BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet adalah suatu benda yang dibuat dari material tertentu yang menghasilkan suatu medan magnet. Medan magnet suatu magnet adalah daerah sekeliling magnet dimana magnet dapat menarik atau menolak suatu benda. Diluar daerah ini magnet tidak mempunyai pengaruh. Material dapat bersifat magnet dari dasarnya (alami) atau magnet buatan (magnet listrik). Pada umumnya, material dibuat menjadi magnet dengan mengalirkan arus listrik melalui kawat yang dililiti pada material [Noveryanto, 2014]. Magnet merupakan suatu fenomena yang sangat menarik untuk dikaji, karena pada material magnet dapat ditarik atau ditolak tanpa adanya sentuhan secara langsung. Hal tersebut sudah diketahui sejak ratusan tahun yang lalu. Akan tetapi mekanisme dan prinsip yang mendasarinya mulai dimengerti secara ilmiah pada abad ke 18, yaitu oleh fisikawan belanda Hans Cristian Oersted membuat suatu eksperimen yang menerangkan adanya efek-efek magnet yang dialiri arus listrik [Muklisin, 2013]. Magnet dapat menarik benda lain, beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet. Satuan intensitas magnet menurut sistem metrik Satuan Internasional (SI) adalah Tesla dan SI unit untuk total fluks magnetik adalah weber (1 weber/m 2 = 1 tesla) yang mempengaruhi luasan satu meter persegi [Afza, 2011]. 2.2 Sifat-sifat Magnet Sifat-sifat yang terdapat dalam benda magnetik di antaranya: Koersivitas Koersivitas (H) adalah medan magnetik yang diperlukan untuk menginduksi

2 medan berkekuatan B dalam material yang digunakan untuk membedakan hard magnet atau soft magnet. Semakin besar gaya koersivitasnya maka semakin tinggi sifat magnetnya. Bahan dengan koersivitas tinggi berarti tidak mudah hilang kemagnetannya. Untuk menghilangkan kemagnetannya diperlukan intensitas magnet yang besar. Nilai dari medan magnet H yang digunakan dalam magnet permanen secara umum jauh lebih besar dari pada dalam bahan soft magnet Remanen Remanen adalah sisa medan magnet B dalam proses magnetisasi pada saat medan magnet H berharga nol dan medan magnet B menunjukkan harga tertentu. Koersivitas pada magnet permanen akan menjadi kecil, jika remanensi dalam magnetisasi kecil. Besar nilai remanensi yang dikombinasikan dengan koersivitas akan menjadi sangat penting Saturasi Magnetisasi Saturasi magnetisasi adalah keadaan dimana terjadi kejenuhan, nilai medan magnet B akan selalu konstan walaupun medan magnet H selalu bertambah. Remanensi bergantung pada saturasi magnetisasi dan saturasi magnet permanen lebih besar daripada soft magnet. Kerapatan dari bahan ferit lebih rendah dibandingkan logam lain dengan ukuran yang sama. Nilai saturasi dari ferit relatif rendah, sehingga mudah dihilangkan Medan Anisotropi Medan Anisotropi (HA), juga merupakan nilai instrinsik yang sangat penting dari magnet permanen karena nilai ini dapat didefenisikan sebagai koersivitas maksimum yang menunjukkan besar medan magnet luar yang diberikan dengan arah berlawanan untuk menghilangkan medan magnet permanen. Anisotropi salah satu metode dalam pembuatan magnet, dimana hal ini dilakukan untuk menyearahkan domain daripada magnet tersebut. Dalam proses pembentukan magnet dengan anisotropi dilakukan dalam medan magnet sehingga partikelpertikel pada magnet terorientasi dan umumnya dilakukan dengan cara basah. Anisotropi pada magnet dapat muncul disebabkan oleh beberapa faktor seperti bentuk magnet, striktur kristal, efek stress dan sebagainya. Anisotropi kristal banyak dimiliki oleh material feromagnetik yang disebut sebagai Magnetocrystalline Anisotropy, yaitu bahan magnet yang mempunyai sumbu

3 mudah (easy axis) sehingga mudah dimagnetisasi (soft magnetic). Spin momen magnet terarah dan searah dengan sumbu mudah ini. Pada keadaan stabil, energi total magnet atau magnetisasi kristal sama dengan sumbu mudah. Selain itu, ada juga yang disebut juga dengan hard magnetic dimana diperlukan suatu energi yang merubah verktor dari sumbu mudah ke sumbu keras (hard axis) Temperatur Curie (T c ) Temperatur Curie (T c ) didefinisikan sebagai temperatur kritis dimana fase magnetik bertransisi dari konfigurasi struktur magnetik yang teratur menjadi tidak teratur [Silitonga, 2016]. 2.3 Bahan Magnetik Bahan magnetik adalah suatu bahan yang memiliki sifat kemagnetan dalam komponen pembentuknya. Berdasarkan perilaku molekulnya di dalam medan magnetik luar, bahan magnetik terdiri atas tiga kategori, yaitu diamagnetik, paramagnetik, dan ferromagnetik Bahan Diamagnetik Bahan diamagnetik adalah bahan yang resultan medan magnet atomis masingmasing atom/molekulnya adalah nol, tetapi medan magnet akibat orbit dan spin elektronnya tidak nol. Bahan diamagnetik tidak mempunyai momen dipol magnet permanen. Jika bahan diamagnetik diberi medan magnet luar, maka elektronelektron dalam atom akan mengubah gerakannya sedemikian rupa sehingga menghasilkan resultan medan magnet atomis yang arahnya berlawanan dengan medan magnet luar tersebut. Sifat diamagnetik bahan ditimbulkan oleh gerak orbital elektron. Karena atom mempunyai elektron orbital, maka semua bahan bersifat diamagnetik. Suatu bahan dapat bersifat magnet apabila susunan atom dalam bahan tersebut mempunyai spin elektron yang tidak berpasangan. Dalam bahan diamagnetik hampir semua spin elektron berpasangan, akibatnya bahan ini tidak menarik garis gaya. Permeabilitas bahan ini: μ< μ 0 dengan suseptibilitas magnetik bahan: χ m < 0. Nilai bahan diamagnetik mempunyai orde m 3 /kg. Contoh bahan diamagnetik yaitu: bismut, perak, emas, tembaga dan seng.

4 2.3.2 Bahan Paramagnetik Bahan paramagnetik adalah bahan yang resultan medan magnet atomis masingmasing atom/molekulnya tidak nol, tetapi resultan medan magnet atomis total seluruh atom/molekul dalam bahan nol, hal ini disebabkan karena gerakan atom/ molekul acak, sehingga resultan medan magnet atomis masing-masing atom saling meniadakan. Di bawah pengaruh medan eksternal, mereka mensejajarkan diri karena torsi yang dihasilkan. Sifat paramagnetik ditimbulkan oleh momen magnetik spin yang menjadi terarah oleh medan magnet luar. Gambar 2.1 Arah domain-domain dalam bahan paramagnetik sebelum diberi medan magnet luar Bahan ini jika diberi medan magnet luar, elektron-elektronnya akan berusaha sedemikian rupa sehingga resultan medan magnet atomisnya searah dengan medan magnet luar. Sifat paramagnetik ditimbulkan oleh momen magnetik spin yang menjadi terarah oleh medan magnet luar. Gambar 2.2 Arah domain dalam bahan paramagnetik setelah diberi medan magnet luar Dalam bahan ini hanya sedikit spin elektron yang tidak berpasangan, sehingga bahan ini sedikit menarik garis-garis gaya. Dalam bahan paramagnetik, medan B yang dihasilkan akan lebih besar dibanding dengan nilainya dalam hampa udara. Suseptibilitas magnet dari bahan paramagnetik adalah positif dan berada dalam Rentang 10-5 sampai 10-3 m 3 /Kg, sedangkan permeabilitasnya adalah μ > μ 0. Contoh bahan paramagnetik: alumunium, magnesium dan wolfram.

5 2.3.3 Bahan Ferromagnetik Bahan ferromagnetik mempunyai resultan medan magnet atomis besar, hal ini disebabkan oleh momen magnetik spin elektron. Pada bahan ini banyak spin elektron yang tidak berpasangan, masing-masing spin elektron yang tidak berpasangan ini akan menimbulkan medan magnetik, sehingga medan magnet total yang dihasilkan oleh satu atom menjadi lebih besar. Medan magnet dari masing-masing atom dalam bahan ferromagnetik sangat kuat, sehingga interaksi diantara atom-atom tetangganya menyebabkan sebagian besar atom akan mensejajarkan diri membentuk kelompok-kelompok, kelompok inilah yang dikenal dengan domain. Domain-domain dalam bahan ferromagnetik, dalam ketiadaan medan eksternal, momen magnet dalam tiap domain akan paralel, tetapi domain-domain diorientasikan secara acak, dan yang lain akan terdistorsi karena pengaruh medan eksternal. Domain dengan momen magnet paralel terhadap medan eksternal akan mengembang, sementara yang lain mengerut. Semua domain akan menyebariskan diri dengan medan eksternal pada titik saturasi, artinya bahwa setelah seluruh domain sudah terarahkan, penambahan medan magnet luar tidak memberi pengaruh apa-apa karena tidak ada lagi domain yang perlu disearahkan, keadaan ini disebut dengan penjenuhan (saturasi). Bahan ini juga mempunyai sifat remanensi, artinya bahwa setelah medan magnet luar dihilangkan, akan tetap memiliki medan magnet, karena itu bahan ini sangat baik sebagai sumber magnet permanen. Permeabilitas bahan : μ >> μ 0 dengan suseptibilitas bahan : χ m >> 0. Contoh bahan ferromagnetik: besi, baja. Sifat kemagnetan bahan ferromagnetik akan hilang pada temperatur Currie. Temperatur Currie untuk besi lemah adalah 770 o C dan untuk baja adalah 1043 o C. Sifat bahan ferromagnetik biasanya terdapat dalam bahan ferit. Ferit merupakan bahan dasar magnet permanen yang banyak digunakan dalam industri-industri elektronika, seperti dalam loudspeaker, motor-motor listrik,dinamo dan KWHmeter [Afza, 2011].

6 2.4 Jenis-jenis Material Magnet Material Magnetik Keras Material magnetik keras (hard magnetic material) dipandang sebagai magnet permanen, material yang saturasi secara magnet. Salah satu faktor yang penting dalam magnet permanen adalah remanensi magnetik material. Penomena ini terjadi bila medan magnet yang ada dipindahkan dan sebagian magnetisasi jenuh masih ada. Pada tingkat tertentu diperlukan energi untuk memaksa domain kembali ke kondisi semula. Hard magnet memiliki nilai koersivitas >100kA/m (>1256,6 Oe) [Slusarek B, 2001]. Material magnetik keras dapat diaplikasikan pada electroacoustic, seperti pada loudspeaker, mikropon, atau earphone [Bement, A.L., et al. 1985] Material Magnetik Lunak Material magnetik lunak (soft magnetic material) hanya memerlukan sedikit medan magnet untuk membuatnya menjadi magnet. Material ini mempunyai koersivitas rendah dan sekali medan magnetnya hilang, kerapatan fluks akan menjadi nol. Rangkaian arus bolak-balik atau searah dapat digunakan untuk membangkitkan medan magnet atau menghasilkan suatu gaya. Nilai koersivitas untuk bahan soft magnet yaitu <1kA/m (<12,566 Oe). [Slusarek B, 2001]. Permeabilitas merupakan pertimbangan utama untuk pemilihan material untuk penerapan dalam arus searah. Dimana saturasi dapat menjadi sangat nyata. Untuk penerapan dalam arus bolak-balik, rugi energi akan menjadi pertimbangan utama. Gambar 2.3 Kurva Magnetisasi [Noveryanto, 2014]

7 2.5 Kurva Histeresis Karakteristik suatu material ferromagnetik dapat dilihat dari bentuk kurva histeresis yang menggambarkan hubungan antara medan magnet luar, induksi magnet dan magnetisasi dengan persamaan: (2.1) Dengan: B = Induksi magnet (Tesla) H = Medan magnet luar (A/m) M = Magnetisasi (A/m) µ 0 = Permeabilitas ruang hampa karena : J = µ 0 M (2.2) dengan J merupakan polarisasi dalam satuan Tesla. Maka persamaan (2.1) menjadi: (2.3) Kurva histerisis memiliki dua tipe berbeda, yaitu : 1. B terhadap H (B vs H), loop histerisis disebut loop B-H 2. J terhadap H (J vs H), loop histerisis disebut loop J-H Perlu diperhatikan bahwa polarisasi magnet, J, dari bahan ferromagnetik tidak selalu berbanding lurus terhadap pengaruh medan magnet luar. Material mula-mula belum termagnetisasi, sehingga dimulai dari titik asal dan kemudian bertambah. Polarisasi dalam magnet mula-mula bertambah agak terhambat karena berkenaan dengan nukleasi magnetisasi. Dalam hal ini pertambahan polarisasi magnet berkenaan dengan pergerakan dinding domain dalam butir kristal sampai tercapai butir dengan domain tunggal dan akhirnya polarisasi magnet menjadi konstan pada medan magnet tertentu. Pada saat ini polarisasi mencapai nilai maksimum, yaitu telah mencapai tingkat saturasi Js atau polarisasi total. Pada keadaan ini seluruh momen magnet telah terorientasi searah dengan medan magnet luar. Jadi apa yang terjadi dalam proses ini adalah suatu rotasi polarisasi terhadap arah medan magnet luar. Dari keadaan saturasi, saat medan magnet luar H direduksi menjadi nol, ternyata kurva tidak kembali seperti semula tetapi memiliki fluks magnet sisa.

8 Fluks magnet yang tersisa saat H = 0 ini disebut sebagai remanen. Pada keadaan ini, sebagian momen-momen magnet tidak kembali ke orientasi sebelum diberi medan luar H, sehingga material termagnetisasi sebagian. Proses dilanjutkan dengan membalik arah medan magnet luar, dan terus ditambah sehingga dicapai nilai fluks magnet B menjadi nol. Nilai medan arah balik H pada saat B = 0 disebut koersivitas. Koersivitas pada loop B-H disebut koersivitas normal sedangkan pada loop J-H disebut koersivitas intrinsik. Pada keadaan ini, orientasi seluruh momen magnet kembali acak. Medan arah balik kemudian direduksi menuju nol dan dicapai nilai remanen arah balik, -Br. Proses dilanjutkan dengan medan luar positif sehingga dicapai nilai koersivitas positif Hc dan terus menuju titik magnetisasi saturasi. Dari bentuk kurva histerisis tersebut dapat dibedakan antara soft magnetic dan hard magnetic. Soft magnetic memiliki nilai koersivitas dan remanen yang kecil, sehingga bentuk kurva sangat pipih. Sedangkan untuk hard magnetic memiliki nilai koersivitas dan remanen yang cukup besar. Bentuk kurva histerisis magnet permanen terlihat pada gambar 2.4. Kurva kuadran kedua menentukan besarnya nilai energi produk maksimum (BH)max. Gambar 2.4 Kurva Histeresis 2.6 Energi Produk Maksimum (BH) max Energi produk dari suatu material magnetik memegang peranan yang sangat penting terutama penggunaan magnet itu sendiri untuk keperluan industri. Energi produk menyatakan jumlah energi yang tersimpan dalam magnet persatuan

9 volume. Nilai energi produk sangat dipengaruhi oleh remanen, koersivitas dan bentuk kurva histeresis. Makin ideal bentuk kurva histeresis, nilai produk akan semakin tinggi. Energi produk dalam hubungannya dengan kurva histeresis adalah luas pada kuadran II kurva tersebut sehingga dari persamaan (2.3), (BH) = µ 0 H 2 + JH Nilai maksimum dari (BH) dapat diperoleh dengan syarat Sehingga (2.4) Persamaan (2.4) merupakan nilai medan arah balik yang diperlukan untuk membalik arah polarisasi J. Maka nilai (2.5) Perlu diperhatikan bahwa nilai teoritis energi produk seperti persamaan (2.5) hanya berlaku untuk magnet permanen yang memiliki loop histeresis ideal dan seolah-olah tidak tergantung kepada lebar atau pipihnya loop histeresis. Dengan perkataan lain nilai (BH)max semata-mata ditentukan oleh nilai Js. Besarnya nilai (BH)max sesungguhnya harus diturunkan dari kurva kuadran II loop histeresis yang diperoleh secara eksperimen. Kurva (BH)max dapat dilihat pada gambar 2.5.

10 Gambar 2.5 Kurva (BH) Vs µ 0 H [Hasan, 2008]. 2.7 Barium Heksaferit (BaFe 12 O 19 ) Seperti namanya, barium heksaferit merupakan ferit heksagonal, dengan struktur yang diilustrasikan pada Gambar 2.6. Ferit adalah istilah yang diberikan untuk senyawa yang terbentuk dari oksida besi dan oksida dari satu atau lebih logam lainnya. Senyawa ini memiliki banyak bentuk dan aplikasi yang berbeda, dengan kelistrikan dan bahan magnetik masing-masing. Gambar 2.6 Struktur kristal BaFe 12 O 19 dimana ion Ba diwakili dalam warna hijau, ion Fe warna biru, dan O warna merah Ferit heksagonal terbentuk dalam berbagai fase, seperti yang ditabulasi pada Tabel 2.1. Tabel 2.1 Fase Ferit Heksagonal [Ridgway, 2011] Fase Formula Senyawa Tipe-M AFe 12 O 19 Tipe-W AFe 18 O 27 Tipe-X A 2 Fe 30 O 46 Material magnet oksida BaFe 12 O 19 merupakan jenis magnet keramik yang banyak dijumpai disamping material magnet SrFe 12 O 19. Seperti pada jenis oksida lainnya, material magnet tersebut memiliki sifat mekanik yang sangat kuat dan tidak mudah terkorosi. Barium heksaferit (BaO.6Fe 2 O 3 ) yang memiliki parameter kisi a = 5,8920 Angstrom, dan c = 23,1830 Angstrom. Sebagai magnet permanen,

11 material BaFe 12 O 19 memiliki sifat kemagnetan dengan tingkat kestabilan tinggi terhadap pengaruh medan magnet luar pada suhu diatas 300 o C. Sehingga sangat cocok dipergunakan dalam peralatan teknologi pada jangkauan yang cukup luas [Afza, 2011]. 2.8 FeMn (Ferromangan) Mangan merupakan unsur dasar dalam paduan baja mangan struktural dan austenitic [Šalak, A., et al. 2001]. Sebagai paduan, mangan dapat meningkatkan kekuatan, ketangguhan, pengerasan, kemampuan kerja dan abrasi resistensi dari produk besi, khususnya baja. Sekitar dari keseluruhan jumlah mangan yang diproduksi di dunia digunakan dalam produksi besi dan baja dalam bentuk paduan seperti ferromangan dan siliconmangan [Çardakli, İ. S. 2010]. Ferromangan dibedakan atas kandungan karbon yaitu high carbon ferromanganese (maks. 7% C), medium carbon ferromanganese (maks. 1-1,5% C), dan low carbon ferromanganese (maks. 0, 5% C). Ferromangan pada industri merupakan paduan multikomponen dengan melting temperature o C [Selecka, 2009]. Pada penelitian ini FeMn yang digunakan adalah FeMn HC (high carbon). FeMn jenis ini pada umumnya dibuat dengan menggunakan blast furnace [Mardias, J. 2016]. 2.9 Metalurgi serbuk Metalurgi serbuk adalah metode yang dikembangkan dari proses manufaktur yang dapat mencapai bentuk komponen akhir dengan mencampurkan serbuk secara bersamaan dan dikompaksi dalam cetakan, dan selanjutnya disinter di dalam furnace (tungku pemanas) di bawah temperatur titik lebur. Dua alasan mengapa sampel dalam bentuk serbuk: (1) Penghematan biaya dibandingkan dengan proses alternatif lainnya (2) Diperoleh sifat-sifat yang unik [Whittaker, 2008]. Langkah-langkah dasar pada proses metalurgi adalah: 1. Preparasi serbuk 2. Pencampuran (mixing) 3. Penekanan (kompaksi)

12 4. Pemanasan (sintering) 5. Finishing Pencampuran (mixing) Ada 2 macam pencampuran, yaitu : 1. Pencampuran basah (wet mixing) Wet milling merupakan proses pencampuran dimana serbuk matrik dan filler dicampur terlebih dahulu dengan pelarut polar. Metode ini dipakai apabila material yang digunakan mudah mengalami oksidasi. Tujuan pemberian pelarut polar adalah untuk mempermudah proses pencampuran material yang digunakan dan untuk melapisi permukaan material supaya tidak berhubungan dengan udara luar sehingga mencegah terjadinya oksidasi pada material yang digunakan. 2. Pencampuran kering (dry milling) Dry milling merupakan pencampuran yang dilakukan tanpa menggunakan pelarut untuk membantu melarutkan dan dilakukan di udara luar. Metode ini dipakai apabila material yang digunakan tidak mudah mengalami oksidasi. Faktor penentu kehomogenan distribusi partikel antara lain: 1. Kecepatan pencampuran 2. Lamanya waktu pencampuran 3. Ukuran partikel 4. Jenis material 5. Temperatur 6. Media pencampuran Semakin besar kecepatan pencampuran, semakin lama waktu pencampuran, dan semakin kecil ukuran partikel yang dicampur, maka distribusi partikel semakin homogen. Kehomogenan campuran sangat berpengaruh pada proses penekanan (kompaksi), karena gaya tekan yang diberikan pada saat kompaksi akan terdistribusi secara merata sehingga ikatan partikel semakin baik Pencetakan (kompaksi) Kompaksi merupakan proses pemadatan serbuk menjadi sampel dengan bentuk tertentu sesuai dengan cetakannya. Ada 2 macam metode kompaksi, yaitu:

13 1. Cold compressing, yaitu penekanan dengan temperatur kamar. Metode ini dipakai apabila bahan yang digunakan mudah teroksidasi, seperti Al. 2. Hot compressing, yaitu penekanan dengan temperatur diatas temperatur kamar, metode ini dipakai apabila material yang digunakan tidak mudah teroksidasi. Pada proses kompaksi, gaya gesek ruang terjadi antar partikel yang digunakan dan antar partikel komposit dengan dinding cetakan akan mengakibatkan kerapatan pada daerah tepi dan bagian tengan tidak merata. Untuk menghindari terjadinya perbedaan kerapatan, maka pada saat kompaksi digunakan lubricant/pelumas yang bertujuan untuk mengurangi gesekan antara partikel dan dinding cetakan. Dalam penggunaan lubricant/pelumas, dipilih bahan pelumas yang tidak reaktif terhadap campuran serbuk dan yang memiliki titik leleh rendah sehingga pada proses sintering tingkat awal lubricant dapat menguap.terkait dengan pemberian lubricant pada proses kompaksi, maka terdapat 2 metode kompaksi, yaitu : 1. Die-wall compressing : penekanan dengan memberikan lubricant pada dinding cetakan. 2. Internal lubricant compressing : penekanan dengan mencampurkan lubricant pada material yang akan ditekan. [Ningsih, 2015] Sintering Pemanasan sampai temperatur tinggi disebut sinter. Pada proses sinter, benda padat terjadi karena terbentuk ikatan-ikatan. Panas menyebabkan bersatunya partikel dan efektivitas reaksi tegangan permukaan meningkat. Dengan perkataan lain, proses sinter menyebabkan bersatunya partikel sedemikian rupa sehingga kepadatan bertambah. Selama proses ini terbentuklah batas-batas butir, yang merupakan tahap rekristalisasi. Disamping itu gas yang ada menguap. Temperatur sinter umumnya berada pada dari temperatur cair serbuk utama. Waktu pemanasan berbeda untuk jenis logam berlainan dan tidak diperoleh manfaat tambahan dengan diperpanjangnya waktu pemanasan [Listiawati dkk, 2012]. Berdasarkan pola ikatan yang terjadi pada proses kompaksi, ada 2 fenomena yang mungkin terjadi pada saat sintering, yaitu:

14 1. Penyusutan (shrinkage) Apabila pada saat kompaksi terbentuk pola ikatan bola-bidang maka pada proses sintering berlangsung gas (lubricant) yang berada pada porositas mengalami degassing (proses keluarnya gas pada saat sintering). Dan apabila temperatur sinter terus dinaikkan akan terjadi difusi permukaan antar partikel matrik dan filler yang akhirnya akan terbentuk liquid bridge/necking (mempunyai fasa campuran antara matrik dan filler). Liquid bridge ini akan menutupi porositas sehingga terjadi eliminasi porositas/berkurangnya jumlah dan ukuran porositas. Penyusutan dominan bila pemadatan belum mencapai kejenuhan. 2. Retak (cracking) Apabila pada kompaksi terbentuk pola ikatan antar partikel berupa bidang, sehingga menyebabkan adanya trapping gas (gas/lubricant terjebak di dalam material), maka pada saat sintering gas yang terjebak belum sempat keluar tetapi liquid bridge telah terjadi, sehingga jalur porositasnya telah tertutup rapat. Gas yang terjebak ini akan mendesak mendesak ke segala arah sehingga terjadi bloating (mengembang), sehingga tekanan di porositas lebih tinggi dibanding tekanan di luar. Bila kualitas ikatan permukaan partikel pada bahan komposit tersebut rendah, maka tidak akan mampu menahan tekanan yang lebih besar sehingga menyebabkan retakan (cracking). Keretakan juga dapat diakibatkan dari proses pemadatan yang kurang sempurna, adanya shock termal pada saat pemanasan karena pemuaian dari matrik dan filler yang berbeda. Proses sintering meliputi 3 tahap mekanisme pemanasan, yaitu: Presintering Presintering merupakan proses pemanasan yang bertujuan untuk: 1. Mengurangi residual stress akibat proses kompaksi. 2. Pengeluaran gas dari atmosfer atau pelumas padat yang terjebak dalam porositas bahan komposit (degassing). 3. Menghindari perubahan temperatur yang teralu cepat pada saat proses sintering (shock sintering) Difusi Permukaan Pada proses pemanasan untuk terjadinya tranportasi massa pada permukaan antar partikel serbuk yang saling berinteraksi, dilakukan pada temperatur

15 sintering (2/3 Tm). Atom-atom pada permukaan partikel serbuk saling berdifusi antar permukaan sehingga meningkatkan gaya kohesifitas antar partikel Eliminasi Porositas Tujuan akhir dari proses sintering pada bahan komposit berbasis metalurgi serbuk adalah bahan yang mempunyai kompaktibilitas tinggi. Hal tersebut terjadi akibat adanya difusi antar permukaan partikel serbuk, sehingga menyebabkan terjadinya leher (liquid bridge) antar partikel dan proses akhir dari pemanasan sintering menyebabkan eliminasi porositas (terbentuknya sinter density) Efek sintering terhadap sampel Efek suhu sintering terhadap sifat bahan (porositas, densitas, tahanan listrik, kekuatan mekanik, dan ukuran butir) selama proses pemadatan serbuk ditunjukkan pada Gambar 2.7. Gambar 2.7 Pengaruh suhu sintering pada (1) Porositas, (2) Densitas, (3) Tahanan listrik, (4) Kekuatan, dan (5) Ukuran butir Dari gambar 2.7 dapat diketahui bahwa proses sintering yang dimulai dari suhu T 1 dapat meningkatkan tahanan listrik dan nilai porositas menurun dengan kenaikan suhu sintering, sedangkan densitas, kekuatan dan ukuran butir bertambah besar secara eksponensial seiring dengan kenaikan suhu sintering [Silitonga, 2016]. Untuk menyempurnakan proses sinter, waktu penahanan harus

16 dicukupkan sesuai dengan kebutuhan material. Semakin tinggi suhu penahanan, akan meningkatkan kecepatan proses sinter. Namun demikian, suhu penahanan yang tinggi akan mempersulit kontrol struktur material magnet, memungkinkan munculnya residual stress karena sinter yang tidak merata yang pada akhirnya dapat merusak produk akhir [Wismogroho, 2014] Karakterisasi Material Magnet Karakterisasi material magnet dilakukan untuk mengetahui sifat-sifat dan kemampuan material. Pada penelitian ini dilakukan pengujian sifat fisis, mikrostruktur, dan sifat magnetik Sifat Fisis Densitas Densitas (ρ) adalah suatu ukuran massa (m) persatuan volume (V) suatu material dalam satuan gram/cm 3. Beberapa faktor yang mempengaruhi densitas adalah ukuran dan berat atom suatu elemen, kuatnya pengepakan atom dalam struktur kristal dan besarnya porositas dalam mikrostruktur. Densitas merupakan ukuran kepadatan dari suatu material. Pengukuran densitas yang dilakukan pada penelitian ini adalah true density dan bulk density. True density merupakan kerapatan bahan padat sebenarnya dan tidak termasuk volume pori-pori terbuka maupun tertutup. True density yang tak lain adalah densitas serbuk ditentukan secara piknometris dengan persamaan: (2.6) Keterangan : ρ s = True density sampel (g/cm 3 ) m 1 m 2 m 3 m 4 = Massa picnometer kosong (g) = Massa ketika media cair dimasukkan ke dalam picnometer (g) = Massa ketika serbuk sampel dimasukkan ke dalam picnometer (g) = Massa ketika serbuk sampel dan media cair dimasukkan ke dalam picnometer (g) ρ air = Densitas media cair (g/cm 3 ) Densitas campuran dapat dihitung secara teoritis dengan persamaan: (2.7)

17 Keterangan : ρ C X,Y = Densitas campuran = Sampel ρ X, ρ y = Densitas Sampel Pengujian bulk density menggunakan metode Archimedes dengan mengukur massa kering sampel dan massa basahnya. Densitas sampel dapat dihitung menggunakan persamaan: (2.8) Keterangan: ρs = densitas sampel (g/m 3 ), mk = massa kering sampel (g), mb = massa basah sampel (g), dan ρair = massa jenis air (g/m 3 ) Porositas Porositas dapat didefenisikan sebagai perbandingan antara jumlah volume lubanglubang kosong yang dimiliki oleh zat padat (volume kosong) dengan jumlah dari volume zat padat yang ditempati oleh zat padat. Porositas pada suatu material dinyatakan dalam persen (%) rongga fraksi volume dari suatu rongga yang ada di dalam material tersebut. Besarnya porositas pada suatu material bervariasi mulai dari 0 % sampai dengan 90 % tergantung dari jenis dan aplikasi material tersebut. Ada dua jenis porositas yaitu porositas terbuka dan porositas tertutup. Porositas yang tertutup pada umumnya sulit untuk ditentukan karena pori tersebut merupakan rongga yang terjebak di dalam padatan dan serta tidak ada akses ke permukaan luar, sedangkan pori terbuka masih ada akses ke permukaan luar, walaupun ronga tersebut ada ditengah-tengah padatan. Porositas suatu bahan pada umumnya dinyatakan sebagai porositas terbuka atau apparent porosity dan dapat dinyatakan dengan persamaan sebagai berikut : (2.9) Keterangan: P = porositas (%) mk = massa kering sampel (g), dan

18 mb = massa basah sampel (g) Mikrostruktur X-Ray Diffraction (XRD) X-ray diffractometer (XRD) merupakan alat untuk mengidentifikasi struktur kristal dan fasa dalam suatu bahan dengan memanfaatkan radiasi gelombang elektromagnetik sinar-x. XRD dilengkapi beberapa komponen penting seperti: tabung sinar-x, monokromator, detektor dan beberapa alat optik lain. Sinar-X dihasilkan pada suatu tabung sinar katode dengan pemanasan kawat pijar untuk menghasilkan elektron-elektron, kemudian elektron-elektron tersebut dipercepat terhadap suatu target dengan memberikan suatu voltase tertentu dan menembak target dengan elektron. Ketika elektron-elektron mempunyai energi yang cukup untuk mengeluarkan elektron-elektron dalam target, spektrum karakteristik sinar-x dihasilkan.spektrum ini terdiri atas beberapa komponen-komponen dan yang paling umum adalah K α dan K β. K α terdiri dari K α1 dan K α2. K α1 mempunyai panjang gelombang sedikit lebih pendek dari K α2. Panjang gelombang yang spesifik merupakan karakteristik dari bahan target (Cu, Fe, Mo, Cr). Kertas perak atau kristal monokromator akan menyaring dan menghasilkan sinar-x monokromatik yang diperlukan untuk difraksi. Tembaga adalah bahan sasaran yang paling umum untuk difraksi kristal tunggal, dengan radiasi CuK α = 1,5406 Å. Saat sampel dan detektor diputar, intensitas Sinar-X pantul itu direkam. Ketika geometri dari peristiwa sinar-x tersebut memenuhi persamaan Bragg, interferensi konstruktif terjadi dan suatu puncak di dalam intensitas terjadi. Detektor akan merekam sinyal penyinaran ini dan mengkonversi sinyal itu menjadi suatu arus yang akan dikeluarkan pada layar komputer. Pengujian ini merupakan aplikasi langsung dari pemakaian sinar-x untuk menentukan jarak antara kristal dan jarak antara atom dalam kristal. Suatu berkas sinar-x dengan panjang gelombang λ, jatuh pada sudut θ pada sekumpulan bidang atom berjarak d. Sinar yang dipantulkan dengan sudut θ hanya dapat terlihat jika berkas dari setiap bidang yang berdekatan saling menguatkan. Oleh sebab itu,

19 jarak tambahan satu berkas dihamburkan dari setiap bidang yang berdekatan dan menempuh jarak sesuai dengan perbedan kisi, yaitu sebesar nλ. Untuk mengetahui fasa dan struktur material yang diamati dapat dilakukan dengan cara membandingkan nilai d yang terukur dengan nilai d pada data standar. Data standar dapat diperoleh melalui Joint Committee on Powder Diffraction Standards (JCPDS) atau dengan Hanawalt File [Hulu, 2015] Optical Microscope (OM) Optical Microscope (OM) mempunyai fungsi yang hampir sama dengan SEM (Scanning Electron Microscope) yaitu untuk mengetahui bentuk dan ukuran dari butir-butir serta mengetahui interaksi satu butir dengan butir lainnya. Melalui observasi dengan OM dapat diamati seberapa jauh ikatan butiran yang satu dengan yang lainnya dan apakah terbentuk lapisan diantara butiran atau disebut grain boundary. Analisis mikrostruktur dengan menggunakan OM bertujuan untuk mengetahui susunan partikel-partikel setelah proses sintering, dan juga dapat diketahui perubahannya akibat variasi suhu sintering [Sianipar, 2015] Uji sifat magnet menggunakan Vibrating Sample Magnetometer (VSM) Semua bahan mempunyai momen magnetik jika ditempatkan dalam medan magnetik. Momen magnetik per satuan volume dikenal sebagai magnetisasi. Secara prinsip ada dua metoda untuk mengukur besar magnetisasi ini, yaitu metoda induksi (induction method) dan metoda gaya (force method). Pada metoda induksi, magnetisasi diukur dari sinyal yang ditimbulkan/ diinduksikan oleh cuplikan yang bergetar dalam lingkungan medan magnet pada sepasang kumparan. Sedangkan pada metoda gaya pengukuran dilakukan pada besamya gaya yang ditimbulkan pada cuplikan yang berada dalam gradien medan magnet. VSM (Vibrating Sample Magnetometer) merupakan salah satu alat ukur magnetisasi yang bekerja berdasarkan metoda induksi. Pada metoda ini, cuplikan yang akan diukur magnetisasinya dipasang pada ujung bawah batang kaku yang bergetar secara vertikal dalam lingkungan medan magnet luar H. Jika cuplikan termagnetisasi, secara permanen ataupun sebagai

20 respon dari adanya medan magnet luar, getaran ini alan mengakibatkan perubahan garis gaya magnetik. Perubahan ini akan menginduksikan/ menimbulkan suatu sinyal tegangan AC pada kumparan pengambil (pick-up coil atau sense coil) yang ditempatkan secara tepat dalam sistem medan magnet ini. Selanjutnya sinyal AC ini akan dibaca oleh rangkaian pre-amp dan Lock-in amplifier. Frekuensi dari Lock-in amplifier diset sarna dengan frekuensi getaran sinyal referensi dari pengontrol getaran cuplikan. Lock in amplifier ini akan membaca sinyal tegangan dari kumparan yang sefasa dengan sinyal referensi. Kumparan pengambil biasanya dirangkai berpasangan dengan kondisi arah lilitan yang berlawanan. Hal ini untuk menghindari terbacanya sinyal yang berasal dari selain cuplikan, misalnya dari akibat adanya perubahan medan magnet luar itu sendiri. Selanjutnya dalam proses pengukuran, medan magnet luar yang diberikan, suhu cuplikan, sudut dan interval waktu pengukuran dapat divariasikan melalui kendali komputer. Komputer akan merekam data tegangan kumparan sebagai fungsi medan magnet luar, suhu, sudut ataupun waktu [Mujamilah dkk, 2000].

METALURGI SERBUK. By : Nurun Nayiroh

METALURGI SERBUK. By : Nurun Nayiroh METALURGI SERBUK By : Nurun Nayiroh Metalurgi serbuk adalah metode yang terus dikembangkan dari proses manufaktur yang dapat mencapai bentuk komponen akhir dengan mencampurkan serbuk secara bersamaan dan

Lebih terperinci

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1]

Gambar 2.1. momen magnet yang berhubungan dengan (a) orbit elektron (b) perputaran elektron terhadap sumbunya [1] BAB II TINJAUAN PUSTAKA 2.1. Momen Magnet Sifat magnetik makroskopik dari material adalah akibat dari momen momen magnet yang berkaitan dengan elektron-elektron individual. Setiap elektron dalam atom mempunyai

Lebih terperinci

Sifat sifat kemagnetan magnet permanen ( hard ferrite ) dipengaruhi oleh kemurnian bahan, ukuran butir (grain size), dan orientasi kristal.

Sifat sifat kemagnetan magnet permanen ( hard ferrite ) dipengaruhi oleh kemurnian bahan, ukuran butir (grain size), dan orientasi kristal. 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet secara umum Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda tertentu. Efek tarik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda teretentu. Efek tarik menarik

Lebih terperinci

BAB 2 Teori Dasar 2.1 Konsep Dasar

BAB 2 Teori Dasar 2.1 Konsep Dasar BAB 2 Teori Dasar 2.1 Konsep Dasar 2.1.1 Momen Magnet Arus yang mengalir pada suatu kawat yang lurus akan menghasilkan medan magnet yang melingkar di sekitar kawat, dan apabila kawat tersebut dilingkarkan

Lebih terperinci

BAB 3METODOLOGI PENELITIAN

BAB 3METODOLOGI PENELITIAN BAB 3METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Pusat Penelitian Pengembangan Fisika (P2F) Lembaga Ilmu Pengetahuan Indonesia (LIPI) PUSPIPTEK, Serpong. 3.1.2 Waktu Penelitian

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Bahan magnetik digunakan pada peralatan tradisional dan modern. Magnet permanen telah digunakan manusia selama lebih dari 5000 tahun seperti medium perekam pada komputer

Lebih terperinci

BAB 2 STUDI PUSTAKA Magnet

BAB 2 STUDI PUSTAKA Magnet BAB 2 STUDI PUSTAKA 2.1. Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia kecil. Menurut

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR-

BAB III METODOLOGI PENELITIAN. Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BAB III METODOLOGI PENELITIAN Penelitian yang dilakukan di Kelompok Bidang Bahan Dasar PTNBR- BATAN Bandung meliputi beberapa tahap yaitu tahap preparasi serbuk, tahap sintesis dan tahap analisis. Meakanisme

Lebih terperinci

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA)

HASIL DAN PEMBAHASAN Sintesis Partikel Magnetik Terlapis Polilaktat (PLA) 10 1. Disiapkan sampel yang sudah dikeringkan ± 3 gram. 2. Sampel ditaburkan ke dalam holder yang berasal dari kaca preparat dibagi dua, sampel ditaburkan pada bagian holder berukuran 2 x 2 cm 2, diratakan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Alat dan Bahan 3.1.1 Alat Alat-alat yang dipergunakan dalam pembuatan magnet permanen adalah : a. Hydraulic press (Hydraulic Jack). Berfungsi untuk menekan pada proses

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bahan magnetik adalah suatu bahan yang memiliki sifat kemagnetan dalam komponen pembentuknya. Menurut sifatnya terhadap pengaruh kemagnetan, bahan dapat diklasifikasikan

Lebih terperinci

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

BAB I PENDAHULUAN 1.1 LATAR BELAKANG 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Magnet permanen adalah salah satu jenis material maju dengan aplikasi yang sangat luas dan strategis yang perlu dikembangkan di Indonesia. Efisiensi energi yang tinggi

Lebih terperinci

Spektroskopi Difraksi Sinar-X (X-ray difraction/xrd)

Spektroskopi Difraksi Sinar-X (X-ray difraction/xrd) Spektroskopi Difraksi Sinar-X (X-ray difraction/xrd) Spektroskopi difraksi sinar-x (X-ray difraction/xrd) merupakan salah satu metoda karakterisasi material yang paling tua dan paling sering digunakan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian ini menggunakan metode eksperimen yang dilakukan melalui tiga tahap yaitu tahap pembuatan magnet barium ferit, tahap karakterisasi magnet

Lebih terperinci

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer.

HASIL DAN PEMBAHASAN. dengan menggunakan kamera yang dihubungkan dengan komputer. 10 dengan menggunakan kamera yang dihubungkan dengan komputer. HASIL DAN PEMBAHASAN Hasil sintesis paduan CoCrMo Pada proses preparasi telah dihasilkan empat sampel serbuk paduan CoCrMo dengan komposisi

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan 20 BAB III METODE PENELITIAN 3.1 Metode Desain Metode yang digunakan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan keramik komposit CSZ-Ni dengan menggunakan metode tape

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pengertian Magnet Magnet merupakan benda yang terbuat dari bahan tertentu dengan sifat mampu menarik bahan ferromagnetik dan ferrimagnetik. Nama magnet diambil dari nama daerah

Lebih terperinci

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19 KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19 NOER AF IDAH 1109201712 DOSEN PEMBIMBING Prof. Dr. Darminto, MSc Pendahuluan: Smart magnetic materials Barium M-Heksaferit

Lebih terperinci

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS PENGARUH TEKANAN KOMPAKSI DAN WAKTU PENAHANAN TEMPERATUR SINTERING TERHADAP SIFAT MAGNETIK DAN KEKERASAN PADA PEMBUATAN IRON SOFT MAGNETIC DARI SERBUK BESI Asyer Paulus Mahasiswa Jurusan Teknik Material

Lebih terperinci

BAB II STUDI PUSTAKA. Universitas Sumatera Utara

BAB II STUDI PUSTAKA. Universitas Sumatera Utara BAB II STUDI PUSTAKA 2.1.Meteran Air Ada banyak tipe meter air yang dibuat, salah satunya adalah multi jet. Meter air tipe ini digerakkan oleh putaran turbin di dalam rumah meter. Meteran ini bekerja berdasarkan

Lebih terperinci

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2

350 0 C 1 jam C. 10 jam. 20 jam. Pelet YBCO. Uji Konduktivitas IV. HASIL DAN PEMBAHASAN. Ba(NO 3 ) Cu(NO 3 ) 2 Y(NO 3 ) 2 Y(NO 3 ) 2 Pelarutan Pengendapan Evaporasi 350 0 C 1 jam 900 0 C 10 jam 940 0 C 20 jam Ba(NO 3 ) Pelarutan Pengendapan Evaporasi Pencampuran Pirolisis Kalsinasi Peletisasi Sintering Pelet YBCO Cu(NO 3

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER)

MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER) MAKALAH FABRIKASI DAN KARAKTERISASI XRD (X-RAY DIFRACTOMETER) Oleh: Kusnanto Mukti / M0209031 Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta 2012 I. Pendahuluan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Mill Scale Hingga saat ini bahan-bahan oksida besi masih menjadi salah satu fokus kajian penting dalam kegiatan riset. Secara alamiah bahan-bahan tersebut ditemukan dalam bentuk

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia kecil. Menurut

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Sintesis Fe 2 O 3 Dari Pasir Besi Dalam rangka meningkatkan nilai ekonomis pasir besi dapat dilakukan dengan pengolahan mineral magnetik (Fe 3 O 4 ) yang diambil dari pasir besi

Lebih terperinci

PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO.

PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO. PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO.6Fe 2 O 3 Kharismayanti 1, Syahrul Humaidi 1, Prijo Sardjono 2

Lebih terperinci

Bahan Listrik. Bahan Magnet

Bahan Listrik. Bahan Magnet Bahan Listrik Bahan Magnet Sejarah Magnet Kata magnet berasal dari bahasa yunani magnitis lithos yang berarti batu magnesia. Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1. Tinjauan Pustaka Yaghtin (2013), melakukan penelitian tentang efek perlakuan panas terhadap sifat magnetik dari sebuah soft-magnetic composite (SMC-s) dengan dilapisi Al 2 O

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 27 BAB 3 METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Penelitian Tugas Akhir ini dilakukan di Laboratorium Magnet Pusat Penelitian Fisika-Lembaga Ilmu Pengetahuan Indonesia

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan 4.1 Sintesis Padatan TiO 2 Amorf Proses sintesis padatan TiO 2 amorf ini dimulai dengan melarutkan titanium isopropoksida (TTIP) ke dalam pelarut etanol. Pelarut etanol yang digunakan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 18 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Secara Umum Magnet adalah suatu benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda tertentu. Efek

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 20 BAB II TINJAUAN PUSTAKA 2.1 Barium Ferit Magnet keras (ferit) yang banyak digunakan biasanya memiliki komposisi dari barium atau stronsium dengan oksida besi yang telah dikembangkan sejak 1960. Bahan

Lebih terperinci

Pengaruh Variasi Waktu Milling dan Penambahan Silicon Carbide Terhadap Ukuran Kristal, Remanen, Koersivitas, dan Saturasi Pada Material Iron

Pengaruh Variasi Waktu Milling dan Penambahan Silicon Carbide Terhadap Ukuran Kristal, Remanen, Koersivitas, dan Saturasi Pada Material Iron 1 Pengaruh Variasi Waktu Milling dan Penambahan Silicon Carbide Terhadap Ukuran Kristal, Remanen, Koersivitas, dan Saturasi Pada Material Iron Luthfi Fajriani, Bambang Soegijono Departemen Fisika, Fakultas

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1 Serbuk Awal Membran Keramik Material utama dalam penelitian ini adalah serbuk zirkonium silikat (ZrSiO 4 ) yang sudah ditapis dengan ayakan 400 mesh sehingga diharapkan

Lebih terperinci

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI

PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI 130801041 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3 SINTESIS DAN KARAKTERISASI MATERIAL MAGNET HIBRIDA BaFe 12 O 19 - Sm 2 Co 17 Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3 1 Jurusan Fisika, Fakultas Matematika dan Ilmu

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN MOTTO DAN PERSEMBAHAN PERNYATAAN PRAKATA DAFTAR GAMBAR DAFTAR TABEL

DAFTAR ISI HALAMAN JUDUL HALAMAN PENGESAHAN MOTTO DAN PERSEMBAHAN PERNYATAAN PRAKATA DAFTAR GAMBAR DAFTAR TABEL DAFTAR ISI HALAMAN JUDUL i HALAMAN PENGESAHAN ii MOTTO DAN PERSEMBAHAN iii PERNYATAAN iv PRAKATA v DAFTAR ISI vii DAFTAR GAMBAR ix DAFTAR TABEL xiii INTISARI xiv ABSTRACT xv BAB I. PENDAHULUAN 1 1.1 Latar

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal

BAB IV HASIL DAN PEMBAHASAN. 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal 30 BAB IV HASIL DAN PEMBAHASAN 4.1 Pengaruh Suhu Sinter Terhadap Struktur Kristal Hasil karakterisasi struktur kristal dengan menggunakan pola difraksi sinar- X (XRD) keramik komposit CS- sebelum reduksi

Lebih terperinci

BAB III METODE PENELITIAN. Metode yang digunakan pada penelitian ini adalah metode eksperimen

BAB III METODE PENELITIAN. Metode yang digunakan pada penelitian ini adalah metode eksperimen BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang digunakan pada penelitian ini adalah metode eksperimen secara langsung. Pada penelitian ini dilakukan pembuatan keramik komposit pelet CSZ-Ni

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 26 BAB IV HASIL DAN PEMBAHASAN Pada penelitian ini, pembuatan soft magnetic menggunakan bahan serbuk besi dari material besi laminated dengan perlakuan bahan adalah dengan proses kalsinasi dan variasi

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Nanomaterial memiliki sifat unik yang sangat cocok untuk diaplikasikan dalam bidang industri. Sebuah material dapat dikatakan sebagai nanomaterial jika salah satu

Lebih terperinci

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi

BAB III METODE PENELITIAN. penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi 19 BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode yang dilakukan pada penelitian ini adalah eksperimen. Pada penelitian ini dilakukan pembuatan keramik Ni-CSZ dengan metode kompaksi serbuk. 3.2

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet adalah logam yang dapat menarik besi atau baja dan memiliki medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 30 BAB 3 METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Penelitian ini dilakukan di Laboratorium Magnet, Pusat Penelitian Fisika Lembaga Ilmu Pengetahuan Indonesia (PPF-LIPI)

Lebih terperinci

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1 1. Terhadap koordinat x horizontal dan y vertikal, sebuah benda yang bergerak mengikuti gerak peluru mempunyai komponen-komponen

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang Material berukuran nano atau yang dikenal dengan istilah nanomaterial merupakan topik yang sedang ramai diteliti dan dikembangkan di dunia sains dan teknologi. Material

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Secara Umum Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet (magnit) berasal dari bahasa Yunani, magnitis lithos yang berarti batu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mechanical Alloying Paduan mekanik (MA) adalah teknik pengolahan bubuk solid-state yang melibatkan berulang pengelasan dingin, fracturing, dan re-las partikel serbuk dalam energi

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Juni 2013 di Laboratorium Fisika Material FMIPA Unila, Laboratorium Kimia Instrumentasi

Lebih terperinci

4.2 Hasil Karakterisasi SEM

4.2 Hasil Karakterisasi SEM 4. Hasil Karakterisasi SEM Serbuk yang melewati proses kalsinasi tadi selain dianalisis dengan XRD juga dianalisis dengan menggunakan SEM untuk melihat struktur mikro, sehingga bisa dilihat bentuk dan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Terminologi Kemagnetan Material Material yang diletakkan dalam medan magnet eksternal H akan terpolarisasi magnetik atau termagnetisasi M, yakni proses pensejajaran dipol magnet

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Fe 2 O 3 dari Pasir Besi Partikel nano magnetik Fe 3 O 4 merupakan salah satu material nano yang telah banyak dikembangkan. Untuk berbagai aplikasi seperti ferrogel, penyerap

Lebih terperinci

Gambar 10. Skema peralatan pada SEM III. METODE PENELITIAN. Untuk melaksanakan penelitian digunakan 2 jenis bahan yaitu

Gambar 10. Skema peralatan pada SEM III. METODE PENELITIAN. Untuk melaksanakan penelitian digunakan 2 jenis bahan yaitu 18 Electron Optical Colw.in Anqcl* Apcftvte High Voitag«E)>clron Gwi Elsctfofi Bern Deflection Coiis- G«aef«tor CftT Oitpliy t Flnjl Aperlur* Oetcdo' Sample Oiiplay Controls Gambar 10. Skema peralatan

Lebih terperinci

Gambar 2.1. Medan Magnet Suatu Material Magnet[5]

Gambar 2.1. Medan Magnet Suatu Material Magnet[5] BAB II DASAR TEORI II.1. Kemagnetan II.1.1. Magnet Magnet adalah suatu benda yang dibuat dari material tertentu yang menghasilkan suatu medan magnet. Medan magnet suatu magnet adalah daerah sekeliling

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1Pengertian Magnet Magnet adalah suatu materi yang mempunyai suatu medan magnet. Magnet juga merupakan material maju yang sangat penting untuk beragam aplikasi teknologi canggih,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

PENGARUH VARIABEL KOMPAKSI TERHADAP MODULUS ELASTISITAS KOMPOSIT Al/SiC p DENGAN PERMUKAAN PARTIKEL SiC TERLAPISI ZnO

PENGARUH VARIABEL KOMPAKSI TERHADAP MODULUS ELASTISITAS KOMPOSIT Al/SiC p DENGAN PERMUKAAN PARTIKEL SiC TERLAPISI ZnO PENGARUH VARIABEL KOMPAKSI TERHADAP MODULUS ELASTISITAS KOMPOSIT Al/SiC p DENGAN PERMUKAAN PARTIKEL SiC TERLAPISI ZnO Fahmi 1109201707 Dosen Pembimbing Dr. Mochammad Zainuri, M.Si PENDAHULUAN LATAR BELAKANG

Lebih terperinci

MAGNET - Materi Ipa Fisika SMP Magnet magnítis líthos Magnet Elementer teori magnet elementer.

MAGNET - Materi Ipa Fisika SMP Magnet magnítis líthos Magnet Elementer teori magnet elementer. MAGNET - Materi Ipa Fisika SMP Magnet merupakan suatu benda yang dapat menimbulkan gejala berupa gaya, baik gaya tarik maupun gaya tolak terhadap jenis logam tertentu), misalnya : besi dan baja. Istilah

Lebih terperinci

I. PENDAHULUAN. karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus

I. PENDAHULUAN. karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus I. PENDAHULUAN 1.1 Latar Belakang Riset pengolahan pasir besi di Indonesia saat ini telah banyak dilakukan, bahkan karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Magnet Keramik Bahan keramik yang bersifat magnetik umumnya adalah golongan ferit, yang merupakan oksida yang disusun oleh hematit sebagai komponen utamanya. Bahan ini menunjukkan

Lebih terperinci

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J

D. I, U, X E. X, I, U. D. 5,59 x J E. 6,21 x J 1. Bila sinar ultra ungu, sinar inframerah, dan sinar X berturut-turut ditandai dengan U, I, dan X, maka urutan yang menunjukkan paket (kuantum) energi makin besar ialah : A. U, I, X B. U, X, I C. I, X,

Lebih terperinci

LATIHAN UJIAN NASIONAL

LATIHAN UJIAN NASIONAL LATIHAN UJIAN NASIONAL 1. Seorang siswa menghitung luas suatu lempengan logam kecil berbentuk persegi panjang. Siswa tersebut menggunakan mistar untuk mengukur panjang lempengan dan menggunakan jangka

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen.

BAB III METODOLOGI PENELITIAN. Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen. BAB III METODOLOGI PENELITIAN 3.1 Metode Penelitian Metode yang digunakan dalam penelitian ini adalah dengan metode eksperimen. 3.2 Alat dan Bahan 3.2.1 Alat yang Digunakan Alat yang akan digunakan dalam

Lebih terperinci

OPTIMASI PROSES PEMBUATAN HARD-MAGNETIC MATERIAL BERBASIS BaFe 12 O 19 DENGAN ADITIF FeMn SKRIPSI MARTA MASNIARY NAINGGOLAN

OPTIMASI PROSES PEMBUATAN HARD-MAGNETIC MATERIAL BERBASIS BaFe 12 O 19 DENGAN ADITIF FeMn SKRIPSI MARTA MASNIARY NAINGGOLAN OPTIMASI PROSES PEMBUATAN HARD-MAGNETIC MATERIAL BERBASIS BaFe 12 O 19 DENGAN ADITIF FeMn SKRIPSI MARTA MASNIARY NAINGGOLAN 120801034 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN 27 BAB III METODOLOGI PENELITIAN 3.1 METODOLOGI PENELITIAN Proses pembuatan sampel dilakukan dengan menggunakan tabung HEM dan mesin MILLING dengan waktu yang bervariasi dari 2 jam dan 6 jam. Tabung HEM

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian magnet Magnet atau magnit adalah suatu objek yang mempunyai suatu medan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 6 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Magnet Secara Umum Kata magnet berasal dari Magnesia, nama suatu kota di kawasan Asia. Di kota inilah orang orang Yunani sekitar tahun 600 SM menemukan sifat magnetik

Lebih terperinci

d) Dipol magnet merupakan sebuah magnet dipol, akselerator partikel, magnet yang dibangun untuk menciptakan medan magnet homogen dari jarak tertentu.

d) Dipol magnet merupakan sebuah magnet dipol, akselerator partikel, magnet yang dibangun untuk menciptakan medan magnet homogen dari jarak tertentu. Tugas Perbaikan Mid Sifat Magnetik Batuan Soal : 1. Jelaskan tentang : a) Magnetisasi b) Permeabilitas Magnetic c) Suseptibilitas Magnetik d) Dipol Magnetik e) Suhu Curie f) Histeresis 2. Ceritakanlah

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS 1 Doc. Name: AR12FIS01UAS Version: 2016-09 halaman 1 01. Sebuah bola lampu yang berdaya 120 watt meradiasikan gelombang elektromagnetik ke segala arah dengan sama

Lebih terperinci

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber)

Bahan Magnetik. oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Bahan Magnetik oleh: Ichwan Yelfianhar (dirangkum dari berbagai sumber) Historis Magnet Gejala kemagnetan merupakan cikal bakal berkembangnya pengetahuan tentang kelistrikan. Ditemukan sejak 2000 tahun

Lebih terperinci

PEMBUATAN DAN KARAKTERISASI MAGNET PERMANEN BAO.(6-X)FE2O3 DARI BAHAN BAKU LIMBAH FE2O3

PEMBUATAN DAN KARAKTERISASI MAGNET PERMANEN BAO.(6-X)FE2O3 DARI BAHAN BAKU LIMBAH FE2O3 PEMBUATAN DAN KARAKTERISASI MAGNET PERMANEN BAO.(6-X)FE2O3 DARI BAHAN BAKU LIMBAH FE2O3 Sri Handani 1, Sisri Mairoza 1 dan Muljadi 2 1 Jurusan Fisika FMIPA Universitas Andalas 2 Lembaga Ilmu Pengetahuan

Lebih terperinci

Fisika Ujian Akhir Nasional Tahun 2003

Fisika Ujian Akhir Nasional Tahun 2003 Fisika Ujian Akhir Nasional Tahun 2003 UAN-03-01 Perhatikan tabel berikut ini! No. Besaran Satuan Dimensi 1 Momentum kg. ms 1 [M] [L] [T] 1 2 Gaya kg. ms 2 [M] [L] [T] 2 3 Daya kg. ms 3 [M] [L] [T] 3 Dari

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang 15 BAB 1 PENDAHULUAN 1.1 Latar Belakang Istilah "anisotropi magnetik" mengacu pada ketergantungan sifat magnetik pada arah dimana mereka diukur. Anisotropi magnetik mempengaruhi sifat magnetisasi dan kurva

Lebih terperinci

19/11/2016. MAGNET Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik. Sifat-sifat magnet.

19/11/2016. MAGNET Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik. Sifat-sifat magnet. MAGNET Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik Magnetik Non Magnetik KEMAGNETAN Penggolongan bahan secara mikroskopik Bila ditinjau secara mikroskopik

Lebih terperinci

PEMBUATAN MAGNET PERMANENT Ba-Hexa Ferrite (BaO.6Fe 2 O 3 ) DENGAN METODE KOOPRESIPITASI DAN KARAKTERISASINYA SKRIPSI

PEMBUATAN MAGNET PERMANENT Ba-Hexa Ferrite (BaO.6Fe 2 O 3 ) DENGAN METODE KOOPRESIPITASI DAN KARAKTERISASINYA SKRIPSI PEMBUATAN MAGNET PERMANENT Ba-Hexa Ferrite (BaO.6Fe 2 O 3 ) DENGAN METODE KOOPRESIPITASI DAN KARAKTERISASINYA SKRIPSI Diajukan untuk melengkapi tugas dan memenuhi syarat mencapai gelar Sarjana Sains ERINI

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Latar Belakang Kebutuhan akan magnet permanen setiap tahun semakin meningkat terutama untuk kebutuhan hardware komputer dan energi. Suatu magnet permanen harus mampu menghasilkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 6 BAB II TINJAUAN PUSTAKA 2.1 Pengertian Magnet Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia kecil.

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 4 BAB 2 TINJAUAN PUSTAKA 2.1 DEFINISI MAGNET SECARA UMUM Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri otomotif dan lainnya. Sebuah magnet

Lebih terperinci

RANCANG BANGUN DAN KARAKTERISASI INDUKTOR ELEKTROMAGNET MEDAN TINGGI SKRIPSI

RANCANG BANGUN DAN KARAKTERISASI INDUKTOR ELEKTROMAGNET MEDAN TINGGI SKRIPSI RANCANG BANGUN DAN KARAKTERISASI INDUKTOR ELEKTROMAGNET MEDAN TINGGI SKRIPSI Untuk memperoleh gelar Sarjana Sains Pada Universitas Negeri Semarang Oleh M. Khoirul Zein NIM 4250401035 JURUSAN FISIKA FAKULTAS

Lebih terperinci

III.METODELOGI PENELITIAN. Penelitian ini dilaksanakan selama tiga bulan terhitung pada bulan Februari Mei

III.METODELOGI PENELITIAN. Penelitian ini dilaksanakan selama tiga bulan terhitung pada bulan Februari Mei 17 III.METODELOGI PENELITIAN 3.1. Waktu dan Tempat Pelaksanaan Penelitian Penelitian ini dilaksanakan selama tiga bulan terhitung pada bulan Februari Mei 2012. Adapun tempat pelaksanaan penelitian ini

Lebih terperinci

MAGNET. Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik

MAGNET. Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik MAGNET Benda yang memiliki sifat dapat menarik besi atau baja Penggolongan bahan secara makroskopik Magnetik Non Magnetik Penggolongan bahan secara mikroskopik Bila ditinjau secara mikroskopik ( atom )

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Nanoteknologi merupakan penelitian dan pengembangan teknologi pada level atom, molekul dan makromolekul, dengan rentang skala 1-100 nm. Nanoteknologi dikembangkan

Lebih terperinci

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010

PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 2010 PEMERINTAH KABUPATEN LOMBOK UTARA DINAS PENDIDIKAN PEMUDA DAN OLAHRAGA MUSYAWARAH KERJA KEPALA SEKOLAH (MKKS) SMA TRY OUT UJIAN NASIONAL 200 Mata Pelajaran : Fisika Kelas : XII IPA Alokasi Waktu : 20 menit

Lebih terperinci

SINTESIS KERAMIK Al 2 TiO 5 DENSITAS TINGGI DENGAN ADITIF MgO

SINTESIS KERAMIK Al 2 TiO 5 DENSITAS TINGGI DENGAN ADITIF MgO SINTESIS KERAMIK Al 2 TiO 5 DENSITAS TINGGI DENGAN ADITIF MgO Disampaikan oleh: Kurmidi [1106 100 051] Dosen Pembimbing Drs. Suminar Pratapa, M.Sc.,Ph.D. Sidang Tugas Akhir (J 102) Komponen Otomotif :

Lebih terperinci

C20 FISIKA SMA/MA IPA. 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut.

C20 FISIKA SMA/MA IPA. 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. 1 1. Hasil pengukuran diameter suatu benda menggunakan jangka sorong ditunjukkan oleh gambar berikut. Rentang hasil pengkuran diameter di atas yang memungkinkan adalah. A. 5,3 cm sampai dengan 5,35 cm

Lebih terperinci

BAHAN AJAR 1 MEDAN MAGNET MATERI FISIKA SMA KELAS XII

BAHAN AJAR 1 MEDAN MAGNET MATERI FISIKA SMA KELAS XII BAHAN AJAR 1 MEDAN MAGNET MATERI FISIKA SMA KELAS XII MEDAN MAGNET 1. Kemagnetan ( Magnetostatika ) Benda yang dapat menarik besi disebut MAGNET. Macam-macam bentuk magnet, antara lain : magnet batang

Lebih terperinci

BAB 3 METODOLOGI PENELITIAN

BAB 3 METODOLOGI PENELITIAN 23 BAB 3 METODOLOGI PENELITIAN 3.1 Tempat dan Waktu Penelitian 3.1.1 Tempat Penelitian Penelitian ini dilakukan di Laboratorium Pusat Penelitian Fisika- Lembaga Ilmu Pengetahuan Indonesia (PPF-LIPI) Kawasan

Lebih terperinci

Pengaruh Serbuk Nikel dan Waktu Sintering Terhadap Induksi Remanen Magnetik dan Kekerasan Pada Nickel-Iron Soft Magnetic Alloys

Pengaruh Serbuk Nikel dan Waktu Sintering Terhadap Induksi Remanen Magnetik dan Kekerasan Pada Nickel-Iron Soft Magnetic Alloys Pengaruh Serbuk Nikel dan Waktu Sintering Terhadap Induksi Remanen Magnetik dan Kekerasan Pada Nickel-Iron Soft Magnetic Alloys Moch.Syaiful Anwar, Mahasiswa Teknik Material dan Metalurgi FTI-ITS Ir. Sadino,

Lebih terperinci

STUDI PENAMBAHAN MgO SAMPAI 2 % MOL TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK KERAMIK KOMPOSIT Al 2 O 3 ZrO 2

STUDI PENAMBAHAN MgO SAMPAI 2 % MOL TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK KERAMIK KOMPOSIT Al 2 O 3 ZrO 2 STUDI PENAMBAHAN MgO SAMPAI 2 % MOL TERHADAP STRUKTUR MIKRO DAN SIFAT MEKANIK KERAMIK KOMPOSIT Al 2 O 3 ZrO 2 Meilinda Nurbanasari Jurusan Teknik Mesin, Institut Teknologi Nasional, Bandung Dani Gustaman

Lebih terperinci

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996

ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 ARSIP SOAL UJIAN NASIONAL FISIKA (BESERA PEMBAHASANNYA) TAHUN 1996 BAGIAN KEARSIPAN SMA DWIJA PRAJA PEKALONGAN JALAN SRIWIJAYA NO. 7 TELP (0285) 426185) 1. Kelompok besaran berikut yang merupakan besaran

Lebih terperinci

Frekuensi yang digunakan berkisar antara 10 hingga 500 khz, dan elektrode dikontakkan dengan benda kerja sehingga dihasilkan sambungan la

Frekuensi yang digunakan berkisar antara 10 hingga 500 khz, dan elektrode dikontakkan dengan benda kerja sehingga dihasilkan sambungan la Pengelasan upset, hampir sama dengan pengelasan nyala, hanya saja permukaan kontak disatukan dengan tekanan yang lebih tinggi sehingga diantara kedua permukaan kontak tersebut tidak terdapat celah. Dalam

Lebih terperinci

Bab IV. Hasil dan Pembahasan

Bab IV. Hasil dan Pembahasan Bab IV. Hasil dan Pembahasan Bab ini memaparkan hasil sintesis, karakterisasi konduktivitas listrik dan struktur kirstal dari senyawa perovskit La 1-x Sr x FeO 3-δ (LSFO) dengan x = 0,2 ; 0,4 ; 0,5 ; 0,6

Lebih terperinci

BAB I PENDAHULUAN. Magnet keras ferit merupakan salah satu material magnet permanen yang

BAB I PENDAHULUAN. Magnet keras ferit merupakan salah satu material magnet permanen yang BAB I PENDAHULUAN 1.1. LATAR BELAKANG Magnet keras ferit merupakan salah satu material magnet permanen yang berperan penting dalam teknologi listrik, elektronik, otomotif, industri mesin, dan lain-lain.

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini peran nanoteknologi begitu penting dalam pengembangan ilmu pengetahuan dan teknologi untuk kesejahteraan kehidupan manusia. Nanoteknologi merupakan bidang

Lebih terperinci