Prediksi Data Time Series Tingkat Inflasi di Indonesia dengan Menggunakan Differential Evolution

dokumen-dokumen yang mirip
PREDIKSI TIME SERIES TINGKAT INFLASI INDONESIA MENGGUNAKAN EVOLUTION STRATEGIES

PREDIKSI TINGKAT INFLASI DI INDONESIA BERBASIS JARINGAN SYARAF TIRUAN DAN ALGORITMA GENETIKA. Rita Rismala 1, Said Al Faraby 2

BAB 3 ANALISIS DAN PERANCANGAN APLIKASI

OPTIMASI HASIL PREDIKSI KETERSEDIAAN ENERGI SUMBER DAYA MINERAL MENGGUNAKAN ALGORITMA GENETIKA

PERAMALAN HARGA EMAS MENGGUNAKAN ALGORTIMA MEMETIKA DENGAN PENCARIAN LOCAL TABU SEARCH. Iqbal Dwihanandrio

Rancang Bangun Aplikasi Prediksi Jumlah Penumpang Kereta Api Menggunakan Algoritma Genetika

Penerapan Adaptive Genetic Algorithm dengan Fuzzy Logic Controller pada Capacitated Vehicle Routing Problem

ABSTRAK. Kata Kunci : Artificial Neural Network(ANN), Backpropagation(BP), Levenberg Marquardt (LM), harga emas, Mean Squared Error(MSE), prediksi.

BAB III METODE PENELITIAN. Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika

PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T

KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA

BAB III PEMBAHASAN. harga minyak mentah di Indonesia dari bulan Januari 2007 sampai Juni 2017.

ABSTRAK. Universitas Kristen Maranatha

3.2.3 Resiko, Keuntungan dan Kerugian Forex Metode Prediksi dalam Forex MetaTrader 4 sebagai Platform Trading dalam Forex...

Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika

PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI TURNAMEN UNTUK DATA TIME SERIES

BAB 2 LANDASAN TEORI

RENCANA PEMBELAJARAN SEMESTER (RPS)

ANALISIS DAN IMPLEMENTASI GABUNGAN ALGORITMA GENETIKA DAN JARINGAN SYARAF TIRUAN BACKPROPAGATION (STUDY KASUS PERAMALAN SAHAM)

ERWIEN TJIPTA WIJAYA, ST.,M.KOM

PENERAPAN TEKNIK KLASIFIKASI PADA SISTEM REKOMENDASI MENGGUNAKAN ALGORITMA GENETIKA

MEMBANGUN TOOLBOX ALGORITMA EVOLUSI FUZZY UNTUK MATLAB

TEKNIK PENJADWALAN KULIAH MENGGUNAKAN METODE ALGORITMA GENETIKA. Oleh Dian Sari Reski 1, Asrul Sani 2, Norma Muhtar 3 ABSTRACT

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

Pemodelan Sistem Dinamika antara Suku Bunga Bank Indonesia dengan Kurs Rupiah terhadap Dollar Amerika

PEMODELAN INDEKS HARGA SAHAM GABUNGAN (IHSG) MENGGUNAKAN MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP)

APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS

Implementasi Algoritme Average Time Based Fuzzy Time Series Untuk Peramalan Tingkat Inflasi Berdasarkan Kelompok Pengeluaran

Bab II Konsep Algoritma Genetik

Penjadwalan Job Shop pada Empat Mesin Identik dengan Menggunakan Metode Shortest Processing Time dan Genetic Algorithm

PERAMALAN HARGA DINAR DI INDONESIA MENGGUNAKAN GRAMATICAL EVOLUTION

Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP)

1. BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika

Optimasi Penataan Barang pada Proses Distribusi Menggunakan Algoritme Evolution Strategies

KAJIAN MODEL INFLASI TAHUNAN KOTA SIBOLGA DENGAN ARIMA DAN PENDEKATAN REGRESI POLINOMIAL PADA ANALISIS MULTIRESOLUSI WAVELET

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA

PENCOCOKAN KATA SECARA ACAK DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL

PERBANDINGAN METODE RUNTUN WAKTU FUZZY-CHEN DAN DI INDONESIA

OPTIMASI PENYUSUNAN BOX KOMPONEN PROGRAM SPIRIT DI DALAM CONTAINER UNTUK MEMINIMASI SPACE KOSONG MENGGUNAKAN METODE ALGORITMA GENETIKA

Algoritma Evolusi Evolution Strategies (ES)

2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks

APLIKASI ALGORITMA GENETIKA DALAM PENENTUAN DOSEN PEMBIMBING SEMINAR HASIL PENELITIAN DAN DOSEN PENGUJI SKRIPSI

PERANCANGAN PARAMETER TERBAIK UNTUK PREDIKSI PRODUKSI BAN GT3 MENGGUNAKAN JARINGAN SYARAF TIRUAN RESILIENT PROPAGATION

BAB 2 TINJAUAN PUSTAKA

HASIL DAN PEMBAHASAN

Penjadwalan Mata Kuliah Menggunakan Metode Hybrid Algoritma Genetika Dan Algoritma Koloni Semut

Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah

PENYELESAIAN MASALAH PENUGASAN DENGAN ALGORITMA GENETIKA TEKNIK CYCLE CROSSOVER.

Analisis Operator Crossover pada Permasalahan Permainan Puzzle

BAB I PENDAHULUAN 1.1 Latar Belakang

3. METODE PENELITIAN

Genetic Algorithme. Perbedaan GA

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION

MENGUKUR KINERJA ALGORITMA GENETIK PADA PEMAMPATAN MATRIKS JARANG

PENJADWALAN DAN PENENTUAN RUTE KENDARAAN PADA INDUSTRI BAHAN KIMIA MENGGUNAKAN KOMBINASI METODE ALGORITMA GENETIKA DAN ALGORITMA PENCARIAN TABU

Penjadwalan Dinas Pegawai Menggunakan Algoritma Genetika Pada PT Kereta Api Indonesia (KAI) Daerah Operasi 7 Stasiun Besar Kediri

OPTIMASI PERSEDIAAN BAJU MENGGUNAKAN ALGORITMA GENETIKA

BAB II LANDASAN TEORI. digunakan sebagai alat pembayaran yang sah di negara lain. Di dalam

APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN

IMPLEMENTASI ALGORITMA GENETIKA UNTUK MINIMASI GALAT PADA METODE PERAMALAN ARIMA

PREDIKSI KETINGGIAN GELOMBANG LAUT PERAIRAN PULAU BINTAN MENGGUNAKAN GRAMMATICAL EVOLUTION

BAB III. Solusi Optimal Permasalahan Penjadwalan Perkuliahan Menggunakan Algoritma Fuzzy Evolusi

Prediksi Harga Saham Dengan Metode Fuzzy Time Series dan Metode Fuzzy

Optimasi Fungsi Tanpa Kendala Menggunakan Algoritma Genetika Dengan Kromosom Biner dan Perbaikan Kromosom Hill-Climbing

IMPLEMENTASI SELF-ADAPTIVE DIFFERENTIAL EVOLUTION WITH NEIGHBORHOOD SEARCH (SANSDE) UNTUK OPTIMASI SISTEM POMPA AIR

Optimasi Cluster Pada Fuzzy C-Means Menggunakan Algoritma Genetika Untuk Menentukan Nilai Akhir

ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR

BAB II LANDASAN TEORI. digunakan sebagai pedoman perawatan adalah sebuah panduan sebagaimana

BAB III PEMBAHASAN. menggunakan model Fuzzy Mean Absolute Deviation (FMAD) dan penyelesaian

Vukovich dinamis yang digabungkan dengan model PRoFIGA didalamnya.

BAB I PENDAHULUAN. 1.1 Latar Belakang

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika

PEMANFAATAN ALGORITMA FUZZY EVOLUSI UNTUK PENYELESAIAN KASUS TRAVELLING SALESMAN PROBLEM

Penerapan algoritma evolution strategies untuk optimasi distribusi barang dua tahap

Algoritma Evolusi Real-Coded GA (RCGA)

BAB III METODOLOGI PENELITIAN

PERANCANGAN PENGATURAN DURASI LAMPU LALU LINTAS ADAPTIF

ISSN: X 77 IMPUTASI MISSING DATA DENGAN K-NEAREST NEIGHBOR DANALGORITMA GENETIKA

BAB 4 IMPLEMENTASI DAN EVALUASI. Berikut ini merupakan spesifikasi perangkat keras dan perangkat lunak yang

Crossover Probability = 0.5 Mutation Probability = 0.1 Stall Generation = 5

PENDAHULUAN. Latar Belakang. Tujuan Penelitian

METODOLOGI PENELITIAN

OPTIMASI KENAIKAN DAN PEMBAGIAN KELAS MENGGUNAKAN ALGORITMA GENETIKA (STUDI KASUS PADA MADRASAH ALIYAH) ABSTRAK

Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya. Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya

BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:

Adapun rumus matematis dari analisa regresi linier yaitu : y = A 0 + B 0 X + ε Dimana : y = Variable dependent ( variable yang akan diprediksi ) A 0 =

PRESENTASI TUGAS AKHIR KI091391

APLIKASI ALGORITMA GENETIKA UNTUK MERAMALKAN KONSUMSI PREMIUM KOTA DENPASAR

Optimasi Pemilihan Pekerja Bangunan Proyek Pada PT. Citra Anggun Pratama Menggunakan Algoritma Genetika

Bab IV Simulasi dan Pembahasan

Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika

Lingkup Metode Optimasi

PREDIKSI INDEKS HARGA SAHAM MENGGUNAKAN KOMBINASI ALGORITMA PARTICLE SWARM OPTIMIZATION (PSO) DAN TIME VARIANT FUZZY TIME SERIES (TVFTS)

PREDICTION OF AGRICULTURAL COMMODITIES PRICE USING HYBRID RADIAL BASIS FUNCTION NEURAL NETWORK WITH GENETIC ALGORITHM

PREDIKSI PENYAKIT MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOUR DAN ALGORITMA GENETIKA UNTUK DATA BERDIMENSI TINGGI

Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner

PENERAPAN ALGORITMA GENETIKA UNTUK PENJADWALAN UJIAN TUGAS AKHIR PADA JURUSAN TEKNIK INFORMATIKA UNIVERSITAS MUHAMMADIYAH MALANG

Transkripsi:

Data Time Series Tingkat Inflasi di Indonesia dengan Menggunakan Differential Evolution Rita Rismala, S.T. 1, Suyanto, S.T., M.Sc., Retno Novi Dayawati, S.Si., M.T. 1,, Institut Teknologi Telkom 1 rismala.rita@gmail.com, suy@ittelkom.ac.id, rvi@ittelkom.ac.id Abstrak Inflasi menjadi indikator yang sangat penting dalam menganalisis perekonomian negara. Oleh karena itu, prediksi terhadap nilai inflasi menjadi penting agar dapat membantu pemerintah dalam mengambil kebijakan untuk menjaga stabilitas moneter dan perekonomian. Pada penelitian ini dilakukan prediksi tingkat inflasi dengan menggunakan prediksi data time series dengan metode Evolutionary Algorithms (EAs). Kelebihan dari EAs adalah mampu menghasilkan banyak solusi secara langsung sehingga model prediksi yang dihasilkan lebih beragam. Differential Evolution (DE) merupakan salah satu jenis EAs. Dibandingkan dengan EAs lain, seperti Genetic Algorithm dan Evolution Strategies yang proses pembangkitan individu barunya bersifat sangat acak, proses pembangkitan individu baru pada DE bersifat semi terarah sehingga lebih cepat konvergen dalam menemukan optimum global. Berdasarkan penelitian yang telah dilakukan dapat diketahui bahwa akurasi prediksi yang didapatkan kurang optimal. Dengan MAPE, pengujian untuk skenario data I adalah.01%, sedangkan untuk skenario data II adalah.18%. Hal ini dikarenakan data historis tingkat inflasi di Indonesia sangat fluktuatif sehingga dengan fungsi prediksi DE yang bersifat linear kurang mampu mengadaptasi pola historis tersebut. Namun, akurasi prediksi dengan menggunakan DE ini jauh lebih baik jika dibandingkan dengan metode prediksi konvensional, yaitu linear regression yang menghasilkan MAPE 0.9% untuk skenario data I dan.% untuk skenario data II, serta moving average yang menghasilkan MAPE.0% untuk skenario data I dan.81% untuk skenario data II. Kata kunci: prediksi, time series, inflasi, Evolutionary Algorithms (EAs), Differential Evolution (DE), MAPE Abstract Inflation is a very important indicator for analyzing economic condition of a country. Therefore, inflation prediction becomes important in order to assist governments in taking policies to maintain monetary and economic stability. In this research, inflation rate is predicted using time series data prediction methods. Evolutionary Algorithms (EAs) can be used to develop prediction models. The advantage of EAs is able to generate many solutions at once so that resulting more prediction models. Differential Evolution (DE) is type of EAs. Compared with other EAs such as Genetic Algorithm and Evolution Strategies which process to generate new individuals is highly random, the process of generating new individuals in the DE are semi-directed so that faster to find the global optimum. Based on the research, the prediction accuracy of DE is less than optimal. MAPE for testing the data scenario I is.01%, while for the data scenario II is.18%. This is because historical data of the inflation rate in Indonesia is very fluctuative, so that the DE with a linear prediction function is less capable to adapt the historical pattern. However, the prediction accuracy using DE is better than the conventional prediction method such as Linear Regression with MAPE 0.9% for data scenarios I and.% for data scenario II, and the Moving Average with MAPE.0% for data scenario I and.81% for data scenario II. Keywords: prediction, time series, inflation, evolutionary algorithms (EAS), differential evolution (DE), MAPE 1. Pendahuluan Makna inflasi adalah persentase tingkat kenaikan harga sejumlah barang dan jasa yang secara umum dikonsumsi rumah tangga. Inflasi dapat menjadi indikator dalam menggambarkan kecenderungan umum tentang perkembangan harga. Indikator tersebut dapat dipakai sebagai informasi dasar untuk pengambilan keputusan baik tingkat ekonomi mikro atau makro, baik fiskal maupun moneter. Pada tingkat mikro, rumah tangga/ masyarakat misalnya, dapat memanfaatkan angka inflasi untuk dasar penyesuaian nilai pengeluaran kebutuhan sehari-hari dengan pendapatan mereka yang relatif tetap. Pada tingkat korporasi, angka inflasi dapat dipakai untuk perencanaan pembelanjaan dan kontrak bisnis. Dalam lingkup yang lebih luas (makro), angka inflasi menggambarkan kondisi/stabilitas moneter dan perekonomian [1] sehingga inflasi menjadi indikator yang sangat penting dalam menganalisis perekonomian negara []. Disebabkan pentingnya hal tersebut, maka prediksi terhadap nilai inflasi ISSN: 088-8 19

menjadi penting agar dapat membantu pemerintah dalam mengambil kebijakan untuk menjaga stabilitas moneter dan perekonomian. dapat memberikan gambaran tentang masa depan yang paling mendekati kenyataan. Untuk memprediksi data masa depan dapat dilakukan dengan mempelajari data historis masa lalu. Metode tersebut dinamakan metode prediksi data time series, yaitu metode prediksi yang menggunakan deret waktu (time series) sebagai dasar prediksi. Dengan menerapkan metode prediksi data time series, data yang telah diurutkan berdasarkan waktu akan dipelajari polanya. Hal ini dilakukan agar diketahui fluktuasi yang terjadi pada data. Namun, tidak mudah untuk mempelajari pola tersebut sampai dihasilkan suatu model prediksi yang optimal. Evolutionary Algorithms (EAs) dapat digunakan untuk membangun model prediksi tersebut karena pada dasarnya membangun model prediksi yang optimal merupakan permasalahan optimasi numerik. Kelebihan dari EAs adalah mampu menghasilkan banyak solusi sekaligus. Melalui proses yang mengadopsi prinsip evolusi dan genetika, setiap solusi yang dibangkitkan akan dievaluasi dan mengalami proses evolusi sampai ditemukan solusi optimal sehingga dengan menggunakan EAs model prediksi yang dihasilkan menjadi lebih beragam. Differential Evolution (DE) merupakan salah satu jenis EAs. Dibandingkan dengan EAs lain, seperti Genetic Algorithm (GA) dan Evolution Strategies (ES) yang proses pembangkitan individu barunya bersifat sangat acak, proses pembangkitan individu baru pada DE bersifat semi terarah sehingga lebih cepat konvergen dalam menemukan optimum global. Berdasarkan analisa permasalahan di atas, maka dilakukan penelitian untuk mengimplementasikan DE pada prediksi data time series tingkat inflasi Indonesia tiap bulan dan menganalisis akurasi DE pada prediksi data time series tingkat inflasi Indonesia tiap bulan. Adapun batasan masalah dalam penelitian ini adalah: 1. Dataset yang digunakan untuk data latih, data validasi, dan data uji adalah data tingkat inflasi year on year (yoy) di Indonesia berdasarkan Indeks Harga Konsumen pada bulan Januari 00 Desember 008 yang diambil dari situs www.bi.go.id.. yang dilakukan tidak melibatkan variabel-variabel domestik dan variabelvariabel eksternal yang mempengaruhi tingkat inflasi, seperti jumlah uang yang beredar, pendapatan nasional, tingkat suku bunga, nilai tukar rupiah, dan tingkat inflasi luar negeri. Dataset yang digunakan dianggap telah menyimpan faktor-faktor tersebut secara implisit.. yang dilakukan adalah prediksi jangka pendek, yaitu prediksi untuk menentukan tingkat inflasi satu bulan ke depan.. Dasar Teori Inflasi Makna inflasi adalah persentase tingkat kenaikan harga sejumlah barang dan jasa yang secara umum dikonsumsi rumah tangga. Secara umum, perhitungan perubahan harga tersebut tercakup dalam suatu indeks harga yang dikenal dengan Indeks Harga Konsumen (IHK) atau Consumer Price Index (CPI). Persentase kenaikan IHK dikenal dengan inflasi, sedangkan penurunannya disebut deflasi. Inflasi dapat menjadi indikator dalam menggambarkan kecenderungan umum tentang perkembangan harga. Indikator tersebut dapat dipakai sebagai informasi dasar untuk pengambilan keputusan baik tingkat ekonomi mikro atau makro, baik fiskal maupun moneter. Pada tingkat mikro, rumah tangga, atau masyarakat misalnya, dapat memanfaatkan angka inflasi untuk dasar penyesuaian nilai pengeluaran kebutuhan sehari-hari dengan pendapatan mereka yang relatif tetap. Pada tingkat korporasi, angka inflasi dapat dipakai untuk perencanaan pembelanjaan dan kontrak bisnis. Dalam lingkup yang lebih luas (makro), angka inflasi menggambarkan kondisi/stabilitas moneter dan perekonomian [1]...1 Definisi atau peramalan adalah suatu proses dimana pola atau hubungan yang ada diidentifikasi dan polapola ini diekstrapolasi atau diinterpolasi secara optimal. menunjukkan apa yang akan terjadi pada suatu keadaan tertentu dan merupakan input bagi proses perencanaan dan pengambilan keputusan []..1.Metode Time Series Metode prediksi time series mengidentifikasi pola historis (dengan menggunakan waktu sebagai rujukan), kemudian membuat prediksi dengan menggunakan ekstrapolasi berdasarkan waktu untuk pola-pola tersebut. Sebuah model time series mengasumsikan bahwa beberapa pola atau kombinasi pola akan berulang sepanjang waktu. Jadi, dengan mengidentifikasikan dan mengekstrapolasi pola tersebut dapat dilakukan prediksi untuk masa yang akan datang []. Differential Evolution (DE) Differential Evolution (DE) merupakan suatu metode optimasi dengan pendekatan heuristik untuk mencari nilai minimum dari fungsi ruang kontinu yang nonlinier dan non-differentiable. DE bisa menemukan minimum global dari fungsi multidimensional dan multimodal (yaitu fungsi yang 0 ISSN: 088-8

memiliki nilai minimum lebih dari satu) dengan probabilitas yang tinggi []. DE menyelesaikan masalah optimasi dengan cara mencari nilai minimum secara paralel menggunakan sejumlah individu dalam suatu populasi. Pada DE, individu baru didapatkan dengan menggunakan perhitungan tertentu berbasis pada perbedaan jarak vektor antar individu orang tua yang disebut differential mutation dan bersifat semi terarah (semidirected). Representasi Individu DE menggunakan representasi real untuk merepresentasikan individu ke dalam bentuk kromosom, dimana suatu individu yang bernilai real bisa dipandang sebagai suatu vektor. Dengan demikian, perbedaan antara dua individu dapat dihitung sebagai jarak antara dua vektor. Seleksi Orang Tua Pemilihan orang tua dilakukan dengan probabilitas yang sama untuk setiap individu tanpa memperhatikan nilai fitness-nya dengan menggunakan distribusi uniform. Differential Mutation Differential mutation merupakan proses untuk membangkitkan vektor (individu) baru. Proses ini bisa dilakukan dengan beragam skema, diantaranya adalah skema DE 1, DE, dan DE. a. Skema DE 1 Skema DE 1 melibatkan tiga individu sebagai orang tua. Untuk setiap vektor i,g, i = 1,,..., NP, dimana NP adalah ukuran populasi, suatu vektor baru dibangkitkan berdasarkan rumus: v xr, G F xr, G xr, G (1) 1 Dimana: r 1, r, r [1, NP ] adalah integer berbeda yang dipilih secara acak dan menyatakan indeks orang tua. F adalah suatu bilangan real dan merupakan konstanta yang mengontrol penguatan differential variation. b. Skema DE Skema DE melibatkan empat individu sebagai orang tua dimana tiga individu merupakan individu yang dipilih secara acak dan satu individu merupakan vektor terbaik saat ini. Untuk setiap vektor i,g, i = 1,,..., NP, dimana NP adalah ukuran populasi, suatu vektor baru dibangkitkan berdasarkan rumus: () v xr, G xbest, G xr, G F xr, G xr, G 1 1 Dimana: merupakan vektor terbaik saat ini. real yang digunakan untuk mempertajam arah pencarian yang berhubungan dengan vektor terbaik saat ini. r 1, r, r [1, NP ] adalah integer berbeda yang dipilih secara acak dan menyatakan indeks orang tua. F adalah suatu bilangan real dan merupakan konstanta yang mengontrol penguatan differential variation. c. Skema DE Skema DE melibatkan lima individu sebagai orang tua. Untuk setiap vektor i,g, i = 1,,..., NP, dimana NP adalah ukuran populasi, suatu vektor baru dibangkitkan berdasarkan rumus: () v xr, G 1 F xr, G xr, G xr, G xr, G Dimana: r 1, r, r, r, r [1, NP ] adalah integer berbeda yang dipilih secara acak dan menyatakan indeks orang tua. F adalah suatu bilangan real dan merupakan konstanta yang mengontrol penguatan differential variation. Rumus yang digunakan pada skema DE 1, DE, dan DE menunjukkan bahwa mutasi pada DE bersifat semi terarah. Rekombinasi Untuk meningkatkan keberagaman vektor-vektor parameter, maka vektor direkombinasi dengan suatu vektor sembarang dalam populasi, misal. Proses rekombinasi menghasilkan vektor seperti berikut: Rekombinasi dilakukan dengan cara: v j, untuk rj CR u j () ( xi, G ), untuk rj CR dimana, dengan D adalah dimensi fungsi yang dioptimasi, adalah bilangan acak yang dibangkitkan untuk setiap posisi gen, CR adalah konstanta rekombinasi dengan. Seleksi Survivor Vektor hasil rekombinasi akan menggantikan vektor i,g pada generasi berikutnya jika menghasilkan nilai yang lebih baik daripada vektor i,g. Namun, jika memberikan nilai yang lebih buruk, maka tidak menggantikan i,g, yang berarti i,g akan tetap muncul pada generasi berikutnya. Proses Evolusi pada Differential Evolution Proses evolusi pada DE menggunakan semua operator evolusi, yaitu seleksi orangtua, mutasi, rekombinasi, dan seleksi survivor seperti pada Gambar 1. ISSN: 088-8 1

Inisialisasi Mulai Populasi Seleksi Orang Tua Data Aktual Tingkat Inflasi di Indonesia Parameter DE Terminasi Differential Mutation Pencarian Pola Data Historis yang Optimal Seleksi Survivor Rekombinasi Sejumlah Data Uji Tingkat Inflasi di Indonesia Gambar. Proses Evolusi pada DE Hasil. Analisis Perancangan dan Implementasi Deskripsi dan Analisis Sistem Sistem yang dibangun pada penelitian ini adalah sistem prediksi data time series tingkat inflasi di Indonesia per bulan dengan mengimplementasikan algoritma DE. Secara umum, sistem prediksi data time series yang dibuat terdiri dari dua proses utama, yaitu proses pencarian pola data historis yang optimal dan proses prediksi terhadap sejumlah data uji menggunakan fungsi optimal yang dihasilkan dari proses pencarian pola data historis. Karena peramalan tingkat inflasi ini adalah peramalan menggunakan data time series, maka untuk memprediksi tingkat inflasi pada bulan B hanya menggunakan data tingkat inflasi pada bulanbulan sebelumnya, B 1, B, dan seterusnya. Dengan demikian masalah ini dapat dimodelkan dalam fungsi linear berikut: () Dimana sampai adalah data masukan berupa tingkat inflasi pada bulan-bulan sebelumnya, B 1, B,..., B n. Karena sangat sulit untuk menentukan jumlah data masukkan yang tepat, maka pada kasus ini digunakan n dalam interval [, ]. Sedangkan sampai adalah variabel-variabel real yang nilainya akan dicari berdasarkan data tingkat inflasi yang ada dengan mengimplementasikan DE sehingga didapatkan fungsi yang optimal. Selesai Gambar. Skema Umum Sistem Tingkat Inflasi di Indonesia Perancangan Sistem Perancangan sistem yang dilakukan dalam tugas akhir ini dibagi menjadi dua bagian, yaitu perancangan data yang akan digunakan oleh sistem dan perancangan sistem prediksi. Perancangan Data Perancangan data merupakan bentuk menyiapkan/menyediakan data yang digunakan sebagai data latih, data validasi, dan data uji. a. Data yang digunakan adalah data historis tingkat inflasi di Indonesia yang disajikan perbulan sebanyak enam tahun (00-008). Jadi, jumlah data yang digunakan adalah sebanyak data. b. Pengelompokan data latih, validasi, dan uji dilakukan sesuai dengan dua skenario pengujian data yang digunakan, yaitu : 1) Skenario data pertama Data latih: bulan (00 00) Data validasi: bulan (00 00) Data uji: bulan (00 008) ) Skenario data kedua Data latih: 8 bulan (00 00) Data validasi: 1 bulan (00) Data uji: 1 bulan (008) Perancangan Sistem Berdasarkan analisis yang telah dilakukan sebelumnya, maka sistem prediksi tingkat inflasi di ISSN: 088-8

Indonesia dengan mengimplementasikan DE dapat digambarkan seperti pada Gambar berikut. Proses Pencarian Fungsi Optimal Proses Pelatihan Mulai Data Latih adalah untuk mencari kombinasi parameter DE, yaitu jumlah series data, skema DE, ukuran populasi, range F, presentase adaptif F yang paling optimal untuk menghasilkan prediksi dengan tingkat akurasi yang tinggi. Daftar MAPE tiap Fungsi Latih Terminasi Inisialisasi Populasi Evaluasi Individu Seleksi Orang Tua TABEL 1 Daftar Fungsi Latih Seleksi Survivor Rekombinasi Differential Mutation KOMBINASI PARAMETER DE Seleksi Fungsi Latih dan Validasi Hitung Nilai Fitness dan MAPE Fungsi Optimal Proses Data Uji Data Uji Gambar 8. Sistem Tingkat Inflasi di Indonesia dengan Differential Evolution. Implementasi Lingkungan Implementasi Lingkungan implementasi sistem prediksi data time series tingkat inflasi di Indonesia dengan mengimplementasikan DE terdiri dari dua bagian, yaitu perangkat keras dan perangkat lunak dengan spesifikasi sebagai berikut. a. Spesifikasi Perangkat Keras Berikut adalah spesifikasi perangkat keras yang digunakan dalam pengimplementasian sistem: 1) Processor : Intel(R) Core(TM) Duo CPU T00 @.0 GHz ) Memory : GB ) Harddisk : 0 GB b. Spesifikasi Perangkat Lunak Berikut adalah spesifikasi perangkat lunak yang digunakan dalam pengimplementasian sistem: 1) Microsoft Windows Home Basic ) Matlab Version.8.0. (R009a). Pengujian Hasil Data Uji Proses Validasi Daftar MAPE tiap Fungsi Validasi Daftar Fungsi Validasi Selesai Hitung Nilai Fitness dan MAPE Data Validasi Skema DE1/ DE/ DE Skenario Data : 1/ Ukuran Populasi Range F Adaptif F N-Series 0.0 0.1-0. 0.0 X Jumlah Gen 10 X Jumlah Gen 0.0001-0. 0.1-0. 0.0 0.0 0.0 0.0 Strategi Pengujian Berdasarkan perancangan sistem dapat disimulasikan suatu sistem prediksi data time series tingkat inflasi di Indonesia dengan mengimplementasikan DE. Dengan menggunakan sistem ini, dilakukan dua jenis pengujian yaitu: 1) Pengujian pada proses pencarian pola data historis yang optimal dengan menggunakan data latih dan data validasi. Pada pengujian ini digunakan beberapa kombinasi antara jumlah inputan series data dan parameter evolusi pada DE. Tujuannya Untuk setiap kombinasi pengujian seperti ditunjukkan pada Tabel 1, dilakukan observasi sebanyak 0 kali dengan maksimum generasi yang digunakan untuk setiap observasi adalah 1000 generasi. ) Pengujian pada proses prediksi data uji Pengujian ini dilakukan untuk mengetahui akurasi DE dalam memprediksi tingkat inflasi satu bulan berikutnya berdasarkan data uji dan fungsi prediksi optimal yang dihasilkan pada proses pencarian pola historis yang optimal. ISSN: 088-8

Akurasi prediksi disajikan dalam bentuk Mean Absolute Percentage Error (MAPE). Hasil Pengujian pada Proses Pencarian Pola Data Historis yang Optimal Kombinasi parameter DE yang paling baik dengan nilai rata-rata MAPE seleksi terkecil untuk skenario data I adalah jumlah data masukkan -series, skema DE, ukuran populasi 10 X jumlah gen, range F [0.1, 0.], dan adaptif F 0.0, dengan nilai rata-rata MAPE seleksi 10.8 %. Sedangkan kombinasi parameter DE terbaik untuk skenario data II adalah jumlah data masukkan -series, skema DE 1, ukuran populasi 10 X jumlah gen, range F [0.1, 0.], dan adaptif F 0.0, dengan nilai rata-rata MAPE seleksi 8.1899 %. Dari setiap kombinasi parameter DE terbaik untuk setiap skenario data, dicari fungsi prediksi yang menghasilkan minimum MAPE seleksi dan selanjutnya fungsi prediksi tersebut dinyatakan sebagai fungsi prediksi optimal DE. Rata-rata MAPE seleksi terkecil, kombinasi parameter DE terbaik, dan fungsi prediksi optimal DE dapat dilihat pada Tabel berikut. Gambar 9. Hasil Data Uji Skenario Data 1 dengan Menggunakan DE Pada skenario data II dengan fungsi prediksi optimal DE adalah 0.0888 + 1.10 X1-0.0 X + 0.18 X didapatkan hasil prediksi data uji dengan MAPE.18%, minimum APE 1.089%, maksimum APE 1.1%, dan standar deviasi APE.8, seperti dapat dilihat pada Gambar berikut. TABEL 1 RATA-RATA MAPE SELEKSI TERKECIL, KOMBINASI PARAMETER DE TERBAIK DAN FUNGSI PREDIKSI OPTIMAL DE TIAP SKENARIO DATA Skenario Data 1 Rata-Rata MAPE Seleksi Terkecil 10.8 % 8.1899 % Kombinasi Parameter DE Terbaik Fungsi Optimal DE -series, skema DE, ukuran populasi 10 X jumlah gen, range F [0.1, 0.], dan adaptif F 0.0 0.11 + 1.10 X1-0.10 X -series, skema DE 1, ukuran populasi 10 X jumlah gen, range F [0.1, 0.], dan adaptif F 0.0 0.0888 + 1.10 X1-0.0 X + 0.18 X Gambar 10. Hasil Data Uji Skenario Data dengan Menggunakan DE Perbandingan DE dengan Metode Konvensional Berikut adalah grafik perbandingan akurasi DE dengan metode konvensional, yaitu Linear Regression (LR) dan Moving Average (MA) dalam memprediksi data uji tingkat inflasi di Indonesia. Hasil Pengujian Akurasi pada Proses Data Uji Pengujian sistem prediksi dengan menggunakan DE, pada skenario data I dengan fungsi prediksi optimal DE adalah 0.11 + 1.10 X1-0.10 X didapatkan hasil prediksi data uji dengan MAPE.01%, minimum APE 0.1%, maksimum APE 1.1%, dan standar deviasi APE.901, seperti dapat dilihat pada Gambar berikut. Gambar 11. Perbandingan Hasil Data Uji dengan DE, LR, dan MA ISSN: 088-8

Dari Gambar dapat diketahui bahwa akurasi DE lebih baik daripada kedua metode konvensional tersebut.. Kesimpulan dan Saran Kesimpulan Dari hasil pengujian dan analisis yang telah dilakukan dapat diambil beberapa kesimpulan sebagai berikut : 1. data time series tingkat inflasi di Indonesia dengan menggunakan DE menghasilkan akurasi yang kurang optimal. Hal ini dikarenakan data historis tingkat inflasi di Indonesia sangat fluktuatif sehingga DE dengan fungsi prediksi linier kurang mampu untuk mengadaptasi pola historis tersebut. Namun, akurasi prediksi dengan menggunakan DE ini jauh lebih baik jika dibandingkan dengan metode prediksi konvensional, yaitu LR dan MA.. Penggunaan EAs untuk masalah prediksi dapat menghasilkan solusi lebih dari satu model prediksi sehingga dari banyak model tersebut dapat dipilih satu model prediksi yang paling optimal. Saran Saran yang dapat diberikan untuk melakukan pengembangan berikutnya antara lain: 1. Penggunaan data dari variabel-variabel domestik dan variabel-variabel eksternal yang mempengaruhi tingkat inflasi, seperti jumlah uang yang beredar, pendapatan nasional, tingkat suku bunga, nilai tukar rupiah, dan tingkat inflasi luar negeri.. Penggunaan model persamaan yang lebih beragam untuk membangun fungsi prediksi.. Untuk proses evolusi pada DE dalam menemukan solusi yang optimal, dapat dilakukan pengembangan dan percobaan dengan perubahan pada jenis rekombinasi, jenis mutasi, dan mekanisme penggantian populasi yang digunakan. Daftar Pustaka [1] Badan Pusat Statistik. 011. Data Strategis BPS. Jakarta: Badan Pusat Statistik [] Endri. 008. Analisis Faktor-Faktor yang Mempengaruhi Inflasi di Indonesia. Jurnal Ekonomi Pembangunan Vol. 1 No. 1, April 008 Hal: 1-1 [] StatSoft. 008. Time Series Analysis. Diunduh pada: http://www.statsoft.com/textbook/sttimser.html, 0 Maret 009. [] Suhartono, Dr., S.Si., M.Sc dan R. Mohamad Atok, S.Si., M.Si. 00. Analisis Time Series. Slide presentasi. Diunduh pada: http://oc.its.ac.id/ambilfile.php?idp=19, April 009. [] Suyanto, ST., MSc. 008. Evolutionary Computation : Komputasi Berbasis Evolusi dan Genetika. Bandung : Informatika ISSN: 088-8