4 HASIL DAN PEMBAHASAN

dokumen-dokumen yang mirip
3 METODE 3.1 Waktu dan Tempat 3.2 Alat dan Bahan 3.3 Metode Penelitian

PEMBUATAN GLUKOSAMIN HIDROKLORIDA (GlcN HCl) DENGAN METODE AUTOKLAF ERNAWATI

2 TINJAUAN PUSTAKA 2.1 Osteoarthritis (OA) 2.2 Glukosamin hidroklorida (GlcN HCl)

Bab IV Hasil Penelitian dan Pembahasan

4 Hasil dan Pembahasan

3. Metodologi Penelitian

Untuk mengetahui pengaruh ph medium terhadap profil disolusi. atenolol dari matriks KPI, uji disolusi juga dilakukan dalam medium asam

4 Hasil dan Pembahasan

Hasil dan Pembahasan

PEMANFAATAN LIMBAH KRUSTASEA DALAM PEMBUATAN GLUKOSAMIN HIDROKLORIDA DENGAN METODE AUTOKLAF

4. Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan

PEMBAHASAN. mengoksidasi lignin sehingga dapat larut dalam sistem berair. Ampas tebu dengan berbagai perlakuan disajikan pada Gambar 1.

BAB III METODOLOGI PENELITIAN

Bab III Metodologi Penelitian

Bab III Metodologi. III.1 Alat dan Bahan. III.1.1 Alat-alat

HASIL DAN PEMBAHASAN. 4.1 Karakterisasi Bahan Baku Karet Crepe

3 Metodologi Penelitian

BAB IV HASIL DAN PEMBAHASAN. Sebelum melakukan uji kapasitas adsorben kitosan-bentonit terhadap

BAB IV. karakterisasi sampel kontrol, serta karakterisasi sampel komposit. 4.1 Sintesis Kolagen dari Tendon Sapi ( Boss sondaicus )

Kadar air % a b x 100% Keterangan : a = bobot awal contoh (gram) b = bobot akhir contoh (gram) w1 w2 w. Kadar abu

Penetapan kadar Cu dalam CuSO 4.5H 2 O

LAMPIRAN. Lampiran 1. Umbi talas (Xanthosoma sagittifolium (L.) Schott) Lampiran 2. Pati umbi talas (Xanthosoma sagittifolium (L.

4. Hasil dan Pembahasan

BAB IV HASIL DAN PEMBAHASAN. M yang berupa cairan berwarna hijau jernih (Gambar 4.1.(a)) ke permukaan Al 2 O 3

PEMANFAATAN LIMBAH KRUSTASEA DALAM PEMBUATAN GLUKOSAMIN HIDROKLORIDA (GlcN HCl) DENGAN METODE AUTOKLAF

BAB III METODOLOGI PENELITIAN. melakukan uji morfologi, Laboratorium Teknik Kimia Ubaya Surabaya. mulai dari bulan Februari 2011 sampai Juli 2011.

III. BAHAN DAN METODE. Lampung Timur, Laboratorium Teknologi Hasil Pertanian Politeknik Negeri

Lampiran 1. Prosedur Analisis Pati Sagu

BAB IV HASIL DAN PEMBAHASAN. 4:1, MEJ 5:1, MEJ 9:1, MEJ 10:1, MEJ 12:1, dan MEJ 20:1 berturut-turut

HASIL DAN PEMBAHASAN

BAB 3 METODOLOGI PERCOBAAN. Alat-alat yang digunakan dalam penelitian ini adalah: Beaker glass 50 ml pyrex. Beaker glass 100 ml pyrex

IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN. metode freeze drying kemudian dilakukan variasi waktu perendaman SBF yaitu 0

PEMBUATAN KHITOSAN DARI KULIT UDANG UNTUK MENGADSORBSI LOGAM KROM (Cr 6+ ) DAN TEMBAGA (Cu)

Bab IV Hasil dan Pembahasan

BAB IV HASIL PERCOBAAN DAN PEMBAHASAN

PENGARUH TEMPERATUR PADA PROSES PEMBUATAN ASAM OKSALAT DARI AMPAS TEBU. Oleh : Dra. ZULTINIAR,MSi Nip : DIBIAYAI OLEH

Lampiran 1. Prosedur Karakterisasi Komposisi Kimia 1. Analisa Kadar Air (SNI ) Kadar Air (%) = A B x 100% C

Gambar IV 1 Serbuk Gergaji kayu sebelum ekstraksi

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT

BAB III METODE PENELITIAN

Bab IV Hasil dan Pembahasan

IV. HASIL DAN PEMBAHASAN

1.Penentuan Kadar Air. Cara Pemanasan (Sudarmadji,1984). sebanyak 1-2 g dalam botol timbang yang telah diketahui beratnya.

Lampiran 1. Prosedur Analisis Karakteristik Pati Sagu. Kadar Abu (%) = (C A) x 100 % B

BAB IV HASIL DAN PEMBAHASAN. Modifikasi Ca-Bentonit menjadi kitosan-bentonit bertujuan untuk

4 Hasil dan Pembahasan

III. METODOLOGI PENELITIAN. dengan tahapan kegiatan, yaitu: pengambilan sampel cangkang udang di PT.

BAB IV HASIL DAN PEMBAHASAN

TITIK LELEH DAN TITIK DIDIH. I. TUJUAN PERCOBAAN : Menentukan titik leleh beberapa zat Menentukan titik didih beberapa zat II.

BAB IV HASIL DAN PEMBAHASAN. (Pandanus amaryllifolius Roxb.) 500 gram yang diperoleh dari padukuhan

LAPORAN PRAKTIKUM STANDARISASI LARUTAN NaOH

4. Hasil dan Pembahasan

BAB III METODE PENELITIAN

4 Hasil dan Pembahasan

BAB 3 METODE PENELITIAN. 3.1 Alat Alat Adapun alat-alat yang digunakan pada penelitian ini adalah: Alat-alat Gelas.

BAB IV HASIL DAN PEMBAHASAN. Pengujian kali ini adalah penetapan kadar air dan protein dengan bahan

3 Metodologi Penelitian

HASIL DAN PEMBAHASAN. Kadar air = Ekstraksi

BAB IV. HASIL DAN PEMBAHASAN. Pragel pati singkong yang dibuat menghasilkan serbuk agak kasar

HASIL DAN PEMBAHASAN y = x R 2 = Absorban

BAB III METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Riset Kimia Jurusan Pendidikan

HASIL DAN PEMBAHASAN

BAHAN DAN METODE Waktu dan Tempat Alat dan Bahan Metode Penelitian Hidrolisis Kitosan A dengan NaOH

III. BAHAN DAN METODE. Penelitian ini dilaksanakan di salah satu industri rumah tangga (IRT) tahu di

BAB III METODE PENELITIAN

BAB IV HASIL DAN PEMBAHASAN. Pada pembuatan dispersi padat dengan berbagai perbandingan

Lampiran 1. Hasil identifikasi sampel

Gambar 2 Penurunan viskositas intrinsik kitosan setelah hidrolisis dengan papain.

BAB IV HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN. Kadar Asetil (ASTM D )

A = log P dengan A = absorbans P 0 = % transmitans pada garis dasar, dan P = % transmitans pada puncak minimum

Titik Leleh dan Titik Didih

Bab IV Hasil Penelitian dan Pembahasan. IV.1 Sintesis dan karaktrisasi garam rangkap CaCu(CH 3 COO) 4.6H 2 O

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Perumusan Masalah

3 Metodologi Penelitian

HASIL DAN PEMBAHASAN. Lanjutan Nilai parameter. Baku mutu. sebelum perlakuan

3 Percobaan. 3.1 Tahapan Penelitian Secara Umum. Tahapan penelitian secara umum dapat dilihat pada diagram alir berikut :

Tabel 3.1 Efisiensi proses kalsinasi cangkang telur ayam pada suhu 1000 o C selama 5 jam Massa cangkang telur ayam. Sesudah kalsinasi (g)

HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN. Data penetapan kadar larutan baku formaldehid dapat dilihat pada

4 Hasil dan Pembahasan

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. 1. Optimasi pembuatan mikrokapsul alginat kosong sebagai uji

3 Metodologi Penelitian

III. METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan Mei Juni 2014 di Desa Lehan Kecamatan

METODE PENELITIAN. pembuatan vermikompos yang dilakukan di Kebun Biologi, Fakultas

4. Hasil dan Pembahasan

BAB V HASIL DAN PEMBAHASAN. Kulit udang yang diperoleh dari pasar Kebun Roek Ampenan kota

BROWNIES TEPUNG UBI JALAR PUTIH

HASIL DAN PEMBAHASAN. Penelitian I. Optimasi Proses Asetilasi pada Pembuatan Selulosa Triasetat dari Selulosa Mikrobial

BAB I PENDAHULUAN. Kitosan dihasilkan dari kitin dan mempunyai struktur kimia yang sama

HASIL DAN PEMBAHASAN Persiapan dan Ekstraksi Sampel Uji Aktivitas dan Pemilihan Ekstrak Terbaik Buah Andaliman

HASIL DAN PEMBAHASAN Penetapan Kadar Air Hasil Ekstraksi Daun dan Buah Takokak

BAB IV HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN

III. METODE PENELITIAN. Alat yang digunakan yaitu pengering kabinet, corong saring, beaker glass,

BAB VI HASIL DAN PEMBAHASAN

Lampiran 1. Prosedur kerja analisa bahan organik total (TOM) (SNI )

PENGGUNAAN KITOSAN DARI TULANG RAWAN CUMI-CUMI (LOLIGO PEALLI) UNTUK MENURUNKAN KADAR ION LOGAM Cd DENGAN MENGGUNAKAN SPEKTROFOTOMETRI SERAPAN ATOM

Transkripsi:

14 4 HASIL DAN PEMBAHASAN Pembuatan glukosamin hidroklorida (GlcN HCl) pada penelitian ini dilakukan melalui proses hidrolisis pada autoklaf bertekanan 1 atm. Berbeda dengan proses hidrolisis glukosamin pada suhu 90 o C disertai proses pengadukan selama 4 jam yang dilakukan oleh Afridiana (2011), pembuatan glukosamin dengan autoklaf dapat dilakukan tanpa pengadukan dengan waktu pemanasan lebih singkat yakni 1 jam. Pembuatan glukosamin hidroklorida dilakukan dalam dua tahap penelitian pendahuluan dengan menggunakan sampel kitin dan kitosan. 4.1 Pembuatan Glukosamin Hidroklorida dari Kitin Penelitian pendahuluan I dilakukan dengan menggunakan sampel kitin. Sampel dihidrolisis dengan dua ragam perlakuan yakni konsentrasi HCl (18,5%, 12,3%, dan 9,2%) serta waktu pemanasan (30, 60, 90, dan 120 menit) pada tekanan 1 atm. Indikator pertama yang digunakan untuk menentukan keberhasilan hidrolisis kitin menjadi glukosamin hidroklorida adalah tingkat kelarutannya dalam air. Kelarutan glukosamin kitin ditunjukkan pada Tabel 2 dan Gambar 4. Tabel 2 Karakteristik kelarutan, derajat putih, dan rendemen glukosamin hidroklorida dari kitin Perlakuan Derajat Rendemen Kelarutan Waktu (menit) (HCl:Air) putih* gram % 1:2 +++ Tidak Larut 1,72 68,80 30 1:3 ++++ Tidak Larut 2,17 86,80 1:4 ++++ Tidak Larut 2,28 91,20 1:2 ++ Tidak Larut 1,44 57,60 60 1:3 +++ Tidak Larut 1,91 76,40 1:4 ++++ Tidak Larut 1,98 79,20 1:2 +++ Tidak Larut 1,60 64,00 90 1:3 ++++ Tidak Larut 1,83 73,20 1:4 ++++ Tidak Larut 2,11 84,40 1:2 + Tidak Larut 0,78 31,20 120 1:3 +++ Tidak Larut 1,73 69,20 1:4 ++++ Tidak Larut 1,85 74,00 Ket: + hitam ++ tidak hitam +++ sedikit putih ++++ lebih putih *penilaian dilakukan secara visual

15 Tabel 2 memperlihatkan bahwa dari semua perlakuan yang diberikan, tidak ada sampel glukosamin yang larut dalam air. Hal ini menunjukkan bahwa kitin belum terhidrolisis menjadi glukosamin. Konsentrasi HCl yang digunakan diduga terlalu rendah sehingga belum cukup mampu menghidrolisis kitin menjadi glukosamin meskipun perlakuan tekanan telah diterapkan. Kralovec dan Barrow (2008) menyatakan bahwa kadar asam yang rendah menyebabkan terjadinya hidrolisis yang tidak sempurna. Semua sampel kitin dari setiap perlakuan asam dan waktu pemanasan menunjukkan tingkat kelarutan yang hampir sama seperti ditunjukkan Gambar 7. Fase cair Fase padat Gambar 7 Kelarutan glukosamin hidroklorida dari kitin Sesaat setelah dilarutkan, sampel membentuk dua fase yang berbeda yakni fase cair dan padatan. Karakter kelarutan sampel ini jauh berbeda dengan karakteristik glukosamin seperti yang diungkapkan oleh Kralovec dan Barrow (2008) bahwa glukosamin hidroklorida bersifat larut sempurna dalam air bersuhu 20 o C dengan konsentrasi 100 mg/ ml. Berdasarkan data kelarutan yang ditunjukkan Tabel 2 dapat disimpulkan bahwa sampel belum terhidrolisis menjadi glukosamin. Hidrolisis glukosamin dengan metode autoklaf pada dasarnya merupakan sistem kerja yang menggabungkan fungsi tekanan dan asam. Tekanan berperan penting dalam pemotongan ikatan polimer menjadi unit-unit yang lebih kecil. Asam HCl berperan dalam pembentukan ikatan dengan gugus amin NH 2 setelah gugus asetil COCH 3 terpotong. Mekanisme kinerja asam dan tekanan terhadap sampel dapat dijelaskan sebagai berikut: glukosamin hidroklorida dapat larut dalam air karena adanya ikatan gugus OH dan NH 2 Cl. Kitin merupakan polimer yang masih mengandung gugus asetil COCH 3 yang terikat kuat pada gugus amin NH 2. Gugus asetil ini harus dihilangkan sehingga gugus amin dapat berikatan

16 dengan Cl dari asam HCl dan membentuk ikatan NH 3 Cl. Fungsi tekanan pada autoklaf hanya membantu proses pemotongan rantai polimer kitin menjadi lebih pendek. Tekanan tidak dapat memotong gugus asetil karena gugus asetil hanya dapat dipisahkan oleh basa kuat seperti KOH atau NaOH. Adanya gugus asetil menghalangi ion Cl untuk berikatan dengan gugus amin NH 2 membentuk kompleks NH 3 Cl sehingga sampel glukosamin dari kitin tidak bersifat larut air. Kitin cenderung stabil pada asam dan basa lemah namun dapat larut pada asam kuat dengan konsentrasi tinggi. Glukosamin yang dibuat dari kitin diduga dapat terhidrolisis sempurna pada penggunaan HCl dengan konsentrasi lebih tinggi serta waktu pemanasan yang cukup panjang. Akan tetapi, hal ini dirasa kurang efisien dari segi biaya dan waktu hidrolisis. Merujuk pada penelitian hidrolisis glukosamin hidroklorida dari kitosan oleh Rismawan (2012), maka dilakukan uji pendahuluan tahap 2 untuk menentukan teknik hidrolisis glukosamin hidroklorida yang lebih efisien. 4.2 Pembuatan Glukosamin Hidroklorida dari Kitosan Merujuk pada penelitian Rismawan (2012) yang telah berhasil membuat glukosamin hidroklorida dari kitosan, maka dilakukan penelitian pendahuluan 2 dengan menggunakan sampel kitosan. Perlakuan terbaik Rismawan (2012) adalah penggunaan HCl 22% (v/v) dengan waktu pemanasan selama 2 jam pada autoklaf bertekanan 1 atm. Peubah yang diragamkan pada penelitian ini adalah konsentrasi asam yang diberikan berkisar antara 0 hingga 22% (v/v) dengan interval 2%. Perlakuan waktu pemanasan yang diberikan adalah 1 jam. Karakteristik hasil uji pendahuluan 2 ditunjukkan oleh Tabel 3. Tingkat kelarutan pada uji pendahuluan 2 juga menjadi indikator pertama yang digunakan untuk menentukan keberhasilan hidrolisis kitosan menjadi glukosamin. Tabel 3 menunjukkan bahwa semua sampel (kecuali kontrol) dari setiap perlakuan bersifat larut sempurna dalam air. Kelarutan ini merupakan indikasi awal yang menunjukkan bahwa sampel kitosan telah terhidrolisis menjadi glukosamin hidroklorida. Parameter yang dilihat selanjutnya setelah kelarutan ialah warna, penampakan derajat putih, konsentrasi HCl, dan nilai rendemen glukosamin. Karakteristik glukosamin hidroklorida disajikan pada Gambar 6.

17 Tabel 3 Karakteristik glukosamin dari kitosan pada perlakuan asam yang berbeda HCl Derajat Rendemen Penampakan Warna Kelarutan (%) putih gr % 0 Serpihan Kekuningan ++ Tidak 2,50 100 Larut 2 Butiran kasar Coklat jernih ++ Larut 2,34 93,80 4 Butiran kasar Hitam + Larut 2,05 82,00 6 Serbuk Kecoklatan +++ Larut 2,02 80,92 8 Serbuk Putih ++++ Larut 1,74 69,80 kekuningan 10 Serbuk Abu kecoklatan +++ Larut 1,83 73,20 12 Serbuk Abu kecoklatan +++ Larut 1,52 60,80 14 Serbuk Putih keabuan ++++ Larut 1,42 56,80 16 Serbuk Putih keabuan ++++ Larut 1,26 50,40 18 Serbuk Hitam + Larut 1,21 48,56 20 Serbuk Hitam + Larut 1,23 49,44 22 Serbuk Hitam + Larut 1,30 51,88 Ket: + hitam ++ tidak hitam +++ sedikit putih ++++ lebih putih Berdasarkan kriteria parameter yang ada pada Tabel 3, perlakuan hidrolisis dengan asam 8% ditetapkan sebagai perlakuan terbaik glukosamin yang akan dikarakterisasi lebih lanjut. Sampel terbaik diperbanyak empat kali lipat untuk kemudian dilakukan uji lanjutan meliputi uji pengurangan bobot loss on drying LoD, uji titik leleh, dan uji serapan FTIR. 100 90 80 70 60 50 40 30 20 10 0 93.80 100 100 100 82.00 80.92 75 69.80 73.20 75 75 60.80 56.80 50 50 50 50.40 48.56 49.44 51.88 25 25 25 0 2 4 6 8 10 12 14 16 18 20 22 0.00 HCl (%) rendemen (%) Derajat putih Gambar 6 Grafik karakteristik rendemen dan derajat putih GlcN

18 4.2.1 Kelarutan Glukosamin Hidroklorida (GlcN HCl) Pada uji pendahuluan 2 kelarutan glukosamin hidroklorida dilakukan dengan menggunakan air bersuhu 27 o C. Pada uji lanjutan, uji kelarutan dilakukan kembali dengan menggunakan air bersuhu 20 o C. Semakin tinggi suhu pelarut yang digunakan maka kelarutan zat akan terjadi lebih cepat. Kelarutan cenderung berjalan lambat dalam pelarut bersuhu rendah. Suatu zat yang larut dengan mudah pada pelarut bersuhu rendah mengindikasikan bahwa zat terlarut memiliki tingkat kelarutan yang baik. Kelarutan glukosamin hidroklorida 8% yang dihidrolisis dari kitosan ditunjukkan pada Gambar 8. Gambar 8 Glukosamin hidroklorida 8% setelah dilarutkan Glukosamin dari kitosan memiliki tingkat kelarutan yang baik. Berbeda dengan sampel glukosamin dari kitin pada pendahuluan 1, glukosamin yang dibuat dari kitosan bersifat larut sempurna bahkan pada air dingin bersuhu 20 o C. Berbeda dengan kitin, kitosan telah kehilangan gugus asetilnya. Ketika sampel diganti kitosan, tekanan pada autoklaf tidak lagi memutus gugus asetil melainkan hanya memotong polimer kitosan menjadi unit yang lebih kecil sehingga ion Cl - dari HCl lebih mudah berikatan dengan dengan gugus amin kitosan membentuk NH 3 Cl. Adanya ikatan hidroksil antara O-H dan NH 3 Cl ini menyebabkan glukosamin hidroklorida bersifat larut dalam air. Menurut standar USP (2006) penampakan glukosamin secara visual adalah putih. Ketika glukosamin dilarutkan dalam air, larutan akan cenderung jernih dan tidak berwarna. Hal ini berbeda dengan warna glukosamin hidrolisis sebagaimana tertera pada Gambar 7. Setelah dilarutkan. warna glukosamin hasil hidrolisis juga jernih namun cenderung kekuningan. Hal ini diduga terjadi karena warna asal sampel (kitosan) yang masih mengandung sedikit pigmen atau sedikit protein

19 pengotor. Penampakan sampel kitosan komersial yang digunakan pada penelitian ditunjukkan pada Gambar 9. Gambar 9 Kitosan udang untuk pembuatan GlcN HCl 4.2.2 Penampakan, Warna, dan Derajat Putih Glukosamin Hidroklorida (GlcN HCl) Kriteria penampakan glukosamin terbaik dilihat dari tekstur glukosamin setelah dikeringkan dan digerus. Penampakan dinilai baik jika sampel berbentuk serbuk halus setelah penggerusan. Warna dan derajat putih glukosamin dianggap baik jika sesuai atau mendekati warna dan derajat putih glukosamin standar. Penampakan glukosamin hasil penelitian dapat dilihat pada Gambar 10. Gambar 10 Penampakan glukosamin hasil penelitian Secara umum parameter visual yang meliputi penampakan, warna, dan derajat putih glukosamin hidrolisis hampir mirip dengan glukosamin standar. Glukosamin hasil pembuatan memiliki tekstur serbuk berukuran sekitar 60 mesh. Berbeda dengan glukosamin yang dibuat dari kitin, glukosamin yang dibuat dari kitosan sangat mudah dihaluskan. Hal ini diduga dapat terjadi karena ikatan

20 monomer pada kitosan telah terurai sempurna selama proses hidrolisis menjadi glukosamin. Kitosan telah terurai menjadi molekul-molekul glukosamin yang lebih pendek dan bersifat polar (terdapat gugus O-H) sehingga larut dalam air. Zat molekular yang memiliki molekul polar mudah dilarutkan dalam air. Gugus hidroksil O-H yang terikat pada atom karbon suatu molekul merupakan tapak untuk interaksi dwikutub dengan molekul air. Tarikan ini menggantikan interaksi zat-zat terlarut (Irawadi et al. 2006) sehingga setiap molekul glukosamin yang berair akan bergerak menuju larutan. 4.2.3 Loss on Drying (LoD) Uji pengurangan bobot didesain untuk mengukur jumlah air dan komponen volatil yang mungkin masih terkandung dalam sampel ketika dikeringkan pada kondisi tertentu. Glukosamin dengan bobot tertentu dipanaskan dalam oven pada suhu 105 o C selama 2 jam. Uji LoD pada penelitian ini dilakukan secara duplo. Sesuai dengan kriteria mutu USP, nilai LoD glukosamin hidroklorida tidak lebih dari 1%. Pengurangan bobot GlcN setelah pemanasan ditunjukkan pada Tabel 4. Tabel 4 Pengurangan bobot glukosamin setelah pemanasan Cawan Bobot GlcN awal (gr) Bobot GlcN akhir (gr) LoD (%) 1 0,3 0,27 1 2 0,3 0,275 0,83 Rata-rata 0,92 Rata-rata hasil uji menunjukkan bahwa nilai pengurangan bobot glukosamin setelah pemanasan 105 o C selama 2 jam tidak lebih dari 1% yakni hanya mencapai 0,92%. Nilai LoD ini telah sesuai dengan standar yang disyaratkan oleh USP (2006). 4.2.4 Rendemen Glukosamin Hidroklorida (GlcN HCl) Nilai rendemen dihitung dengan membandingkan jumlah bobot sampel akhir dengan sampel awal kitosan. Rendemen terbesar glukosamin dengan warna dan penampakan terbaik dihasilkan pada perlakuan asam 8% yakni 69,80%. Nilai rendemen glukosamin pada penelitian ini lebih besar jika dibandingkan dengan nilai rendemen penelitian sebelumnya yang hanya mencapai 51,04%.

21 Adanya perbedaan nilai rendemen glukosamin ini diduga dipengaruhi oleh faktor suhu, konsentrasi asam, waktu pemanasan, dan tekanan yang diberikan. Mojarrad et al. (2007) menyatakan bahwa perbandingan antara waktu hidrolisis dan konsentrasi asam merupakan faktor yang menentukan nilai rendemen sampel (glukosamin). Nilai rendemen GlcN yang dihasilkan menurun seiring dengan peningkatan konsentrasi asam dan waktu reaksi. Penurunan rendemen diduga terjadi karena adanya reaksi samping sehingga terbentuk zat pengotor dan menurunkan nilai rendemen GlcN yang dihasilkan. Hasil penelitian pada Gambar 5 sesuai dengan Mojarrad et al. (2007). Seiring dengan peningkatan konsentrasi asam yang digunakan. jumlah rendemen yang dihasilkan cenderung semakin menurun. Nilai rendemen sedikit meningkat pada konsentrasi asam 20% dan 22%. Hal ini diduga terjadi karena pemutusan polimer kitosan menjadi glukosamin cenderung lebih cepat pada konsentrasi asam tersebut yang dibantu dengan pengaruh tekanan tinggi dari autoklaf. Afridiana (2011) dan Rismawan (2012) berturut-turut memerlukan HCl dengan konsentrasi 37% dan 22% (v/v) untuk memperoleh glukosamin dengan karakteristik terbaik. Akan tetapi, pada penelitian ini konsentrasi asam 8% telah mampu menghidrolisis glukosamin dengan karakter terbaik. Hal ini terjadi karena adanya faktor tekanan yang diberikan saat hidrolisis. Kombinasi perlakuan antara tekanan dan suhu mempercepat proses depolimerisasi kitosan menjadi glukosamin sehingga waktu pemanasan menjadi lebih singkat dengan konsentrasi asam yang cukup rendah. Pemberian tekanan pada proses dapat menyebabkan terjadinya puffing (Pamungkas et al. 2008). Puffing dapat diartikan sebagai suatu proses pemasukan gas ke dalam bahan yang kemudian terjadi ekspansi untuk kemudian dilepaskan dan mengakibatkan pengembangan/ pemutusan terhadap struktur luar dari struktur seluler sebuah produk (Tabeidie 1992 dalam Pamungkas et al. 2008). Pengembangan struktur ini terjadi sebagai akibat dari pemasukan udara (gas) secara paksa serta pelepasan tekanan secara tiba-tiba yang menghasilkan struktur permukaan yang lebih porous (Pamungkas et al. 2008). Di bawah kondisi suhu dan tekanan yang sesuai serta adanya penambahan katalis. ikatan rangkap antara dua atom karbon dapat terbuka atau terputus dan

22 digantikan oleh ikatan jenuh tunggal dari unit monomer tunggal yang terbuka dari sisi lainnya sehingga membentuk satu rantai panjang berulang yang terdiri atas unit-unit/ monomer (Brinson dan Brinson 2008). Waktu yang diperlukan untuk hidrolisis glukosamin pada penelitian ini hanya 1 jam karena proses pemutusan ikatan kitosan menjadi glukosamin berlangsung lebih cepat dengan adanya pengaruh tekanan. Tanpa adanya perlakuan kombinasi tekanan dan suhu, proses hidrolisis glukosamin akan cenderung lambat. 4.2.5 Titik Leleh Glukosamin Hidroklorida (GlcN HCl) Hasil analisis titik leleh menunjukkan titik leleh GlcN berkisar pada suhu 190-193 o C. Hal ini menunjukkan bahwa GlcN hasil pembuatan lebih bersih. Semakin banyak pengotor atau zat asing yang terkandung dalam glukosamin maka titik leleh akan semakin menurun. Kisaran nilai titik leleh glukosamin hidrolisis sesuai dengan penelitian Kralovec dan Barrow (2008) yakni 190-194 o C. Titik leleh hasil pembuatan juga lebih baik dari penelitian Afridiana (2011) yang berkisar antara 187-189 o C pada penggunaan asam 37%. Mojarrad et al. (2007) menpembuatan glukosamin hidroklorida dengan titik leleh 190-192 o C pada penggunaan konsentrasi asam 32%. Kisaran titik leleh glukosamin hidroklorida hasil hidrolisis ditunjukkan oleh Tabel 5. Tabel 5 Kisaran suhu titik leleh glukosamin hidroklorida Tabung kapiler Kisaran suhu ( o C) 1 190,0-192,0 2 190,0-192,0 3 191,0-193,0 Rata-rata 191,3 4.2.6 Spektrum Glukosamin Hidroklorida (GlcN HCl) Salah satu cara yang dapat digunakan untuk menetukan tingkat keberhasilan hidrolisis glukosamin hidroklorida ialah dengan menggunakan analisis FTIR. Analisis FTIR memanfaatkan sinar infra merah pada kisaran bilangan gelombang 800-4000 cm -1. Hasil pengujian FTIR glukosamin hidroklorida hasil hidrolisis dapat dilihat pada Lampiran 1-3. Hasil pengukuran spektrum FTIR menunjukkan bahwa spektrum GlcN HCl standar (Lampiran 1) memperlihatkan gugus OH- yang dominan dengan garis

23 lebar dan kuat pada bilangan gelombang 3066 cm -1 sedangkan pada GlcN HCl hasil hidrolisis (Lampiran 2) menunjukkan gugus OH- yang dominan pada bilangan gelombang 3000-3263 cm -1. Brugnerotto (2001) menambahkan bahwa monomer GlcN HCl akan menunjukkan gugus OH- pada 3350 cm -1 sedangkan apabila berbentuk polimer gugus OH- semakin mendekati 3450 cm -1. Gugus N-H yang dominan yaitu pada glukosamin hasil hidrolisis adalah 3333 cm-1. Spektrum tersebut hampir mirip dengan Mojarrad et al. (2007) yaitu 3333-3380 cm -1. Pita serapan gugus N-H amida primer ditunjukkan pada 1635 cm -1 sedangkan pita serapan amida sekunder berada pada bilangan 1566 cm -1. Pada bentuk sampel padat. pita amida primer berada pada kisaran bilangan gelombang 1640-1620 cm -1 dan pita amida sekunder berada pada daerah bilangan 1550 cm -1 (Pavia et al. 2009). Pita serapan juga menunjukkan nilai yang hampir sama dengan hasil penelitian Mojarrad et al. (2007) yakni 1535-1583 cm -1. Pita serapan gugus C-N GlcN HCl hasil hidrolisis ditunjukkan pada bilangan gelombang 1381 cm -1 sedangkan pada standar 1288 cm -1. Nilai hidrolisis ini hampir mendekati literatur bahwa pita serapan C-N ditunjukkan pada 1394 cm -1 (Mojarrad et al. 2007). Secara keseluruhan pita serapan gugus khas pada GlcN hasil hidrolisis menunjukkan kemiripan dengan GlcN HCl standar dan hasil penelitian lainnya namun masih terdapat sedikit selisih pada bilangan gelombang yang ditampilkan. Hal ini dapat terjadi karena adanya range nilai serapan gelombang setiap gugus fungsi. Sedikit perbedaan serapan gelombang pada standar dan sampel dianggap normal atau wajar selama bilangan gelombang yang diserap sampel masih berada dalam range bilangan gelombang gugus fungsinya. 4.3 Keunggulan Pembuatan GlcN HCl dengan Autoklaf Selama ini, proses produksi glukosamin hidroklorida GlcN HCl secara kimiawi dilakukan melalui prosedur yang cukup rumit dengan penggunaan bahan kimia yang relatif mahal. Di samping itu, proses produksi yang dilakukan (seperti pengadukan langsung) dinilai kurang aman dan dapat mengancam keselamatan pekerja apalagi dengan adanya penggunaan asam HCl pada konsentrasi tinggi. Kondisi ini menuntut adanya metode baru produksi glukosamin yang lebih aman dan praktis. Salah satu metode yang dapat diterapkan adalah melalui modifikasi suhu dan tekanan misalnya dengan penggunaan autoklaf.

24 Produksi GlcN HCl dengan metode autoklaf memiliki beberapa keunggulan dari segi keamanan, proses produksi, waktu, dan biaya produksi. Melalui metode autoklaf, sampel tidak memerlukan proses pengadukan langsung. Sampel dalam Erlenmeyer cukup dimasukkan ke dalam autoklaf kemudian di set pada tekanan maksimum 1 atm selama selang waktu tertentu. Cara ini mudah dan lebih aman dilakukan jika dibandingkan dengan proses pengadukan secara langsung. Pembuatan GlcN HCl oleh Afridiana (2011) memerlukan proses pengadukan kontinyu dengan pemanasan selama 4 jam sedangkan pembuatan GlcN dengan autoklaf memerlukan waktu lebih singkat yakni 1 jam. Ditinjau dari segi biaya produksi, pembuatan GlcN dengan metode autoklaf lebih efisien karena perlakuan terbaik dapat diperoleh dengan menggunakan bahan kimia teknis (HCl dan Isoprohyl Alcohol) pada konsentrasi rendah yakni 8%. Selain itu, pembuatan glukosamin hidroklorida dengan metode autoklaf dapat diproduksi dalam jumlah besar (scale up) dengan mudah.