BAB 2 TINJAUAN PUSTAKA

dokumen-dokumen yang mirip
BAB 2 TINJAUAN PUSTAKA

TINJAUAN PUSTAKA. 2.1 Sintesis Fe 2 O 3 Dari Pasir Besi

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1]

BAB 2 Teori Dasar 2.1 Konsep Dasar

Bahan Listrik. Bahan Magnet

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber)

d) Dipol magnet merupakan sebuah magnet dipol, akselerator partikel, magnet yang dibangun untuk menciptakan medan magnet homogen dari jarak tertentu.

BAB 2 STUDI PUSTAKA Magnet

Bab II Tinjauan Pustaka

MEDAN MAGNET SUGIYO,S.SI.M.KOM

BAB 2 TINJAUAN PUSTAKA

PENGARUH UKURAN PARTIKEL Fe 3 O 4 DARI PASIR BESI SEBAGAI BAHAN PENYERAP RADAR PADA FREKUENSI X DAN Ku BAND

BAB II TINJAUAN PUSTAKA

BAB 2 LANDASAN TEORI

BAB I PENDAHULUAN 1.1 Latar Belakang

Bab IV Hasil dan Pembahasan

BAB I PENDAHULUAN. 1.1 Latar Belakang

Jurusan Teknik Pertambangan Universitas Vetran Republik Indonesia

BAB I PENDAHULUAN 1.1 Latar Belakang

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) F-108

Gambar 2.1. Medan Magnet Suatu Material Magnet[5]

BAB II TINJAUAN PUSTAKA

BAB II STUDI PUSTAKA. Universitas Sumatera Utara

BAB IV HASIL PENELITIAN DAN ANALISIS

BAB I PENDAHULUAN 1.1. Latar Belakang

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-6 1

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

SINTESIS SERBUK BARIUM HEKSAFERIT DENGAN METODE KOPRESIPITASI

BAB 2 TINJAUAN PUSTAKA

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS

I. PENDAHULUAN. karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB 2 TINJAUAN PUSTAKA

SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH

SIDANG TUGAS AKHIR JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN MOTTO DAN PERSEMBAHAN PERNYATAAN PRAKATA DAFTAR GAMBAR DAFTAR TABEL

RANCANG BANGUN DAN KARAKTERISASI INDUKTOR ELEKTROMAGNET MEDAN TINGGI SKRIPSI

PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO.

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 2 TINJAUAN PUSTAKA

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

MOTTO DAN PERSEMBAHAN...

Sifat sifat kemagnetan magnet permanen ( hard ferrite ) dipengaruhi oleh kemurnian bahan, ukuran butir (grain size), dan orientasi kristal.

4.2 Hasil Karakterisasi SEM

Callister, D W Materials Science and Enginering. Eighth Edition. New York : John Willy & Soon.inc

BAB 2 TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 2 TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN. (Guimaraes, 2009).

Pengaruh Variasi Waktu Milling dan Penambahan Silicon Carbide Terhadap Ukuran Kristal, Remanen, Koersivitas, dan Saturasi Pada Material Iron

Analisa Sifat Magnetik dan Morfologi Barium Heksaferrit Dopan Co Zn Variasi Fraksi Mol dan Temperatur Sintering

Pengaruh Holding Time Kalsinasi Terhadap Sifat Kemagnetan Barium M-hexaferrite (BaFe 12-x Zn x O 19 ) dengan ion doping Zn

PENGARUH SUBSTITUSI ION Ti-Zn TERHADAP SIFAT KEMAGNETAN dan SIFAT PENYERAPAN GELOMBANG ELEKTROMAGNETIK MATERIAL SISTEM BaFe12-xTix/2Znx/2O19

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

BAB II TINJAUAN PUSTAKA

MAKALAH BAHAN MAGNETIK DAN SUPERKONDUKTOR BAHAN FERROMAGNETIK

BAB 2 TINJAUAN PUSTAKA

BAB I PENDAHULUAN Latar Belakang

BAB 2 TINJAUAN PUSTAKA

[KEMENTERIAN PERTAHANAN REPUBLIK INDONESIA] 2012

ANALISIS SIFAT MAGNETIK BAHAN YANG MENGALAMI PROSES ANNEALING DAN QUENCHING

Konsep Dasar Kemagnetan

BAB 2 TINJAUAN PUSTAKA

Callister, Rethwisch G Materials Science and Engineering. Eighth Edition. John Wiley & Soon. Inc : Wiley.

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3

1. Pengukuran tebal sebuah logam dengan jangka sorong ditunjukkan 2,79 cm,ditentikan gambar yang benar adalah. A

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Karya Tulis Ilmiah MAGNET

Pengaruh temperatur sintering terhadap struktur dan sifat magnetik La 3+ - barium nanoferit sebagai penyerap gelombang mikro

PENGEMBANGAN BAHAN MAGNETIKBERBASIS BaNi x Al 6-x Fe 6 O 19 UNTUK BAHAN ABSORBER GELOMBANGELEKTROMAGNETIK SKRIPSI PRAHMADYANA

BAB 2 TINJAUAN PUSTAKA

Sintesis dan Karakterisasi Komposit Isotropik Resin Epoksi- PANi / Barium M-Heksaferit BaFe12-2xCoxZnxO19 sebagai Material Antiradar

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN. 1.1 Latar Belakang

Gelombang Elektromagnetik

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

BAB II DASAR TEORI. Sifat magnet dari material ditentukan oleh beberapa hal diantaranya adalah sebagai berikut

PENGARUH ADITIF BaCO 3 PADA KRISTALINITAS DAN SUSEPTIBILITAS BARIUM FERIT DENGAN METODA METALURGI SERBUK ISOTROPIK

SINTESIS BARIUM HEXAFERRITE YANG DISUBSTITUSI ION Mn-Co MELALUI REAKSI PADAT DAN PENGARUHNYA TERHADAP PERUBAHAN STUKTUR DAN SIFAT MAGNETIK

BAB I PENDAHULUAN. Dalam bab ini diuraikan mengenai latar belakang masalah, tujuan dari penelitian dan manfaat yang diharapkan. I.

BAB 2 TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

BAB 2 PENGGUNAAN SENSOR MEDAN MAGNET TUNGGAL BERBASIS EFEK HALL DALAM PENGEMBANGAN ALAT UKUR HISTERISIS MAGNET UNTUK MATERIAL MAGNET LEMAH

OPTIMALISASI DIAMETER KAWAT UNTUK KOMPONEN SENSOR SUHU RENDAH BERBASIS SUSEPTIBILITAS

BAB II DASAR TEORI. Teknik Konversi Energi Politeknik Negeri Bandung

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB III MAGNETISME. Tujuan Penmbelajaran : - Memahami dan mengerti tentang sifat-sifat magnet, bahan dan kegunaannya.

Bab III Metodologi Penelitian

A. 100 N B. 200 N C. 250 N D. 400 N E. 500 N

4 Hasil dan Pembahasan

Fisika Ujian Akhir Nasional Tahun 2003

Mata Pelajaran : FISIKA

BAB II TRANSFORMATOR. sistem ketenagalistrikan. Transformator adalah suatu peralatan listrik. dan berbanding terbalik dengan perbandingan arusnya.

JURNAL PENELITIAN PENDIDIKAN IPA

BAB II TINJAUAN PUSTAKA

Transkripsi:

BAB 2 TINJAUAN PUSTAKA 2.1 Sintesis Fe 2 O 3 Dari Pasir Besi Dalam rangka meningkatkan nilai ekonomis pasir besi dapat dilakukan dengan pengolahan mineral magnetik (Fe 3 O 4 ) yang diambil dari pasir besi menjadi mineral hematit (α-fe 2 O 3 ) melalui proses oksidasi. Hasil oksidasi mempunyai susceptibility magnetik yang lebih kecil jika dibandingkan dengan mineral magnetit awalnya. Dikarenakan semakin tingginya suhu oksidasi (Yulianto, 2007). Ferit dapat diaplikasikan terutama pada teknologi seperti gelombang elektromagnetik dengan frekuensi tinggi berkisar seperti Radar. Namun Penyerapan gelombang membutuhkan subsitusi Fe kation dengan rasio tetap. Pada tingkat subsitusi yang lebih tinggi anisotropi uniaksial berubah menjadi planar magnetocystalline (Wisnu, Azwar, 2012). Magnetit dan maghemit memiliki fasa kubus sedangkan hematit memiliki fasa hexagonal. Fasa maghemit dan hematit diperoleh melalui proses oksidasi pada temperatur sintering yang berbeda. Transisi fasa maghemit menjadi hematit telah terjadi pada suhu 550 C. P ada saat suhu pemanasan 250 C dan ter us meningkat hingga suhu 350 C dimana pada keadaan tersebut, maghemit merupakan fasa yang mendominasi sampel. Sedangkan pada suhu 550 C, telah muncul hematit yaitu fasa Fe 2 O 3 (Mashuri dkk, 2007). 2.2. Absorpsi Gelombang Elektromagnetik Absorpsi gelombang elektromagnetik adalah sebuah bentuk energi yang dapat dipancarkan atau diserap oleh partikel bermuatan, yang menunjukkan arah seperti gelombang karena perjalanan melalui ruang. Gelombang elektromagnetik dapat diabsorpsi dengan absorber yang bersifat magnetik. Gelombang elektromagnetik

terdidri dari couple (pasangan) medan listrik dan medan magnet yang saling tegak lurus satu sama lain. Jenis penyerapan gelombang elektromagnetik terbagi 2 (dua) yaitu rekayasa material dan rekayasa geometri (Bentuk). Rekayasa material adalah ketika membuat suatu material dengan menambahkan beberapa unsur strukturnya tetap. Sedangkan rekayasa geometri pembuatannya harus memperhatikan bentuk partikel, ketebalan morfologi permukaan, medan listrik dan medan magnet. Teknologi penyerapan gelombang elektromagnetik telah melahirkan material baru yaitu Radar Absopsing Material (RAM). Material ini bersifat meredam pantulan atau penyerap gelombang mikro, sehingga benda yang dilapisi dengan RAM tidak terdeteksi oleh radio detection and ranging (RADAR). Bahan absorber dipengaruhi oleh impedance matching dari bahan dengan gelombang elektromagnetik melalui mekanisme frekuensi resonansi yang drumuskan dengan Reflection Loss (RL) : z in z0 RL = 20 log z + z (2.1) in 0 Untuk mendapatkan single phase dari bahan magnet berbasis ferrite ini tidak mudah dilakukan. sintesis barium hexaferrite dapat menghasilkan fasa pengotor, yaitu: hematite (Fe 2 O 3 ) dan monoferrite (BaFe 2 O 4 ) (Wisnu, 2011). Batuan besi yang disintesis digunakan sebagai material filler pada material komposit penyerap gelombang mikro. Batuan besi tersebut disintesis menjadi nanopartikel magnetik, seperti Fe 3 O 4. Besi yang teroksidasi tersebut mempunyai permeabilitas yang sangat tinggi (Erika, Astuti, 2012). Menurut Alvin lie, seorang pemerhati penerbangan, dampak gangguan pesawat terbang sebenarnya sangat kecil. Dengan catatan hanya satu ponsel saja yang aktif. Dikarenakan gelombang elektromagnetik yang dipancarkan dari satu ponsel masuk dalam skala mikro. Alvin menyimpulkan bahwa cukup berpengaruh bagi keselamatan penerbangan berpotensi mengganggu komunikasi dan navigasi (Dessy, dkk, 2013). Serapan gelombang mikro terjadi akibat interaksi gelombang dengan material yang menghasilkan efek Refflection loss energi yang umumnya didisipasikan dalam bentuk panas. Gelombang mikro dibagi dalam beberapa

daerah jangkauan yang telah ditetapkan secara internasional. Sesuai tabel 2.1 di bawah ini. Tabel 2.1 Pembagian Daerah Jangkauan Gelombang Mikro (Athessia, 2014) Band Frequncy Range (GHz) L 1,22-1,70 R 1,70-2,60 S 2,60-3,95 H 3,95-5,85 C 5,85-8,20 X 8,20-12,4 Ku 12,4-18,0 K 18,0-26,5 Ka 26,5-40,0 U 40,0-60,0 E 60,0-90,0 F 90,0-140,0 G 140,0-220,0 Karakteristik suatu material absorber yang baik yaitu memiliki magnetik dan listrik yang baik pula. Material tersebut harus memiliki nilai impedansi tertentu yang nilai permeabilitas relatif (µr) dan permitivitas relatifnya (εr) sesuai dengan nilai µ dan ε udara atau vakum agar terjadi resonansi impedansi, sehingga nilai dari reflection loss yang yang dihasilkan bahan cukup besar (Elwindari, 2012). Mekanisme serapan gelombang elektromagnetik pada material secara umum dipengaruhi oleh dua faktor yaitu faktor ketebalan terjadi pada semua material dan semakin tebal material absorbsinya juga semakin besar. Dan serapan radiasi elektromagnetik pada material magnetik disamping karena faktor ketebalan juga terjadi interaksi lain yaitu gelombang elektromagnetik dari luar akan memutar dipol magnetik sehingga terjadi impedansi material (Priyono, Musni, 2010). Barium hexaferrite yang memiliki sifat lossy material, mempunyai faktor loss dieletrik dan loss magnetik yang tinggi sehingga membuat material tersebut mempunyai sifat yang baik untuk absorpsi gelombang elektromagnetik (Sulistyo, 2012).

2.3 Barium Heksaferit Barium Heksaferit merupakan tipe-m, yang lebih dikenal dengan sebutan barium heksagonal ferit (BaM) merupakan oksida keramik yang paling banyak dimanfaatkan secara komersial (Darminto, dkk. 2011). Magnet permanen anisotropi adalah magnet pada pembentukannya dilakukan di dalam medan magnet sehingga arah dominan partikel-partikelnya mengarah pada satu arah tertentu (Efhana P.D, dkk, 2013). BaFe 12 O 19 merupakan golongan heksaferit tipe M. tipe M ini disebut juga magnetoplumbite. Ion Fe tersusun secara tetrahedral (FeO 4 ) secara trigonal Bipiramida (FeO 5 ) secara oktrahedral dengan orientasi spin paralel terhadap Fe pada bidang 4f. Nilai space group p 63/mmc dengan parameter kisi adalah a= 0,58836 nm dimana a=b dan c= 2,306 nm pada temperature ruangan. Sedangankan densitas Kristal melalui pengukuran dengan X-Ray diperoleh 5,33 gr/cm 3 (Wisnu, 2010). STRUKTUR HEKSAGONAL c a b Gambar 2.1. Struktur Kristal BaO.6Fe 2 O 3 (Wisnu, 2010)

Sifat magnetik dari MFe 12 O 19 meliputi magnetisasi saturasi (Ms) yaitu magnetisasi jenuh dimana medan yang diberikan tidak akan mempengaruhi penambahan nilai magnetisasinya, Remanen (Mr) yaitu magnetisasi total dari bahan setelah medan dihilangkan dan koersivitas (Hc) yaitu energi yang diperlukan untuk mengorientasikan spin magnetik ke arah tertentu. Medan koersivitas menentukan suatu magnet apakah magnet tersebut hard magnetic atau soft magnetic. Ketiga sifat ini ditentukan dari loop histerisis. Kurva histerisis pada uji sebuah sampel merupakan bentuk disipasi energi yang terjadi selama proses pembentukan kurva B-H. Gambar.2.2 Kurva Histerisis (Tri, 2014) Heksaferit sangat menjanjikan untuk pengembangan material anti radar. Material Barium M-Heksaferit (BaFe 12 O 19 ) mempunyai polarisasi magnet saturasi tinggi (78 emu/g), yang terdiri dari kristal uniaxial anisotropi yang kuat, temperatur Curie tinggi (450 C) dan medan koersivitas yang besar (6700 Oe), terkait dengan sangat baik dalam stabilitas kimia dan ketahanannya terhadap korosi (Findah, Zainuri, 2012). Magnet pemanen BaFe 12 O 19 sering digunakan dalam aplikasi sebagai perekam magnetik dan absorber material. Subtitusi ion Fe dengan divalen kation seperti Co, Mn dan Ti banyak dilakukan untuk meningkatkan sifat magnetiknya. Subtitusi tersebut dapat mempengaruhi perubahan struktur dan sifat magnetik BaFe 12 O 19 (widiyanto, 2010). Kombinasi sifat intrinsik antara sifat magnetik dan sifat listrik dari ferit seperti itu menempatkan material magnet ferit sebagai

penyanggah gelombang-gelombang mikro termasuk gelombang dengan frekuensi yang digunakan dalam RADAR. Material tersebut masuk ke dalam kelas ferrimagnetik dimana ion Fe menempati kisi yang berbeda. Ferrimagnetik ini memiliki saturasi magnetik total dan koersivitas magnetik yang paling tinggi diantara kelas ferit lainnya (priyono, 2010). 2.4. Alumina (Al 2 O 3 ) Alumina adalah penyangga yang paling banyak digunakan karena harganya yang tidak mahal, stabil secara struktur dan dapat dipreparasi dengan ukuran pori dan distribusi pori yang bervariasi. Disamping itu, alumina mempunyai sifat yang relatif stabil pada suhu tinggi, mudah dibentuk, memiliki titik leleh yang tinggi, struktur porinya yang besar dan relatif kuat secara fisik. Pada penelitian ini alumina digunakan untuk menghambat pertumbuhan grain dalam domain magnetik. Katalis dapat menurunkan energi aktivasi reaksi dan meningkatkan laju reaksi melalui peningkatan konstanta laju (Indah, dkk, 2012). Alumina pada penggunaan sebagai penyangga adalah alumina transisi γ- Al 2 O 3 adalah material yang paling banyak digunakan karena memiliki luas area yang besar dan stabil pada interval temperatur pada sebagian besar reaksi katalitik (Ayuko, 2011). Penggunaan alumina sebagai penyangga dapat meningkatkan kinerja kitalis yang dimaksudkan untuk meningkatkan luas permukaan inti aktif dan untuk menambah fungsi katalis itu sendiri (Dora, 2010). 2.5. Nikel Oksida (NiO) Nikel merupakan logam yang mempunyai sifat asam lewis sehingga logam ini cocok digunakan sebagai katalis asam seperti alkilasi friedel-craft (Akda, 2012). Kombinasi Fe 2 O 3 dan NiO akan memiliki fase yang jenisnya tergantung pada konsentrasi NiO sebagai aditif. Fase-fase yang terjadi pada keramik kombinasi Fe 2 O 3 dan NiO hasil pembakaran dapat berbeda-beda sesuai konsentrasi NiO yang ditambahkan. Tiga fase yang mungkin terbentuk adalah, pertama, Fe 2 O 3 sebagai

matriks dan NiFe 2 O 4 sebagai fase kedua. Kedua, NiO sebagai matriks dan NiFe 2 O 4 sebagai fase kedua dan ketiga, NiFe 2 O 4 sebagai matriks utama tanpa fase kedua atau dengan sedikit fase kedua Fe 2 O 3 atau NiO (Suhendi,dkk, 2015). Pada penelitian ini nikel digunakan untuk menaikkan momen dipol magnetik dalam bahan sehingga sifat magnetnya akan meningkat. 2.6. Sifat-Sifat Magnet Sifat-sifat yang terdapat dalam benda magnetic antara lain adalah : Induksi Remanen (Br) Induksi magnetik yang tertinggal dalam sirkuit magnetik (besi lunak) menghilangkan pengaruh bidang magnetik. Ketika arus dialirkan pada sebuah kumparan yang melilit besi lunak maka terjadi orientasi pada partikel- partikel yang ada dalam besi. Orientasi ini mengubah/ mengarahkan pada kutub utara dan selatan. Gaya Koersif (Hc) Medan daya yang diperlukan untuk menghilangkan induksi remanen setelah melalui proses induksi elektromagnetik. Pada besi lunak atau soft magnetic alloys besarnya gaya koersif yang diperlukan lebih kecil daripada magnet permanen. Gaya Gerak Magnetis (Θ) Gaya gerak magnetis ialah jumlah dari semua arus dalam beberapa penghantar yang dilingkupi oleh medan magnet (atau oleh garis fluks magnet). Fluks Magnetik (Φ) Fluks magnetik total ialah jumlah dari semua garis fluks magnetik, ini berarti bahwa fluks sama besar disebelah dalam dalam dan di sebelah luar kumparan. Reluktansi Magnet (Rm) Relukstansi magnet tergantung dari panjang jejak fluks magnetik, bidang penampang lintang A yang ditembus fluks magnetik dan sifat magnet bahan, tempat medan magnet. Suseptibilitas dan Permeabilitas Magnetik

Sifat dan karakterisis bahan magnetik erat kaitannya dengan suseptibilitas magnetik dan permeabilitas magnetik. Permeabilitas adalah kemampuan suatu bahan untuk dilewati garis gaya magnet. Suseptibilitas magnetik adalah ukuran dasar bagaimana sifat kemagnetan suatu bahan yang merupakan sifat magnet bahan yang ditunjukkan dengan adanya respon terhadap induksi medan magnet yang merupakan rasio antara magnetisasi dengan intensitas medan magnet. Permeabilitas dinyatakan dengan simbol µ. Benda yang mudah dilewati gaya garis magnet karena memiliki permeabilitas tinggi. Permeabilitas merupakan konstanta pembanding antara induksi magnet (B) dengan kuat medan (H) yang dihasilkan magnet.untuk udara dan bahan non magnetik, permeabilitas dinyatakan sebagai permeabilitas ruang hampa µ o = 4π. 10-7 H/m, yang didefenisikan sebagai : B = µ o H (2.2) Untuk bahan lain maka permeabilitasnya sebanding dengan permeabilitas ruang hampa dikalikan dengan permeabilitas relative bahan µ r sehingga diperoleh : B = µ o µ r H Dengan permeabilitas relatif didefinisikan sebagai : µ r = µ µo (2.3) Pada ruang hampa µ r = 1 dan µ o µ r = sering dikenal sebagai permeabilitas absolut. Secara umum suseptibilitas magnetik dapat ditulis sebagai berikut : M χ m = (2.4) H χ m adalah suseptibilitas magnet bahan, M adalah intensitas magnetik dan H adalah kuat medan magnet. Berdasarkan nilai suseptibilitas ini dapat diketahui jenis bahan magnet yaitu : χm < 0 : bahan diamagnetik, χm : > 0 dan χm << 1 : bahan parmagnetik, χm > 0 dan χm >> 1 : bahan ferromagnetic.

2.7. Jenis Kemagnetan Semua bahan dapat diklasifikasikan jenis kemagnetannya menjadi tiga kategori yaitu ferromagnetik, paramagnetik, diamagnetik, antiferromagnetik, dan ferrimagnetik. Semuanya dibedakan dari keteraturan arah domain pada bahan magnet tersebut. 2.7.1. Diamagnetik Diamagnetik mempunyai suseptibilitas magnetik yang kecil dan bernilai negatif. Diamagnetik merupakan sifat magnet yang paling lemah, yang tidak permanen dan hanya muncul selama berada dalam medan magnet luar. Besarnya momen magnetic yang diinduksikan sangat kecil dan dengan arah yang berlawanan dengan arah medan luar. 2.7.2. Paramagnetik Material paramagnetik mempunyai nilai suseptibilitas magnet yang kecil namun masih bernilai posif. Dengan adanya medan magnet luar yang diberikan pada material paramagnetik, mengakibatkan dwikutub atom yang bebas berotasi akan mensejajarkan arah sesuai dengan arah medan magnet. Kemudian memiliki permeabilitas relatif (>1) dan suseptibilitas magnetik akan sedikit naik. Oleh karena itu, magnetisasi bahan akan muncul jika ada medan dari luar serta dipol magnetik bertindak secara individual tanpa saling berinteraksi dengan dipol yang berdekatan. Dipol yang sejajar dengan medan magnet luar, akan memunculkan permeabilitas relatif yang lebih besar. Gambar 2.3 Arah domain-domain dalam bahan paramagnetik sebelum diberi medan magnet luar (Tri, 2014)

Bahan ini jika diberi medan magnet luar, maka elektron-elektronnya akan berusaha sedemikian rupa sehingga resultan medan magnet atomisnya searah dengan medan magnet luar. Sifat paramagnetik ditimbulkan oleh momen magnetik spin yang menjadi terarah oleh medan magnet luar. Suseptibilitas magnet dari bahan paramagnetik adalah positif dan berada dalam rentang 10-5 sampai 10-3 m 3 /Kg, sedangkan permeabilitasnya adalah μ > μ 0. Gambar 2.4 Arah domain dalam bahan paramagnetik setelah diberi medan magnet luar 2.7.3. Ferromagnetik Bahan ferromagnetik adalah bahan yang mempunyai resultan medan atomik besar. Hal ini terutama disebabkan oleh momen magnetik spin elektron. Pada bahan ferromagnetik banyak spin elektron yang tidak berpasangan, misalnya pada atom besi terdapat empat buah spin elektron yang tidak berpasangan. Masingmasing spin elektron yang tidak berpasangan ini akan memberikan medan magnetik, sehingga total medan magnetik yang dihasilkan oleh suatu atom lebih besar. Medan magnet dari masing-masing atom dalam bahan ferromagnetik sangat kuat, sehingga interaksi diantara atom-atom tetangganya menyebabkan sebagian besar atom akan mensejajarkan diri membentuk kelompok-kelompok, kelompok inilah yang dikenal dengan domain. Domain-domain dalam bahan ferromagnetik, akan mensejajarkan diri dengan medan eksternal pada titik saturasi, artinya bahwa setelah seluruh domain sudah terarahkan, penambahan medan magnet luar tidak memberi pengaruh karena tidak ada lagi domain yang perlu disearahkan, keadaan ini disebut dengan penjenuhan (saturasi). Bahan ini juga mempunyai sifat remanensi, artinya bahwa setelah medan magnet luar dihilangkan, akan tetap memiliki medan magnet, karena itu bahan ini sangat baik sebagai sumber magnet permanen (E.Afza, 2011).

Bahan ferromagnetik mula-mula memiliki magnetisasi nol pada daerah yang bebas medan magnetik, bila mendapat pengaruh medan magnetik yang lemah saja akan memperoleh magnetisasi yang besar. Jika diperbesar medan magnetnya, akan makin besar pula magnetisasinya. Bila medan magnetik ditiadakan, magnetisasi bahan tidak kembali menjadi nol. Jadi bahan ferromagnetik itu dapat mempunyai magnetisasi walaupun tidak ada medan, sehingga bahan dikatakan memiliki magnetisasi spontan. Di atas temperatur Curie, ferromagnetik berubah menjadi paramagnetik. Histeresis adalah suatu sifat yang dimiliki oleh sistem dimana sistem tidak secara cepat mengikuti gaya yang diberikan kepadanya, tetapi memberikan reaksi secara perlahan, atau bahkan sistem tidak kembali lagi ke keadaan awalnya. Bahan feromagnetik memiliki momen magnetik spontan walaupun berada pada medan magnet eksternal nol. Keberadaan magnetisasi spontan ini menandakan bahwa spin elektron dan momen magnetik bahan ferromagnetik tersusun secara teratur (Ahmad Yani, 2002). 2.7.4. Antiferromagnetik Jenis ini memiliki arah domain yang berlawanan arah dan sama pada kedua arah. Arah domain magnet tersebut berasal dari jenis atom sama pada suatu kristal. Contohnya MnO, MnS, dan FeS. Pada unsur dapat ditemui pada unsur Cromium, tipe ini memiliki arah domain yang menuju dua arah dan saling berkebalikan. Jenis ini memiliki temperature Curie yang rendah sekitar 37º C untuk menjadi paramagnetic. 2.7.5. Ferrimagnetik Jenis tipe ini hanya dapat ditemukan pada campuran dua unsur antara paramagnetik dan ferromagnetik seperti magnet barium ferrite dimana barium adalah jenis paramagnetik dan Fe adalah jenis unsur yang masuk ferromagnetik.

Gambar 2.5. arah domain (a) paramagnetik (c) ferromagnetik (d) antiferromagnetik (e) ferrimagnetik (Dyah, Ratih, 2010) 2.8 Kurva Histerisis Untuk bahan ferromagnetik magnetisasi bahan M tidaklah berbanding lurus dengan intensitas magnet H. Hal ini tampak dari kenyataan bahwa harga suseptibilitas magnetik bergantung dari harga intensitas magnet H. Bentuk umum kurva medan magnet B sebagai fungsi intensitas magnet H terlihat pada Gambar 2.3 kurva B(H) seperti ini disebut kurva induksi normal. Gambar 2.6 Kurva Induksi Normal Pada Gambar 2.6 tampak bahwa setelah mencapai nol harga intensitas magnet H dibuat negatif (dengan membalik arus lilitan), kurva B(H) akan memotong sumbu pada harga Hc. Intensitas Hc inilah yang diperlukan untuk membuat rapat fluks B=0 atau menghilangkan fluks dalam bahan. Intensitas magnet Hc ini disebut koersivitas bahan. Bila selanjutnya harga diperbesar pada harga negatif sampai mencapai saturasi dan dikembalikan melalui nol, berbalik arah dan terus diperbesar pada harga H positif hingga saturasi kembali, maka kurva B(H) akan membentuk satu lintasan tertutup yang disebut kurva histeresis. Bahan yang mempunyai koersivitas tinggi kemagnetannya tidak mudah hilang. Bahan seperti itu baik untuk membuat magnet permanen (E.Afza, 2011).

2.9 Bahan Soft Magnetic Bahan magnetik lunak harus memiliki permeabilitas yang tinggi dan koersivitas rendah. Bahan yang memiliki sifat-sifat ini dapat mencapai magnetisasi saturasi dengan bidang terapan yang relatif rendah dan masih memiliki energi yang hilang histeresis rendah. bidang saturasi atau magnetisasi hanya ditentukan oleh komposisi bahan. misalnya, dalam ferit kubik, penggantian ion logam divalen seperti Ni 2 + untuk Fe 2 + di FeO-Fe 2 O 3 akan mengubah saturasi magnetisasi. Penggolongan ini berdasarkan kekuatan medan koersifnya dimana soft magnetic atau material magnetik lemah memiliki medan koersif yang lemah sedangkan material magnetik kuat atau hard magnetic materials memiliki medan koersivitas yang kuat. Namun, kerentanan dan koersivitas (Hc) yang juga mempengaruhi bentuk kurva histerisis, sensitif terhadap variabel struktural lebih untuk komposisi. misalnya rendahnya nilai koersivitas sesuai dengan mudah pergerakan sebagai medan magnet perubahan besar atau arah. cacat struktural seperti partikel dari fase nonmagnetik atau void dalam bahan magnetik cenderung membatasi gerak domain dan dengan demikian meningkatkan koersivitas tersebut. Akibatnya, bahan magnetik lunak harus bebas dari cacat struktural tersebut. karakteristik histerisis bahan magnetik lunak dapat ditingkatkan untuk beberapa aplikasi oleh perlakuan panas yang tepat di hadapan medan magnet. 2.10 Bahan Hard Magnetic Bahan Hard magnetik menggunakan magnet permanen yang harus memiliki resistensi yang tinggi terhadap demagnetisasi. Dalam hal ini perilaku histerisis bahan magnetik keras memiliki remanen tinggi, koersivitas dan saturasi fluks kepadatan, serta permeabilitas yang rendah dan tinggi akan merugikan energi histerisis. Diamagnetisme adalah bentuk magnet yang sangat lemah yang tidak tetap dan tetap hanya sementara pada bidang eksternal sedang diterapkan. Hal ini disebabkan oleh perubahan dalam gerakan orbital elektron melewati medan

magnet. Besarnya momen magnetik induksi sangat kecil, dan dalam arah yang berlawanan dengan medan yang diterapkan. Dengan demikian, permeabilitas μr relatif kurang dari kesatuan (namun hanya sangat sedikit) dan kerentanan magnet negatif yang besarnya bahan diamagnetik adalah di urutan 10-5. Ketika ditempatkan di antara kutub dari eletromagnet yang kuat, bahan diamagnetik tertarik ke daerah lemah. Diamagnetisme ditemukan di semua bahan, tetapi karena begitu lemah, dapat diamati hanya ketika jenis magnet sama sekali tidak ada (William D. C, 2011). (a) Soft Magnetic (b) Hard Magnetic Gambar 2.7 Skematik Kurva Magnetisasi Untuk Bahan Soft dan Hard Magnetic Material lunak pada gambar (a) dan material magnetik keras pada gambar (b). H adalah medan magnetik yang diperlukan untuk menginduksi medan berkekuatan B dalam material. Setelah medan H ditiadakan, dalam specimen tersisa magnetisme residual Br, yang disebut residual remanen, dan diperlukan medan magnet Hc yang disebut gaya koersif, yang harus diterapkan dalam arah berlawanan untuk meniadakannya. Magnet lunak mudah dimagnetisasi serta mudah pula mengalami demagnetisasi, seperti tampak pada Gambar 2.7 Nilai H yang rendah sudah memadai untuk menginduksi medan B yang kuat dalam logam, dan diperlukan medan Hc yang kecil untuk menghilangkannya (E.Afza, 2011).