JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN:

dokumen-dokumen yang mirip
OLEH : NATAN HENRI SOPLANTILA NRP.

Analisa Tegangan pada Pipa yang Memiliki Korosi Sumuran Berbentuk Limas dengan Variasi Kedalaman Korosi

BAB III OPTIMASI KETEBALAN TABUNG COPV

Analisis Kekuatan Struktur Konstruksi Tower untuk Catwalk dan Chain Conveyor pada Silo (Studi Kasus di PT. Srikaya Putra Mas)

PENENTUAN PERBANDINGAN DIAMETER NOZZLE TERHADAP DIAMETER SHELL MAKSIMUM PADA AIR RECEIVER TANK HORISONTAL DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

Perancangan Konstruksi Turbin Angin di Atas Hybrid Energi Gelombang Laut

Sumber :

tugas akhir Teknik Mesin Institut Teknologi Sepuluh Nopember 2012

Alternatif Material Hood dan Side Panel Mobil Angkutan Pedesaan Multiguna

Analisis Kekuatan Tangki CNG Ditinjau Dengan Material Logam Lapis Komposit Pada Kapal Pengangkut Compressed Natural Gas

Pengaruh Variasi Fraksi Volume, Temperatur, Waktu Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Polyester - Hollow Glass Microspheres

KEMAMPUAN PENYERAPAN ENERGI CRASH BOX MULTI SEGMEN MENGGUNAKAN SIMULASI KOMPUTER

ANALISIS KEKUATAN TARIK BOLTED JOINT STRUKTUR KOMPOSIT C-GLASS/EPOXY BAKALITE EPR 174

Analisa Pengaruh Ukuran Partikel terhadap Patahan Gritcone pada Vertical Roller Mill Dengan Simulasi Explicit Dynamic (Ls-Dyna)

III. METODE PENELITIAN

ANALISA KEGAGALAN POROS DENGAN PENDEKATAN METODE ELEMEN HINGGA

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2011

PENDAHULUAN PERUMUSAN MASALAH. Bagaimana pengaruh interaksi antar korosi terhadap tegangan pada pipa?

Laporan Praktikum. Laboratorium Teknik Material III. Modul B Teori Laminat Klasik. oleh :

Analisis Kekuatan dan Deformasi Piston Mesin Bensin-Bio Etanol dan Gas dengan Injeksi Langsung untuk Kendaraan Nasional dengan Simulasi Numerik

BAB III METODOLOGI PENELITIAN. baseplate berdasarkan metode AISC- LRFD dan simulasi program ANSYS. Adapun

BAB I PENDAHULUAN. terciptanya suatu sistem pemipaan yang memiliki kualitas yang baik. dan efisien. Pada industri yang menggunakan pipa sebagai bagian

JURNAL TEKNIK ITS Vol. 1, No. 1(Sept. 2012) ISSN: G-340

METODOLOGI PENELITIAN

PERANCANGAN TEMPAT TIDUR PASIEN BERBAHAN ALUMUNIUM MENGGUNAKAN CAD. Jl. Grafika No.2, Yogyakarta

BAB 3 METODOLOGI PENELITIAN. Peralatan yang digunakan dalam penelitian ini adalah Personal Computer,

ANALISA PENGARUH TEBAL DAN GEOMETRI SPOKE BERBENTUK BELAH KETUPAT PADA BAN TANPA UDARA TERHADAP KEKAKUAN RADIAL DAN LATERAL

ANALISA PELAT DAN BALOK MULTILAYER MENGGUNAKAN TEORI LAMINASI

OPTIMASI DESAIN RANGKA SEPEDA BERBAHAN BAKU KOMPOSIT BERBASIS METODE ANOVA

Pengaruh Sudut Laminasi Dan Perlakuan Permukaaan Stainless Steel Mesh Terhadap Karakteristik Tarik Dan Bending Pada Komposit Hibrida

ANALISA KEKUATAN CRANKSHAFT DUA-SILINDER KAPASITAS 650 CC DENGAN MENGGUNAKAN METODE ELEMEN HINGGA

ANALISA TEGANGAN DAN DEFLEKSI PADA PELAT DUDUKAN PEMINDAH TRANSMISI TIPE FLOOR SHIFT DENGAN RIB DAN TANPA RIB

STUDI EKSPERIMENTAL PENGARUH SERAT BAMBU TERHADAP SIFAT-SIFAT MEKANIS CAMPURAN BETON

STRESS ANALYSIS PISTON SEPEDA MOTOR MENGGUNAKAN SOFTWARE AUTODESK INVENTOR 2015

ANALISIS KEKUATAN COMPRESIVE NATURAL GAS (CNG) CYLINDERS MENGGUNAKAN METODE ELEMEN HINGGA

ANALISIS PENGARUH RAKE ANGLE TERHADAP DISTRIBUSI TEGANGAN PADA EXCAVATOR BUCKET TEETH MENGGUNAKAN METODE ELEMEN HINGGA

Bab V : Analisis 32 BAB V ANALISIS

STUDI KEKUATAN SPUR GEAR DENGAN PROFIL GIGI ASYMMETRIC INVOLUTE DAN SYMMETRIC INVOLUTE. Disusun oleh Mohamad Zainulloh Rizal

METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh

Jurnal Teknika Atw 1

PERANCANGAN DAN PENGEMBANGAN CYLINDER BLOCK DAN CRANKCASE MESIN OTTO SATU SILINDER EMPAT LANGKAH BERKAPASITAS 65CC

Tugas Akhir ANALISA PENGARUH TEBAL DAN GEOMETRI SPOKE BERBENTUK SQUARE BAN TANPA ANGIN TERHADAP KEKAKUAN RADIAL DAN LATERAL

BAB III METODOLOGI PENELITIAN

Studi Eksperimental Pengaruh Jumlah Lapisan Stainless Steel Mesh dan Posisinya Terhadap Karakteristik Tarik dan Bending Komposit Serat Kaca Hibrida

BAB IV SIFAT MEKANIK LOGAM

DAFTAR ISI KATA PENGANTAR PERNYATAAN ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN DAFTAR NOTASI BAB I.

DECIDING THE OPTIMUM SPOKE ANGLE OF MOTORCYCLE CAST WHEEL USING FINITE ELEMENT APLICATION AND PUGH S CONCEPT SELECTION METHOD

Analisa Pemasangan Ekspansi Loop Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

Abstrak. Kata kunci: Hydrotest, Faktor Keamanan, Pipa, FEM ( Finite Element Method )

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN. Tabel 10. Hasil uji tarik serat tunggal.

ANALISIS KEKUATAN STRUKTUR RANGKA TURBIN HELIKS TIPE L C500 DENGAN MENGGUNAKAN APLIKASI COSMOSWORKS 2007

BAB I PENDAHULUAN. dan efisien.pada industri yang menggunakan pipa sebagai bagian. dari sistem kerja dari alat yang akan digunakan seperti yang ada

PERANCANGAN KONSTRUKSI PADA SEGWAY

INDEPT, Vol. 4, No. 1 Februari 2014 ISSN

Laporan Praktikum Laboratorium Teknik Material 1 Modul D Uji Lentur dan Kekakuan

ANALISIS TEGANGAN STATIK PADA UNIT SQUARE END A-JACK DENGAN METODE ELEMEN HINGGA

PEMODELAN DAN ANALISA GETARAN MOTOR BENSIN 4 LANGKAH 2 SILINDER 650CC SEGARIS DENGAN SUDUT ENGKOL 90 UNTUK RUBBER MOUNT

ANALISA PENGUJIAN TARIK SERAT AMPAS TEBU DENGAN STEROFOAM SEBAGAI MATRIK

PENGARUH VARIASI FRAKSI VOLUME, TEMPERATUR DAN WAKTU POST-CURING TERHADAP KARAKTERISTIK TARIK KOMPOSIT POLYESTER PARTIKEL HOLLOW GLASS MICROSPHERES

Jurusan Teknik Mesin, Fakultas Teknik, Universitas Diponegoro H.Prof.Sudharto, Kampus UNDIP Tembalang, Semarang, 50275

SIMULASI TEGANGAN PADA HELM INDUSTRI DARI BAHAN KOMPOSIT GFRP YANG MENDAPAT TEGANGAN INSIDEN SEBESAR 24,5 MPa

V. HASIL DAN PEMBAHASAN

Analisa Kekuatan Sekat Bergelombang Kapal Tanker Menggunakan Metode Elemen Hingga

Perancangan Sistem Transmisi Untuk Penerapan Energi Laut

LAMPIRAN 1. Perbandingan fraksi volume serat dan matriks 20% : 80% Fraksi volume serat kenaf/ E-glass 70/30 Volume cetakan, V c

KAPAL JURNAL ILMU PENGETAHUAN & TEKNOLOGI KELAUTAN

DAYA DUKUNG PONDASI MENERUS PADA TANAH LEMPUNG BERLAPIS MENGGUNAKAN METODE "MEYERHOF DAN HANNA" DAN METODE ELEMENT HINGGA (PLAXIS)

Analisis Kekuatan Konstruksi Sekat Melintang Kapal Tanker dengan Metode Elemen Hingga

Oleh : Fadhila Sahari Dosen Pembimbing : Budianto, ST. MT.

ANALISA KEKUATAN MATERIAL PADA PROSTHESIS TOTAL KNEE JOINT REPLACEMENT

Studi Perbandingan Beberapa Jenis Penampang Buckling Restrained Braces Akibat Beban Aksial dengan Program Bantu Finite Element Analysis

SIMULASI PENGUJIAN TEGANGAN MEKANIK PADA DESAIN LANDASAN BENDA KERJA MESIN PEMOTONG PELAT

BAB IV HASIL PENGUJIAN DAN PEMBAHASAN

Laporan Praktikum Laboratorium Teknik Material 1 Modul A Uji Tarik

MEKANISME KERUNTUHAN BALOK BETON YANG DIPASANG CARBON FIBER REINFORCED PLATE

Tugas Akhir Bidang Studi Desain SAMSU HIDAYAT Dosen Pembimbing Dr. Ir. AGUS SIGIT PRAMONO, DEA.

JURUSAN TEKNIK MESIN Fakultas TeknologiIndustri Institur TeknologiSepuluh Nopember Surabaya 2012

III. METODELOGI. satunya adalah menggunakan metode elemen hingga (Finite Elemen Methods,

SKRIPSI. Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik DANNY PUTRA PRATAMA NIM

ANALISIS TEGANGAN PADA SAMBUNGAN NOSEL MASUK DAN KELUAR BEJANA TEKAN REAKTOR DENGAN MEH

Studi Experimental Pengaruh Fraksi Massa dan Orientasi Serat Terhadap Kekuatan Tarik Komposit Berbahan Serat Nanas

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC)

BAB III METODOLOGI PENELITIAN

BAB IV PEMBAHASAN Analisis Tekanan Isi Pipa

JURNAL TEKNIK ITS Vol. 5, No. 2, (2016) ISSN: ( Print)

Rancang Bangun Sistem Chassis Kendaraan Pengais Garam

IV. HASIL DAN PEMBAHASAN. Dalam penelitian ini, analisis yang dilakukan menggunakan metode elemen

ANALISIS KEKUATAN TABUNG GAS LPG DENGAN BAHAN BAJA SG295 DAN KOMPOSIT MENGGUNAKAN METODE ELEMEN HINGGA

LAMPIRAN A. Tabel A-1 Angka Praktis Plat Datar

BAB II TINJAUAN PUSTAKA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

Bab III Data Perancangan GRP Pipeline

Pengaruh Variasi Fraksi Volume, Temperatur Curing dan Post-Curing Terhadap Karakteristik Tekan Komposit Epoxy - Hollow Glass Microspheres IM30K

ANALISA RESPON HARMONIK STRUKTUR POROS PROPELLER KAPAL MENGGUNAKAN ANSYS WORKBENCH 14.5

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) F-313

BAB I PENDAHULUAN. 1.1 Latar Belakang

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) B-270

SIFAT MEKANIK KOMPOSIT SERAT BAMBU DENGAN/TANPA PELAPISAN

MODIFIKASI DESAIN RANGKA SANDARAN KURSI PADA PERANGKAT RENOGRAF TERPADU

Analisa Pemasangan Loop Ekspansi Akibat Terjadinya Upheaval Buckling pada Onshore Pipeline

Transkripsi:

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 1 Analisa Numerik Pengaruh Tekanan Hidrostatik pada Material Komposit dengan Ratio Perbandingan 60% Carbon Fibre 40% Epoxy yang Dipadukan dengan Metal Liner pada Bagian Hull AUV ITS 01B Natan Henri Soplantila, Putu Suwarta Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia e-mail: Putu_Suwarta@me.its.ac.id Abstrak-Perkembangan teknologi untuk eksplorasi laut dalam telah mengalami kemajuan yang signifikan, salah satu hasilnya adalah Autonomous Underwater Vehicle. Kapal selam ini merupakan pengembangan dari ROV ( Remotely Operated Vehicle) dimana pengendalian langsung oleh manusia pada ROV melalui kabel (tether) digantikan oleh program misi yang dimasukkan ke dalam sistem kendali AUV, sehingga AUV dapat menjalankan misi secara Autonomous (mandiri). Keunggulan AUV ini membuat AUV layak untuk dikembangkan baik untuk kepentingan sipil maupun pertahanan dan keamanan. AUV terdiri dari 3 bagian yaitu Nose, Hull, dan Tail, dimana bagian Hull perlu perhatian khusus dalam perancangan AUV karena pada bagian ini peralatan-peralatan utama misi AUV ditempatkan. Penelitian ini bertujuan untuk menganalisa kemampuan material Hull AUV yang terbuat dari material komposit dengan ratio perbandingan 60 % Carbon Fibre T700 24k dan 40% Bhispenol Epoxy A Type yang dipadukan dengan metal liner saat mengalami tekanan hidrostatik air laut dengan variasi kedalaman, 75, dan meter menggunakan bantuan perangkat lunak FEM. Simulasi yang dilakukan meliputi pemilihan material, penentuan boundary condition, penentuan beban, dan output hasil simulasi. Parameter yang akan diukur adalah distribusi tegangan dan regangan pada Hull AUV. Hasil yang didapatkan dari penelitian ini adalah tegangan maksimum yang bekerja untuk material hybrid composite pada kedalaman meter adalah 55,6 MPa, kedalaman 75 meter adalah 80,9 MPa, dan kedalaman meter adalah 106 MPa. Tegangan maksimum yang bekerja untuk material stainless steel 304 pada kedalaman meter sebesar 101 MPa, untuk kedalaman 75 meter sebesar 147 MPa, dan untuk kedalaman meter sebesar 193 MPa. Pengurangan tegangan yang dicapai dengan penggunaan hybrid composite untuk kedalaman meter, 75 meter, dan meter masing-masing adalah sebesar 44,95 %, 44,96 %, dan 45,08 %. Kata Kunci-Hybrid Composite, Metal Liner, Tekanan Hidrostatik. menyelesaikan misi pada kedalaman yang sulit dilakukan oleh kapal selam berawak, baik militer maupun komersial. Perkembangan teknologi UUV (Underwater Unmanned Vehicle) dimulai dari ROV (Remotely Operated Vehicle) yaitu wahana tanpa awak yang dikendalikan langsung oleh manusia lewat tether (kabel, serat optik) dan saat ini melangkah ke tahap yang lebih maju yaitu AUV (Autonomous Underwater Vehicle). Berbeda dengan ROV, rencana misi AUV yang telah ditentukan sebelumnya dimasukkan ke dalam sistem kendali, sehingga AUV beroperasi secara mandiri (autonomous). Tenaga manusia hanya diperlukan untuk mengawasi AUV saat menjalankan misi. Bagian yang perlu perhatian khusus dalam merancang AUV ITS adalah badan AUV yang disebut Hull. Hull akan menerima gaya eksternal dari lingkungan (air laut) saat beroperasi, sehingga dibutuhkan material yang mampu menahan gaya eksternal yang bekerja, karena pada bagian Hull sebagian besar peralatan misi AUV ditempatkan. Hasil yang diharapkan dari penelitian ini adalah dapat diketahui karakteristik material hybrid composite untuk Hull AUV ITS ketika terkena beban eksternal akibat tekanan air laut. II. TINJAUAN PUSTAKA A. Penelitian Terdahulu Penelitian tentang pengaruh tekanan hidrostatik terhadap bagian hull AUV telah dilakukan di banyak negara. Beberapa jurnal yang dipilih untuk menjadi acuan bagi penelitian ini adalah jurnal yang disusun oleh Khairul Izman Abdul Rahim, A R Othman, dan Mohd Rizal Ashad [1]. Mereka menganalisa kemampuan silinder yang terbut dari hybrid composite yang terdiri dari E-Glass/Epoxy yang dipadukan dengan metal liner untuk beroperasi sampai kedalaman 200 meter di bawah permukaan laut.hasil penelitian ini adalah tegangan yang bekerja pada silinder E- glass-epoxy sebesar 441,275 Nm -2 dan displacement yang terjadi sebesar 0,293E -4. I. PENDAHULUAN Perkembangan teknologi untuk eksplorasi laut dalam telah mengalami kemajuan yang signifikan. Salah satu hasil pengembangan teknologi tersebut adalah wahana bawah air tak berawak (Unmanned Underwater Vehicle) yang mampu

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 2 dalam letak suatu bagian zat cair, semakin besar tekanan pada bagian itu. Persamaan tekanan hidrostatik : P = ρ fluida g h (5) Karena adannya tekanan atmosfir di permukaan zat cair sebesar P atmosphere, maka tekanan absolut pada kedalaman h adalah : P = ρ fluida g h + P atmosphere (6) Gambar 1. Hybrid composite dengan metal liner berupa stainless steel[1] Penelitian yang lain dilakukan oleh Chul-Jin Moon, In- Hoon Kim, Bae-Hyeon Choi, Jin-Hwe Kweon, Jin-Ho Choi[1]. Spesimen yang digunakan adalah silinder komposit yang terdiri dari Carbon Fibre jenis T700 24k dengan sudut [+60/90] dan Bhispenol A Type Epoxy[2]. Silinder tersebut disimulasikan menggunakan alat khusus yang mewakili tekanan hidrostatik air laut hingga 0 meter. Hasil yang didapat dari penelitian ini adalah silinder komposit dengan sudut [+60/90] mampu menahan tegangan buckling yang terjadi sebesar 7,16 MPa. C. Tegangan yang bekerja pada fibre-reinforced composite material[3]. Tegangan yang bekerja pada material yang diperkuat oleh serat ( fibre ) A. Combined loading pada silinder bertekanan[4]. Gambar 3.(a) Tegangan hoop pada silinder bertekanan. (b) tegangan aksial pada silinder bertekanan. Persamaan tekanan yang bekerja pada silinder bertekanan Σ Fx = 0; 2[σ 1 (t dy)] p(2r dy) = 0, (1) sehingga σ 1 adalah σ 1 = (2) Keterangan Arah 1 : arah fibre (sumbu x) Arah 2 : arah matriks ( sumbu y) Arah 3 : arah matriks (sumbu z) Gambar 2. Tegangan yang bekerja pada fibre reinforced composite material. D. Equation of State (EOS) material komposit. Pemodelan komposit pada penelitian ini membutuhkan Equation of State (EOS) tipe orthogonal dengan persamaan sebagai-berikut. 1. Young s Modulus pada bidang 1 (E 1 ) 2. Tegangan normal pada bidang 1 (σ 1 ) 3. Regangan pada bidang 1 (ε 1 ) (7) (8) (9) σ 1 = Tegangan hoop (N) p = Tekanan (N/m 2 ) t = Tebal silinder (m) r = Jari-jari silinder (m) Σ Fy = 0; σ 2 (2πrt) p(πr) 2 (3) σ 2 = (4) σ 2 = Tegangan hoop (N) p = Tekanan (N/m 2 ) t = Tebal silinder (m) r = Jari-jari silinder (m) B. Tekanan Hidrostatik Tekanan di dalam fluida tak bergerak yang diakibatkan oleh adanya gaya gravitasi disebut tekanan hidrostatik. Tekanan di dalam zat cair yang disebabkan oleh adanya gaya gravitasi yang bekerja pada tiap bagian zat cair. Besar tekanan hidrostatik bergantung pada kedalaman, makin 4. Poisson s ratio pada bidang 1 arah 2 (v 12 = v 13 ) 5. Regangan pada bidang 2 (ε 2 ) 6. Tegangan normal pada bidang 2 (σ 2 ) 7. Young s modulus pada bidang 2 (E 2 = E 3 ) (10) (11) (12) (13) (14) (15) (16) (17)

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 3 8. Regangan pada biang 3 (ε 3 ) 9. Poisson s ratio pada bidang 2 arah 3 (v 23 ) (18) (19) (20) (21) III. METODE PENELITIAN Penelitian ini akan dianalisa secara numerik untuk mendapatkan data yang dibutuhkan yaitu nilai tegangan dan regangan yang bekerja pada bagian Hull AUV ITS. 10. Shear modulus pada bidang 1 arah 2 (G 12 = G 13 ) (21) 11. Shear modulus pada bidang 2 arah 3 (G 23 ) keterangan : f : fibre m : matriks (22) E. Analisa Kegagalan. 1. Kriteria Kegagalan Tsai Wu[3]. Kriteria kegagalan Tsai Wu digunakan untuk menganalisa kegagalan yang terjadi pada material orthotropic, yaitu material yang memiliki nilai modulus elastisitas berbeda di setiap arah bidang. Material dinyatakan tidak mengalami kegagalan jika nilai kriteria yang didapatkan kurang atau sama dengan satu. Persamaan kriteria kegagalan Tsai Wu Keterangan : F 1 : F 2 : F 11 : F 22 : F 66 : σ 1 : σ 2 : (22) Gambar 4. Dimensi AUV ITS 01b. Penelitian ini dimulai dengan studi literatur mengenai beberapa penerapan tegangan hidrostatik untuk aplikasi pada bagian Hull AUV sebelum analisa numerik. Literatur yang dipelajari berupa jurnal-jurnal tentang penelitian AUV, tugas akhir, dan text book. Data tekanan untuk variasi kedalaman didapatkan dari perhitungan manual yang mengacu pada kriteria kegagalan Tsai Wu. Data sifat mekanik material didapatkan dari jurnal acuan dan literatur, cara melakukan analisis pada perangkat lunak FEM didapatkan melalui literatur.bagian Hull AUV dimodelkan pada perangkat lunak FEM sesuai dimensi sebenarnya. Tahap selanjutnya adalah proses penetapan boundary condition, pemberian tekanan hidrostatik, dan simulasi. Plotting hasil simulasi berupa data, gambar, dan grafik tentang tegangan yang bekerja dan regangan yang terjadi pada bagian Hull AUV. Hasil analisa simulasi berupa tegangan dan regangan dibandingkan dengan jurnal literatur (Chul-Jin Moon, In-Hoon Kim, Bae-Hyeon Choi, Jin-Hwe Kweon, Jin-Ho Choi (2009))[2] dan perhitungan manual yang berdasarkan kriteria kegagalan Tsai Wu. Perubahan tegangan dan regangan pada material hybrid composite akan dibandingkan dengan hasil simulasi pada material stainless steel sesuai dengan variasi kedalaman yaitu, 75, dan meter. Urutan pengerjaan simulasi ini dapat dilihat pada diagram alir penelitian dan diagram alir simulasi berikut. MULAI 2. Kriteria Kegagalan Von Misses. Kriteria kegagalan von misses digunakan untuk menganalisa gagal atau tidaknya material jenis isotropik. Material isotropik adalah material yang memiliki nilai modulus elastisitas sama pada setiap arah bidang. Material dinyatakan tidak mengalami kegagalan apabila nilai tegangan rata-rata yang didapatkan kurang dari nilai yield strength material tersebut. Keterangan : Sy = yield strength dari material σ 1 = tegangan prinsipal arah 1 σ 2 = tegangan prinsipal arah 2 σ 3 = tegangan prinsipal arah 3 (23) STUDI LITERATUR DAN PENGUMPULAN DATA-DATA YANG DIBUTUHKAN PEMODELAN AUV PENERAPAN TEKANAN BERDASARKAN VARIASI KEDALAMAN PLOTTING HASIL SIMULASI VERIFIKASI HASIL SIMULASI DENGAN JURNAL ACUAN DAN PERHITUNGAN MANUAL(KRITERIA KEGAGALAN TSAI WU),HASIL SESUAI? YA ANALISA HASIL SIMULASI KESIMPULAN SELESAI TIDAK Gambar 5. Diagram Alir Penelitian.

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 4 MULAI PREFERENCE PREPROCESSOR : 1.ELEMENT TYPE 2.MATERIAL PROPERTIES 3.SECTION 4.MODELLING 3. MESHING SOLUTION 1.DEFINE BOUNDARY CONDITION 2.DEFINE LOADS 3.SOLVE Tegangan yang bekerja (MPa) 2 200 1 0 75 Kedalaman (meter) hybrid composite stainless steel 304 Gambar 6. Grafik Hasil simulasi pada setiap variasi kedalaman untuk material hybrid composite dan stainless steel 304 (tegangan dan regangan). GENERAL POST PROCESSOR PLOT RESULT VERIFIKASI PARAMETER HASIL SIMULASI DENGAN JURNAL ACUAN DAN HASIL PERHITUNGAN MANUAL BERDASARKAN KRITERIA KEGAGALAN TSAI WU, HASIL SESUAI? TIDAK Tabel 2. Nilai kriteria kegagalan untuk komposit dan stainless steel 304. Kedalaman (meter) 75 Nilai Tsai Wu Failure Criteria Perhitungan Manual -10738343,71-22730029,75-39165855,56 Perangkat Lunak 0,1619 0,2365 0,075588 YA ANALISA HASIL SIMULASI KESIMPULAN Tegangan yang bekerja (MPa) 2 200 1 0 75 perangkat lunak FEM perhitungan manual SELESAI Kedalaman (meter) Gambar 6. Diagram Alir Simulasi III. ANALISA DATA DAN PEMBAHASAN. Tabel 1. EOS komposit Carbon fibre-epoxy Properties Symbol Rule of Mixture Unit E 1 139,4 GPa Young s Modulus E 2 7,1428 GPa E 3 7,1428 GPa v 12 0,268 - Poisson s Ratio v 13 0,268 - v 23 1 - G 12 3,2 GPa Shear Modulus G 13 3,2 GPa G 23 1,7857 GPa Gambar 8. Grafik kriteria kegagalan hasil analisa perangkat lunak FEM vs perhitungan manual (kriteria kegagalan Von Misses. Tabel 2 memberikan informasi bahwa pengurangan tegangan terjadi pada penggunaan material komposit, untuk kedalaman, 75, dan meter masing-masing adalah 44,95%, 44,96%, dan 45,08%. Tabel 3 memberikan informasi bahwa material komposit yang terdiri dari 60% carbon fibre -40% epoxy tidak mengalami kegagalan karena nilai kegagalan yang didapat dari perangkat lunak dan perhitungan manual kurang dari 1, dan untuk material stainless steel juga didapatkan nilai tegangan rata-rata von misses yang lebih kecil dari yield strength material stainless steel, sehingga dinyatakan bahwa material stainless steel tidak mengalami kegagalan. V.KESIMPULAN Kesimpulan yang dapat diambil setelah dilakukan analisa

JURNAL TEKNIK POMITS Vol. 1, No. 2, (2012) ISSN: 2301-9271 5 1. Penambahan Carbon Fibre Epoxy dapat mengurangi tegangan yang bekerja pada silinder stainless steel. 2. Nilai persentase penurunan tegangan tertinggi terjadi pada variasi kedalaman meter yaitu yaitu 45,08 %, sedangkan nilai persentase penurunan tegangan terendah terjadi pada variasi kedalaman meter yaitu 44,95 %. 3. Hasil perhitungan kriteria kegagalan Tsai Wu memberikan informasi bahwa material hybrid composite tidak mengalami kegagalan untuk semua variasi kedalaman. 4. Hasil perhitungan kriteria kegagalan Von Misses memberikan informasi bahwa material stainlees steel AISI 304 tidak mengalami kegagalan untuk semua variasi kedalaman karena nilai tegangan yang bekerja masih berada di bawah nilai yield strength dari material. DAFTAR PUSTAKA 1. Rahim, Khairul Izman Abdul, Othman, A.R, Arshad, Mohd Rizal, 2011. Pressure Hull Development Using Hybrid Composite with Metal Liner Concept, Malaysia. 2. Moon. Chul-Jin, In-Hoon Kim, Bae-Hyeon Choi, Jin- Hwe Kweon, Jin-Ho Choi, 2010. Buckling of filamentwound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications, School of Mechanical and Aerospace Engineering Republic of Korea, Korea. 3. Hyer, M.W, 1998. Stress Analysis of Fiber-Reinforced Composite Materials, Virginia Polytechnic Institute and State University. Singapore. 4. R.C. Hibbeler, 2011. Mechanics Of Material, 8th edition. Prentice Hall, United States of America.