUNG MUARA KALI SILANDAK

BAB IV HASIL DAN ANALISIS

Karakteristik Gelombang terhadap Struktur

BAB V RENCANA PENANGANAN

3. METODOLOGI PENELITIAN

BAB II TINJAUAN PUSTAKA. yang langsung bertemu dengan laut, sedangkan estuari adalah bagian dari sungai

01. Panjang gelombang dari gambar di atas adalah. (A) 0,5 m (B) 1,0 m (C) 2,0 m (D) 4,0 m (E) 6,0 m 02.

BAB 3. Metodologi Penelitian. 3.1 Rencana Penelitian Waktu dan Tempat Penelitian

II. TINJAUAN PUSTAKA WRPLOT View (Wind Rose Plots for Meteorological Data) WRPLOT View adalah program yang memiliki kemampuan untuk

SIMULASI SEBARAN SEDIMEN TERHADAP KETINGGIAN GELOMBANG DAN SUDUT DATANG GELOMBANG PECAH DI PESISIR PANTAI. Dian Savitri *)

BAB I PENDAHULUAN. A. Latar Belakang

Bab V Analisa dan Diskusi

BAB I PENDAHULUAN. Gambar 1.1 : Definisi visual dari penampang pantai (Sumber : SPM volume 1, 1984) I-1

BAB V PEMBAHASAN. menentukan tingkat kemantapan suatu lereng dengan membuat model pada

BAB IV HASIL DAN ANALISIS

Antiremed Kelas 12 Fisika

BAB II PENDEKATAN PEMECAHAN MASALAH. curah hujan ini sangat penting untuk perencanaan seperti debit banjir rencana.

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB IV METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN

BABm METODE PENELITIAN. Kegiatan penelitian dilakukan di dua tempat, yakni di Laboratorium Fakultas

BAB IV METODE PENELITIAN

BAB IV HASIL DAN ANALISIS

BAB I PENDAHULUAN. Indonesia terletak di antara tiga lempeng aktif dunia, yaitu Lempeng

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

BAB IV METODE PENELITIAN

PERMODELAN SEBARAN SUHU, SEDIMEN, TSS DAN LOGAM

BAB IV HASIL DAN PEMBAHASAN

4. HASIL DAN PEMBAHASAN

DAFTAR NOTASI. A : sebuah konstanta, pada Persamaan (5.1)

BAB V HASIL DAN PEMBAHASAN

Reflektor Gelombang Berupa Serangkaian Balok

PETUNJUK UMUM Pengerjaan Soal Tahap II Semifinal Diponegoro Physics Competititon Tingkat SMA

BAB IV METODE PENELITIAN

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

BAB-5. HASIL DAN PEMBAHASAN

Transformasi Gelombang pada Batimetri Ekstrim dengan Model Numerik SWASH Studi Kasus: Teluk Pelabuhan Ratu, Sukabumi

Kecepatan angin meningkat pada rasio H/W kecil dan sebaliknya Jarak >, rasio H/W < Kecepatan angin tinggi pada rongga yang dipengaruhi elevasi

Kuliah 07 Persamaan Diferensial Ordinari Problem Kondisi Batas (PDOPKB)

BAB I PENDAHULUAN I.1.

Jawaban Soal OSK FISIKA 2014

DESAIN STRUKTUR PELINDUNG PANTAI TIPE GROIN DI PANTAI CIWADAS KABUPATEN KARAWANG

KAJIAN HIDROLIK PADA BENDUNG SUMUR WATU, DAERAH IRIGASI SUMUR WATU INDRAMAYU

BAB III LANDASAN TEORI

BAB V HASIL DAN PEMBAHASAN. A. Data Penelitian

BAB V SIMULASI MODEL MATEMATIK

HASIL DAN PEMBAHASAN

Antiremed Kelas 11 FISIKA

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method

BAB IV METODE PENELITIAN

BAB VI PERENCANAAN STRUKTUR

PEMODELAN & PERENCANAAN DRAINASE

Gambar 15 Mawar angin (a) dan histogram distribusi frekuensi (b) kecepatan angin dari angin bulanan rata-rata tahun

I PENDAHULUAN 1.1 Latar Belakang

Gambar 2.1 Peta batimetri Labuan

Bab III Metodologi Penelitian

BAB IV METODOLOGI PENELITIAN

(a). Vektor kecepatan arus pada saat pasang, time-step 95.

ANALISIS STABILITAS BANGUNAN PEMECAH GELOMBANG BATU BRONJONG

PENGARUH FASILITAS PELABUHAN TERHADAP PANTAI LABUHAN HAJI The Effect of Port Structure on Labuhan Haji Beach

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

BAB III METODA ANALISIS. desa. Jumlah desa di setiap kecamatan berkisar antara 6 hingga 13 desa.

Pemodelan Tinggi dan Waktu Tempuh Gelombang Tsunami Berdasarkan Data Historis Gempa Bumi Bengkulu 4 Juni 2000 di Pesisir Pantai Bengkulu

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

HALAMAN PERNYATAAN. Analisis Model Matematik Gerusan Lokal Pada Pilar Jembatan Dengan Aliran Subkritik (Studi Kasus Pilar Kapsul dan Pilar Tajam)

BAB IV ALTERNATIF PEMILIHAN BENTUK SALURAN PINTU AIR

NASKAH SEMINAR TUGAS AKHIR SIMULASI 2-DIMENSI TRANSPOR SEDIMEN DI SUNGAI MESUJI PROVINSI LAMPUNG

LATIHAN SOAL MENJELANG UJIAN TENGAH SEMESTER STAF PENGAJAR FISIKA TPB

DAFTAR GAMBAR. Gambar 1.1 Kondisi Daerah Studi di Muara Kali Lamong... 3

BAB 1. PENDAHULUAN 1.1 Latar Belakang

Transkripsi:

BAB IV PEMODELAN DAN ANALISIS Pemodelan dilakukan dengan menggunakan kontur eksperimen yang sudah ada, artificial dan studi kasus Aceh. Skenario dan persamaan pengatur yang digunakan adalah: Eksperimental Synolakis (Perbandingan) Persamaan St. Venant Perbandingan Hasil Simulasi St.Venant dengan Boussinesq - Persamaan St. Venant dan Boussinesq Kontur Artificial - Persamaan St. Venant, terdiri atas: o Kontur Datar (kemiringan satu arah) o Kontur Miring (kemiringan dua arah) o Kontur Tanjung o Kontur Teluk Dengan Sungai o Kontur Lurus dengan Vertical Wall o Kontur dengan adanya Struktur (Overtoping) Aceh - Persamaan St. Venant Kontur artificial diberi elevasi awal muka air laut pada +. dengan kedalaman maksimum berada pada -.5, dan koefisien kekasaran manning.. Semua simulasi dilakukan dengan input sama, yaitu: Amplitudo Periode dx, dy dt = meter = menit = 5 meter = detik running time = 3 detik toleransi = x -3 IV-

Pada analisis awal ini, zona dibedakan dengan zona 2 berdasarkan bathimetri. Jika bathimetri memiliki kemiringan dasar = baik dalam arah x maupun y, maka dianggap sebagai zona dan digunakan persamaan Titov, jika tidak, dimodelkan sebagai zona 2 dengan menggunakan persamaan St. Venant. Syarat Batas Input Gelombang 4 H (m), V(m/s) 2 2 4 6 8 2-2 H (m) V (m/s) -4 t (detik) Gambar IV-. Input Gelombang IV. Perbandingan Model dengan Data Ekseperiment dan Model Numerik Lain Untuk KAsus Run Up Pada skenario ini, model akan dibandingkan dengan solusi analitis dan eksperimental yang dilakukan oleh Synolakis(986). Gelombang solitair diberikan sesuai dengan persamaan: Panjang gelombang diberikan oleh persamaan:...( IV-)...( IV-2) Gelombang diberikan pada jarak X = L/2 dari dasar X seperti terlihat pada skema. IV-2

Gambar IV-2. Skema Analisis Synolakis (986) Hasil pemodelan ditampilkan dalam bentuk profil aliran terhadap ruang dalam waktu tertentu. Parameter-parameter yang ada dinormalisir sehingga tak berdimensi. Variabel tak berdimensi diberikan untuk...( IV-3) Normalisir parameter besaran panjang terhadap kedalaman dilakukan untuk memberikan visualisasi hasil yang lebih baik dan memudahkan untuk dimengerti. Sedangkan normalisasi parameter waktu dilakukan agar pada setiap t*, output merupakan kelipatan dari periode gelombang. Pemodelan dilakukan dengan initial condition sebagai berikut: H ho =.9 meter = meter kemiringan pantai :2 Sehingga didapatkan L X = 36 meter = 8 meter IV-3

Berdasarkan input tersebut, maka kedalaman relatif gelombang adalah d/l = /36 =.2 <.5. Gelombang berada pada kategori laut dalam. Untuk lebih jelasnya, initial condition model dapat dilihat pada gambar berikut ini:.4.2-2 -.2 2 4 6 8 Elevasi -.4 -.6 -.8 - -.2 X Initial Condition Dasar Muka Air Elevasi.2.8.6.4.2..8.6.4.2 Solitary Wave 27 32 37 42 47 X Gambar IV-3. Kondisi Awal Solitary Wave Nilai kecepatan awal untuk gelombang tersebut adalah: u = (c.η)/(+ η)...( IV-4) c = (g.(h+h )...( IV-5) Syarat batas bebas di tetapkan untuk h, u, dan v di ujung yang tidak memiliki kemiringan dasar. Nilai batas untuk kedalaman ditetapkan -3 Interval waktu (dt) simulasi dipilih sedemikian sehingga t* =. Hal ini dilakukan untuk mempermudah analisis hasil simulasi. Interval waktu yang dipilih adalah.3944 detik. Hasil simulasi dapat dilihat pada gambar berikut ini: IV-4

Gambar IV-4. Perbandingan Hasil Simulasi dengan Synolakis (Eksperimen dan Numerik) dan Ying Li (Interval Jarak meter) IV-5

. Elevasi/Ho.8.6.4.2 -.2 -.4 -.6 -.8 -. -2 2 4 6 8 2 4 6 8 2 X/Ho Dasar t* = 5 t* = t* = 5 t* = 2 t* = 25 t* = 3 t* = 35 t* = 4 t* = 45 t* = 5 t* = 55 t* = 6 t* = 65 t* = 7 t* = 75 t* = 8 t* = 85 t* = 9 t* = 95 t* = t* = 5 t* = t* = 5 t* = 2 Gambar IV-5. Hasil Simulasi (Interval Jarak.25 meter) Selain hasil solusi analisis dan eksperimen yang dilakukan oleh Synolakis, diberikan juga hasil pemodelan satu dimensi yang dilakukan oleh Synolakis (986) sendiri dan juga Ying Li (2). Persamaan pengatur untuk model numerik yang digunakan oleh Synolakis dan Yingli adalah persamaan St. Venant D dengan nilai manning = tanpa adanya gelombang pecah. Tinggi run up yang terjadi hasil simulasi model yang dikembangkan memberikan komparasi yang lebih baik dengan data eksperimen dibandingkan dengan hasilhasil dari model yang sudah ada. Hal ini berarti, metode wet/dry yang digunakan sudah baik. IV-6

IV.2 Perbandingan Model Boussinesq dan St.Venant Untuk Kasus Rambatan Gelombang Di Laut Untuk melihat perbedaan antara kedua persamaan pengatur yang digunakan, maka kedua persamaan digunakan untuk memodelkan kasus sederhana rambatan gelombang pada suatu saluran yang lurus. Saluran dimodelkan sepanjang 2 meter dengan lebar 2 meter. Sebagai kondisi awal, diberikan kedalaman air di saluran meter dengan elevasi muka air pada +.. Interval y dan x ditetapkan sebesar 5 meter. Kekasaran dasar saluran diabaikan. Kondisi Awal Elevasi (meter).5 -.5 - Dasar Muka Air -.5 5 5 2 L (meter) Gambar IV-6. Kondisi Awal untuk Perbandingan Boussinesq dan St. Venant Interval waktu yang digunakan untuk kedua model sama, yaitu. detik dengan waktu simulasi 5 derik. Perlu dicatat disini bahwa interval waktu detik sudah memberikan hasil yang baik untuk persamaan St.Venant. Syarat batas dinding digunakan pada sisi kiri dan kanan saluran, sedangkan syarat batas bebas digunakan pada sebelah hilir saluran. Syarat batas gelombang di hulu diberikan seperti pada gambar dibawah ini. IV-7

Syarat Batas Gelombang elevasi (meter).8.6.4.2 2 3 4 t (detik) Gambar IV-7. Syarat Batas Gelombang untuk Perbandingan Boussinesq dan St. Venant.4.35 t*=.33.3.25 elevasi/ho.2.5. t*=33 t*=626 t*=3 t*=939 t*=565.5 -.5 -. 2 3 4 5 X/ho Gambar IV-8. Hasil Simulasi untuk Perbandingan Boussinesq dan St. Venant Pada simulasi yang dilakukan, tidak dimasukkan adanya pengaruh kekasaran dasar dengan asumsi gelombang terjadi di laut dalam. Waktu rambat gelombang tidak berbeda jauh. Puncak gelombang hasil kedua model berada pada waktu yang kurang lebih sama. Akan tetapi, gelombang model boussinesq lebih lama meluruh IV-8

dibandingkan gelombang hasil model St. Venant. Selain itu, diamati bahwa pada gelombang hasil model Boussinesq, ekor gelombang turun cukup jauh dibawah elevasi muka air normal (+.). Hal ini disebabkan adanya suku dispersi pada persamaan boussinesq. Waktu real time yang diperlukan untuk simulasi dengan menggunakan model boussinesq 2 kali lebih lama dibandingkan dengan model St. Venant. Kontur Artificial IV.3 Run Up Gelombang Pada Pantai Dengan Kemiringan Satu Arah.5.5 -.5 - -.5.5- -.5 -.5- S3 S 9 28 37 46 55 64 73 -.5 ---.5 -.5-- Gelombang S7 5 9 3 7 2 25 29 33 37 4 45 49 53 57 6 65 69 S3 S9 S5 73S -2 - -- -2-- Gambar IV-9. Kontur Datar IV-9

Pada kasus ini, digunakan kontur datar dengan kemiringan.8 pada arah y. Persamaan pengatur yang digunakan adalah St.Venant. Hasil pemodelan numerik menunjukkan bahwa batas wet/dry yang digunakan bekerja dengan baik. Gelombang pada zona berjalan lebih cepat dibandingkan ketika merambat di zona 2. Hal ini dikarenakan masukkan faktor gesekan dasar yang mengurangi kecepatan gelombang. Gelombang datang dengan kecepatan sesuai fungsi gelombang pada boundary. Sedangkan gelombang balik pada saat surut memiliki kecepatan bervariasi.2 m/s. Gelombang merambat di darat sejauh 4 node (4 x 5 = 2 meter). Elevasi (meter).5 -.5 - -.5-2 5 5 X (meter) Elevasi Muka Air t = 45 s Elevasi Muka Air t = 2 s Dasar Gambar IV-. Profil Gelombang/Run Up Diamati adanya perbedaan kecepatan yang cukup besar pada rambatan gelombang seperti pada gambar berikut..8.6.4.2 5 -.2 55 6 65 7 75 8 Elevasi Muka Air (m) Elevasi Dasar (m) Kecepatan (m/s) -.4 -.6 -.8 - X (m) IV-

Gambar IV-. Perbedaan Kecepatan Pada Gelombang Datang (t= 45s) Pada saat gelombang datang mencapai pantai, gelombang yang paling depan akan terpantulkan terlebih dahulu sehingga terjadi benturan antara gelombang datang dan gelombang pantul. Akibat kecepatannya yang tinggi, air akan merambat terus ke arah darat hingga seluruh energinya hilang. Setelah itu, air akan mengalir secara gravitasi ke bawah. Hal ini lah yang menyebabkan adanya perbedaan kecepatan yang cukup besar pada gelombang balik. Pada gambar berikut dapat dilihat perspective view dan velocity/water contour hasil dari pemodelan awal yang telah dilakukan. IV-

Gambar IV-2. Hasil Pemodelan (Kasus ) IV-2

IV.4 Run Up Gelombang Pada Pantai Dengan Kemiringan Dua Arah.5 -.5.5-.5 -.5 -.5- ---.5 6 6 3 36 4 56 76 6 7 66 -.5 -.5-- 5 46-26 2 -.5 S7 S3 S9 S5 S Gelombang Gambar IV-3. Kontur Miring Pada kasus ini, digunakan kontur datar dengan kemiringan dua arah pada darat masing-masing sebesar.8. Persamaan pengatur yang digunakan adalah St.Venant. Hasil pemodelan menunjukkan bahwa gelombang yang datang dalam arah sumbu y, terpantul dalam 2 arah (x,y) dikarenakan garis pantai tidak berada tegak lurus dengan arah gelombang datang. Batas wet/dry yang digunakan terbukti dapat berlaku dengan baik dalam arah x dan y. Gelombang datang merambat di darat hingga sejauh kurang lebih 6 node (6 x 5 = 3 meter) dari garis pantai. Gelombang datang dengan kecepatan sesuai fungsi IV-3

gelombang pada boundary. Sedangkan gelombang balik pada saat surut memiliki kecepatan bervariasi.4 m/s pada arah y dan x(u dan V). Gelombang pantul menyebabkan adanya kecepatan arah x yang cukup besar. Hal ini dapat dilihat pada hasil simulasi berikut ini. Gambar IV-4. Hasil Pemodelan (Kasus 2) IV-4

IV.5 Run Up Gelombang Pada Pantai Dengan Tipologi Tanjung.5.5- -.5 -.5- -.5 52 69 ---.5 -.5-- - 35 -.5 S9 S3 S7 S 8 Gelombang Gambar IV-5. Kontur Tanjung Pada kasus ini, digunakan kontur artificial yang dibentuk menyerupai tanjung. Kemiringan arah x dan arah y adalah.. Persamaan pengatur yang digunakan adalah St.Venant. Hasil pemodelan menunjukkan bahwa gelombang yang datang dalam arah sumbu y, terpantul dalam 2 arah (x,y) kearah kiri dan kanan dikarenakan bentuk garis pantai yang digunakan. Batas wet/dry yang digunakan terbukti dapat berlaku dengan baik dalam arah x dan y. IV-5

Gelombang datang merambat di darat hingga sejauh kurang lebih 3 node (3 x 5 = 5 meter) dari garis pantai. Gelombang datang dengan kecepatan sesuai fungsi gelombang pada boundary. Sedangkan gelombang balik pada saat surut memiliki kecepatan bervariasi.6.2 m/s pada arah y dan x(u dan V). Gelombang pantul menyebabkan adanya kecepatan arah x yang cukup besar. Hal ini dapat dilihat pada hasil simulasi berikut ini. IV-6

Gambar IV-6. Hasil Pemodelan (Kasus 3) IV-7

IV.6 Run Up Gelombang Pada Pantai Dengan Tipologi Teluk.5.5 -.5 -.5 - -.5 4 27 53 4.5- -.5 -.5- ---.5 -.5-- S9 S S3 S7 Gelombang Gambar IV-7. Kontur Teluk Dengan Sungai Pada kasus ini, digunakan kontur menyerupai teluk dengan sungai di tengahnya. Persamaan pengatur yang digunakan adalah St.Venant.Elevasi dasar muara sungai berada pada -.7, dengan kemiringan sebagai berikut: Soy =.2 Sox =.8 Soy sungai =. IV-8

Hasil pemodelan menunjukkan bahwa gelombang yang datang dalam arah sumbu y, terpantul dalam 2 arah (x,y) dikarenakan garis pantai tidak berada tegak lurus dengan arah gelombang datang. Air mengalir masuk ke sungai dan kemudian kembali ke laut. Batas wet/dry yang digunakan terbukti dapat berlaku dengan baik dalam arah x dan y. Gelombang datang merambat di darat hingga sejauh kurang lebih 4 node (4 x 5 = 2 meter) dari garis pantai, khusus di muara sungai, air merambat sejau 6 node (6 x 5 = 3 meter). Gelombang datang dengan kecepatan sesuai fungsi gelombang pada boundary. Sedangkan gelombang balik pada saat surut memiliki kecepatan bervariasi. 3 m/s pada arah y dan x(u dan V). Gelombang pantul menyebabkan adanya kecepatan arah x yang cukup besar. Kecepatan arah x berkumpul di tengah dikarenakan bentuk kontur berupa teluk sehingga di bagian tengah ini kecepatan balik yang terjadi cukup besar Gelombang masuk kedalam sungai dengan kecepatan.5- m/s. Ketinggian air di dalam sungai naik hingga. meter di muara. Setelah gelombang hilang, air di sungai mengalir ke laut secara berlahan-lahan dengan kecepatan.-.2 m/s. IV-9