ALTERNATIF PERENCANAAN ULANG DINDING PENAHAN TANAH PADA OPRIT FLYOVER TARUM BARAT CIKARANG

dokumen-dokumen yang mirip
ALTERNATIF PERENCANAAN ULANG DINDING PENAHAN TANAH PADA OPRIT FLYOVER TARUM BARAT CIKARANG. Mahasiswa : Harmansyah

Perencanaan Pondasi Jembatan dan Perbaikan Tanah untuk Oprit Jembatan Overpass Mungkung di Jalan Tol Solo-Ngawi-Kertosono STA


Alternatif Metode Perbaikan Tanah untuk Penanganan Masalah Stabilitas Tanah Lunak pada Areal Reklamasi di Terminal Peti Kemas Semarang

PERENCANAAN ABUTMEN DAN ALTERNATIF JALAN PENDEKAT JEMBATAN BRAWIJAYA KEDIRI. Wilman Firmansyah

JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: ( Print D-44

Perencanaan Sistem Perbaikan Tanah Dasar Untuk Area Pembangunan Dan Jalan Pada Proyek Onshore Receiving Facilities Komplek Maspion - Gresik

PERENCANAAN SISTEM PERBAIKAN TANAH DASAR TIMBUNAN pada JEMBATAN KERETA API DOUBLE TRACK BOJONEGORO SURABAYA (STA )

BAB I PENDAHULUAN. daerah laut seluas kira-kira 1400 ha (kirakira

ZULFIKAR JAUHARI NRP

Nila Sutra ( )

II. METODOLOGI Metode yang digunakan dalam Tugas Akhir ini ialah sebagai berikut :

RINTA ANGGRAINI

ALTERNATIF METODE UNTUK PENANGANAN MASALAH STABILITAS TANAH LUNAK PADA AREAL REKLAMASI DI TERMINAL PETI KEMAS SEMARANG

ARDYCHA PRAYUDHA NRP

Ir. Endang Kasiati, DEA

PENERAPAN REKAYASA NILAI PADA PROYEK PEMBANGUNAN BANK JATIM KEDIRI

JURNAL TEKNIK ITS Vol. 6, No. 2, (2017) ISSN: ( Print) D-140

PERENCANAAN PERKUATAN TANAH PADA LERENG GUNUNG WILIS, DESA BODAG, KECAMATAN KARE, KABUPATEN MADIUN

Alternatif Perencanaan Gedung 3 Lantai pada Tanah Lunak dengan dan Tanpa Pondasi Dalam

PERENCANAAN PERBAIKAN TANAH METODE PRELOADING DENGAN KOMBINASI PEMASANGAN PVD PADA PROYEK REKLAMASI PANTAI ANCOL TIMUR JAKARTA UTARA

TUGAS AKHIR SIMON ROYS TAMBUNAN

I.Pendahuluan: II.Tinjauan Pustaka III. Metodologi IV. Analisa Data V. Perencanaan Perkerasaan dan Metode Perbaikan Tanah. VI.Penutup (Kesimpulan dan

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

PERENCANAAN PERKUATAN TANAH DASAR DI BAWAH KONSTRUKSI TANGGUL WADUK JABUNG, LAMONGAN

PENDAHULUAN

TUGAS AKHIR MUHAMMAD RIDWAN OLEH : PROGRAM STUDI DIPLOMA IV TEKNIK SIPIL INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

Analisis Konsolidasi dengan Menggunakan Metode Preloading dan Vertical Drain pada Areal Reklamasi Proyek Pengembangan Pelabuhan Belawan Tahap II

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

BAB 1 PENDAHULUAN. mempertahankan tanah yang memiliki elevasi lebih tinggi dibandingkan tanah di


ANALISA PERENCANAAN PERBAIKAN KELONGSORAN LERENG DI DESA TANJUNG REDEB KABUPATEN BERAU KALIMANTAN TIMUR (STA S/D STA 0+250)

1. Pendahuluan 2. Metodologi 3. Konstruksi Oprit dengan Pile Slab 4. Metode Pelaksanaan 5. Analisa Biaya 6. Penutup

BAB III METODOLOGI. Bab III Metodologi 3.1. PERSIAPAN

Alternatif Perbaikan Perkuatan Lereng Longsor Jalan Lintas Sumatra Ruas Jalan Lahat - Tebing tinggi Km

JURNAL TEKNIK ITS Vol. 7, No. 1 (2018) ISSN: ( Print)

Penggalian dengan menggunakan metode kerja yang menjamin stabilitas kemiringan lereng samping dan tidak membahayakan

PERENCANAAN ANGGARAN BIAYA PADA PEMBANGUNAN JALAN DAN JEMBATAN BLANG KUTA KECAMATAN SAMALANGA KABUPATEN BIREUEN

LAPORAN TUGAS AKHIR PERENCANAAN JALAN LAYANG SUMPIUH - BANYUMAS

HARGA SATUAN POKOK KEGIATAN (HSPK)

BAB I PENDAHULUAN Latar Belakang

PERENCANAAN PERKUATAN TANGGUL UNTUK PROYEK NORMALISASI ALIRAN KALI PORONG. Muhammad Taufik

BAB II TINJAUAN PUSTAKA. dengan tanah dan suatu bagian dari konstruksi yang berfungsi menahan gaya

Bab 1 PENDAHULUAN. tanah yang buruk. Tanah dengan karakteristik tersebut seringkali memiliki permasalahan

BAB II TINJAUAN PUSTAKA

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB II TINJAUAN PUSTAKA. menahan gaya beban diatasnya. Pondasi dibuat menjadi satu kesatuan dasar

BAB IV ANALISA PERHITUNGAN STABILITAS DINDING PENAHAN

PERENCANAAN KONSTRUKSI DINDING PENAHAN TANAH UNDERPASS JEMURSARI SURABAYA

BAB VI KESIMPULAN. Kesimpulan dari perencanaan ini adalah sebagai berikut:

STABILISASI TANAH HIDROLIS

METODE PELAKSANAAN PEMBANGUNAN JEMBATAN PT.GUNUNG MURIA RESOURCES

KAJIAN KEMAMPUAN DAYA DUKUNG PONDASI TIANG PANCANG PADA ABUTMENT JEMBATAN BERDASAR BEDAH BUKU BOWLES

BAB 4 HASIL DAN PEMBAHASAN. penambangan batu bara dengan luas tanah sebesar hektar. Penelitian ini

1 Membangun Rumah 2 Lantai. Daftar Isi. Kata Pengantar... i Daftar Isi... ii\ Tugas Struktur Utilitas II PSDIII-Desain Arsitektur Undip

ALTERNATIF PERENCANAAN PERKUATAN LERENG VILLA BUKIT STANGI

NYSSA ANDRIANI CHANDRA Dosen Pembimbing: Trihanyndio Rendy Satrya, ST., MT. Prof. Ir. Noor Endah, MSc., PhD.

4 HASIL DAN PEMBAHASAN

Ronald Adi Saputro Dosen Pembimbing : Ir. Suwarno, Meng Musta in Arif, ST., MT.

ANALISA PERENCANAAN PERBAIKAN KELONGSORAN LERENG DI DESA TANJUNG REDEB KABUPATEN BERAU KALIMANTAN TIMUR (STA S/D STA 0+250)

Bendungan Urugan II. Dr. Eng Indradi W. Sunday, May 19, 13

METODA KONTRUKSI PENUNJANG DAN PERHITUNGAN HIDROLIS BENDUNG KARET (RUBBER DUM) DI SUNGAI CISANGKUY PROVINSI BANTEN

PERENCANAAN PONDASI SILO SEMEN CURAH DAN LOADING PLANT PADA LOKASI PACKING PLANT PT SEMEN INDONESIA DI BALIKPAPAN, KALIMANTAN TIMUR

struktur dinding diafragma adalah dengan menjaga agar jangan sampai

KASUS DILAPANGAN YANG BERKAITAN DENGAN PROSES KONSOLIDASI PENURUNAN PENURUNAN AKIBAT KONSOLIDASI PENURUNAN AKIBAT PERUBAHAN BENTUK TANAH

EVALUASI PENURUNAN DAN KESTABILAN TIGA JEMBATAN MERR II-C YANG MENUMPU DI ATAS LEMPUNG LUNAK

METODE PELAKSANAAN LIFTING JACK TIANG PANCANG

ESTIMASI WAKTU DAN BIAYA PERKERASAN KAKU JALAN TOL MOJOKERTO-KERTOSONO STA STA

PERBAIKAN TANAH LUNAK DENGAN METODE PRELOADING DENGAN PREFABRICATED VERTICAL DRAINS (PVD)

PERENCANAAN STRUKTUR TANGGUL KOLAM RETENSI KACANG PEDANG PANGKAL PINANG DENGAN MENGGUNAKAN SOFTWARE OASYS GEO 18.1 DAN 18.2

ALTERNATIF PERENCANAAN DINDING PENAHAN TANAH PADA GRAVING DOCK BELAWAN MEDAN

DISUSUN OLEH : HENY KURNIA AGUSTINE DOSEN PEMBIMBING : Ir. SUWARNO, M.Eng. MUSTA IN ARIF, ST. MT.

METODA PELAKSANAAN. CV. SABATA UTAMA Rehabilitasi Jaringan Irigasi D.I Tangan-Tangan

LAPIS PONDASI AGREGAT SEMEN (CEMENT TREATED BASE / CTB)

NAMA MAHASISWA : ADALEA IVANA PRAJWALITA NRP

BAB I 1.2 Perumusan Masalah PENDAHULUAN 1.1 Latar Belakang 1.3 Tujuan 1.4 Batasan Masalah 1.5 Manfaat

= tegangan horisontal akibat tanah dibelakang dinding = tegangan horisontal akibat tanah timbunan = tegangan horisontal akibat beban hidup = tegangan

METODE PELAKSANAAN. Pekerjaan Perbaikan Darurat Bencana Erupsi Gunung Merapi (Paket 2) - Lanjutan 1

BAB IV TINJAUAN KHUSUS

BAB VII TATA LAKSANA LAPANGAN

BAB IV STUDI KASUS 4.1 UMUM

STANDAR LATIHAN KERJA

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS

BAB IV ALTERNATIF PEMILIHAN BENTUK SALURAN PINTU AIR

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK

BAB V METODE PELAKSANAAN PEKERJAAN

RENCANA KERJA DAN SYARAT SYARAT

STANDAR LATIHAN KERJA (S L K)

Persyaratan agar Pondasi Sumuran dapat digunakan adalah sebagai berikut:

METODE PELAKSANAAN A. Pekerjaaan Persiapan

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. dan industri juga makin meningkat. Perluasan lahan juga dilakukan dengan

BAB 1 PENDAHULUAN. Banten. Sumber-sumber gempa di Banten terdapat pada zona subduksi pada pertemuan

BAB I PENDAHULUAN. kembang susut yang relatif tinggi dan mempunyai penurunan yang besar.

BAB I PENDAHULUAN A. Latar Belakang

BAB 3 Bab 3 METODOLOGI PENELITIAN

ALTERNATIF PERKUATAN LERENG PADA RUAS JALAN TRENGGALEK-PONOROGO KM

RENCANA ANGGARAN BIAYA DAN METODE PELAKSANAAN PADA PROYEK PEMBANGUNAN JEMBATAN LAMNYONG KOTA BANDA ACEH

METODE PELAKSANAAN. Pekerjaan Perbaikan Darurat Bencana Erupsi Gunung Merapi (Paket 2) - Lanjutan 1

Gambar 7.2 Potongan A A dari Gambar 7.1

Transkripsi:

MAKALAH TUGAS AKHIR (RC09-1380) ALTERNATIF PERENCANAAN ULANG DINDING PENAHAN TANAH PADA OPRIT FLYOVER TARUM BARAT CIKARANG Oleh : Harmansyah 310 910 5001 Dosen Pembimbing : Dr. Ir. Djoko Untung PROGRAM SARJANA (S1) JURUSAN TEKNIK SIPIL Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2011 0

ALTERNATIF PERENCANAAN ULANG DINDING PENAHAN TANAH PADA OPRIT FLYOVER TARUM BARAT CIKARANG Nama Mahasiswa : Harmansyah NRP : 310 910 5001 Jurusan : Teknik Sipil FTSP ITS Dosen Pembimbing : Dr. Ir. Djoko Untung Abstrak Flyover Tarum Barat merupakan akses jalan untuk mempermudah pengiriman kontainer maka PT. Jababeka Infrastruktur merencanakan jalur jalan kontainer dari Cikarang Inland Port (CIP) ke Jalan Tol Jakarta Cikampek. Flyover ini digunakan untuk melintasi sungai irigasi kalimalang yang tinggi 8.7 m dari dasar sungai, panjang dari flyover ini 105 m yang memiliki 2 buah abutment, dan 2 buah pilar yang memiliki ketinggian yang sama. Selain memiliki abutment dan pilar juga terdapat jalan pendekat flyover (oprit), jalan pendekat ini memiliki konstruksi timbunan setinggi 8 m dengan kemiringan 1:2, dengan kondisi tersebut akan terjadi pemampatan dari timbunan yang dapat menyebabkan kerusakan lapisan perkerasan jalan dan kelongsoran maka dibutuhkan dinding penahan tanah yang cukup tinggi dan kuat untuk menahan beban urugan timbunan dan beban lalu lintas (traffic). Tujuan dari perencanaan ini adalah mencari alternatif yang terbaik dalam perencanaan ulang dinding penahan tanah pada jalan pendekat flyover dengan menggunakan 2 pemilihan alternatif yaitu dengan menggunakan Dinding Penahan Tanah Segmental dan Sheet pile dengan menggunakan perkuatan Geosynthetics, memperhitungkan biaya yang diperlukan dalam perencanaan ulang dinding penahan tanah dari 2 alternatif tersebut, dan juga metode pelaksanaannya. Untuk alternatif perencanaan sheet pile dengan perkuatan tanah geotextile, sheet pile yang digunakan adalah jenis CPC dan untuk konstruksi tinggi timbunan yang bervariasi yaitu 8m, 6m, dan 4m sedangkan untuk tinggi 2m menggunakn dinding penahan tanah beton bertulang agar meminimalkan pemakaian sheet pile. Untuk H = 8m dibutukan panjang sheet pile 18m, H = 6m dibutuhkan panjang sheet pile 11m, dan H = 4m dibutuhkan panjang sheet pile 8m. Perencanaan perkuatan tanah geotextile jenis dan type adalah jenis polypropylene woven geotextiles dan tipe UW-250. Perencanaan geotextile ini dibagi menjadi 3 layer zona, untuk Z = 3,5m jarak vertical yang didapat (Sv = 0,5m) dan jumlah 7 lapis geotextile, untuk Z = 5,25m jarak vertical yang didapat (Sv = 0,35m) dan jumlah 5 lapis geotextile, untuk Z = 7,5m jarak vertical yang didapat (Sv = 0,25m) dan jumlah 9 lapis geotextile. Untuk kontrol guling 6,611 3, kontrol geser 4,511 3, kontrol daya dukung 3,142 3. Untuk biaya yang diperlukan untuk desain oprit dengan konstruksi sheet pile - geotextile adalah Rp. 3.479.490.864,16 biaya sudah termasuk PPN 10%. Untuk alternatif perencanaan dinding segmental (multiblock) dengan perkuatan tanah geogrid, multiblock yang digunakan adalah multiblock dengan tipe Tensar Wall 1 dan Geogrid yang digunakan sebagai perkuatan tanah adalah geogrid dengan tipe Tensar 40RE yang memiliki kuat tarik sebesar 5,25 t/m. Perencanaan geogrid ini dibagi menjadi 3 layer zona, untuk Z = 3,8m jarak vertical yang didapat (Sv = 1,2m) dan jumlah 3 lapis geogrid, untuk Z = 5,8m jarak vertical yang didapat (Sv = 0,8m) dan jumlah 3 lapis geogrid, untuk Z = 7,8m jarak vertical yang didapat (Sv = 0,6m) dan jumlah 3 lapis geogrid. Untuk kontrol guling 2,007 2, kontrol geser 4,044 2, kontrol daya dukung σ 26,825 ton/m² 30 ton/m² σ 3,975 ton/m² 0 ton/m² 1

Biaya yang diperlukan untuk desain oprit dengan konstruksi dinding segmental (multiblock) - geogrid adalah Rp. 2.943.745.235,60 biaya sudah termasuk PPN 10%. Kata Kunci : Dinding Penahan Tanah Segmental, Flyover Tarum Barat, Sheet pile, Geosynthetics, Angka Keamanan. 2

BAB I PENDAHULUAN 1.1 LATAR BELAKANG Kota Cikarang merupakan salah satu kota yang sedang berkembang dan memiliki peran besar bagi pertumbuhan ekonomi di Indonesia. Diantaranya banyak terdapat industri industri yang dibangun di kota ini. Selain itu, kota Cikarang ini memiliki 2 kota satelit yaitu Jababeka dan Lippo Cikarang, keduanya terkenal sebagai kota industri karena ada banyak pabrik yang berada di kedua kota tersebut. (untuk mengetahui lokasi proyek ada pada gambar 1.1). Kawasan industri Jababeka terdapat pelabuhan darat yang baru di resmikan Desember tahun 2009 berfungsi sebagai pengalihan administrasi terminal peti kemas Tanjung Priuk ke Cikarang yang dikarenakan terminal peti kemas Tanjung Priuk sudah melebihi faktor beban yang berakibat terjadinya penumpukan peti kemas. Dengan adanya pelabuhan darat diperlukan akses jalan untuk mempermudah pengiriman kontainer maka PT. Jababeka Infrastruktur merencanakan jalur jalan kontainer dari Cikarang Inland Port (CIP) ke Jalan Tol Jakarta Cikampek. Proyek akses jalan kontainer terdiri dari bagian utama pekerjaan jalan dan Flyover Tarum Barat. Flyover ini digunakan untuk melintasi sungai irigasi kalimalang yang tinggi 8.7 m dari dasar sungai, panjang dari flyover ini 105 m yang memiliki 2 buah abutmen, dan 2 buah pilar yang memiliki ketinggian yang sama. Selain memiliki abutmen dan pilar juga terdapat jalan pendekat flyover (oprit), jalan pendekat ini memiliki konstruksi timbunan setinggi 8 m dengan kemiringan 1:2, dengan kondisi tersebut akan terjadi pemampatan dari timbunan dan lapisan tanah dibawah timbunan yang dapat menyebabkan kerusakan lapisan perkerasan jalan dan kelongsoran maka dibutuhkan dinding penahan tanah yang cukup tinggi dan kuat untuk menahan beban urugan timbunan dan beban lalu lintas (traffic). Sebagai pemecahan permasalahan diatas, maka Tugas Akhir ini akan membahas bagaimana merencanakan ulang dinding penahan tanah pada jalan pendekat flyover dengan menggunakan 2 pemilihan alternatif yaitu dengan menggunakan dinding penahan tanah segmental dan sheet pile dengan menggunakan perkuatan geosintetik, menganalisa dari 2 alternatif tersebut ditinjau dari nilai faktor keamanan yang aman untuk digunakan, memperhitungkan biaya yang diperlukan dalam perencanaan dinding penahan tanah dari 2 alternatif tersebut, dan juga metode pelaksanaannya. Gambar 1.1 Peta Lokasi 1.2 RUMUSAN MASALAH Dari uraian diatas, beberapa permasalahan yang akan dibahas dalam Tugas Akhir ini sebagai berikut : 1. Berapa besar pemampatan yang terjadi akibat beban yang bekerja diatas tanah dasar (tanah timbunan dan beban traffic)? 2. Bagaimana perhitungan stabilitas timbunan setelah adanya metode perbaikan tanah dengan menggunakan stone column? 3. Bagaimana merencanakan dinding penahan tanah (Sheet Pile) dan Geotextile pada oprit flyover? 3

4. Bagaimana merencanakan dinding penahan tanah segmental (Multiblock) dan Geogrid pada oprit flyover? 5. Berapa biaya yang dibutuhkan masingmasing alternatif tersebut serta metode pelaksanaan masing-masing alternatif? 1.3 TUJUAN Dari permasalahan yang ada di atas, adapun tujuan yang ingin dicapai dalam penyusunan Tugas Akhir ini adalah : 1. Mengetahui besar pemampatan terjadi akibat beban yang bekerja diatas tanah dasar (tanah timbunan dan beban traffic). 2. Mengetahui stabilitas timbunan setelah adanya metode perbaikan tanah dengan menggunakan stone column. 3. Dapat merencanakan dinding penahan tanah (Sheet Pile) dan Geotextile pada oprit flyover. 4. Dapat merencanakan dinding penahan tanah segmental (Multiblock) dan Geogrid pada oprit flyover. 5. Dapat menganalisa dan menghitung biaya yang dibutuhkan masing-masing alternatif tersebut serta mengetahui metode pelaksanaan masing-masing alternatif. 1.4 BATASAN MASALAH Beberapa batasan masalah yang didefinisikan dalam pembuatan Tugas Akhir ini antara lain : 1. Tidak membahas perhitungan struktur atas flyover. 2. Tidak membahas perhitungan struktur pilar, dan abutmen. 3. Tidak membahas perhitungan geometri jalan maupun flyover. 4. Menggunakan perkerasan jalan yang sudah ada baik pada jalan maupun flyover tersebut. 5. Tidak merencanakan drainase jalan dan flyover. 6. Tidak membandingkan dengan alternatif lain diluar alternatif dalam Tugas Akhir ini. 7. Jika daya dukung tanah tidak mampu menahan beban dan terjadi penurunan yang besar maka diperlukan metode perbaikan tanah dengan menggunakan stone column. 1.5 Manfaat 1. Sebagai bahan acuan dalam perencanaan konstruksi dinding penahan tanah pada oprit yang memiliki kemiripan karakteristik dengan Flyover Tarum Barat. 2. Dapat dijadikan referensi bagi perencanaan konstruksi dinding penahan tanah berikutnya METODOLOGI Metodologi penyusunan tugas akhir ini adalah sebagai berikut : Gambar 3.1 Flowchart Metodologi 4

BAB IV DATA DAN ANALISA DATA 4.1 DATA TANAH TIMBUNAN Data tentang timbunan di lapangan yang didapat meliputi sifat fisik timbunan, dan dimensi timbunan. Kondisi Existing : 1. Sifat fisik timbunan meliputi: γt = 1.75 t/m 3, φ = 10 0, Cu = 40 kn/m². 2. Dimensi timbunan Timbunan direncanakan dengan tinggi final sesuai dengan elevasi pada oprit flyover. Pada perencanaan ini, direncanakan kemiringan talud 1:2. Dimensi rinci timbunan rencana pada Gambar 4.1. a a L 4.2 DATA TANAH DASAR Data tanah dasar yang didapatkan berupa Bore log, dan hasil test laboratorium. Lokasi yang ditinjau pada studi di Tarum Barat (Cikarang). Hasil analisa data tanah dasar dan bor log pada tabel 4.1 dan tabel 4.2 Tabel4.1 Data Tanah Dasar Kedalaman Phi Cohesi Compression Index Void Ratio Cv Deskripsi γsat γt (m) φ C Cc eo Lapis 1 Lempung kuning 0.0 m - 6.0 m 1.859 1.840 9.5 15.5 0.265 0.992 25.229 Lapis 2 Lanau kecoklatan 6.0 m - 10 m 1.867 1.790 13.1 50.8 0.152 0.950 15.768 Tabel 4.2 Data Bor Log 1 : 2 γt= 1,75 t/m 3 φ= 30 0 H Gambar 4.1 Potongan melintang timbunan Kondisi Rencana : 1. Sifat fisik timbunan meliputi: γt = 1.8 t/m 3, φ = 30 0, Cu = 0 2. Dimensi timbunan Timbunan direncanakan dengan tinggi final sesuai dengan elevasi pada oprit flyover. Dimensi rinci timbunan rencana pada Gambar 4.2 Gambar 4.2 Potongan melintang timbunan dinding penahan tanah 5

4.3 DATA SPESIFIKASI SHEET PILE Sheet Pile yang digunakan sebagai dinding penahan tanah adalah sheet pile dengan tipe CPC (Corrugatted Prestressed Concrete) dari produk PT. Wika Beton. 4.4 DATA SPESIFIKASI GEOTEXTILE Geotextile yang digunakan sebagai perkuatan tanah adalah geotextile dengan jenis Polyproplylene Woven Geotextiles tipe UnggulTex dari produk PT. Teknindo Geosistem Unggul. 4.5 DATA SPESIFIKASI MULTIBLOCK Multiblock yang digunakan sebagai dinding penaha tanah (segmental) adalah multiblock dengan tipe Tensar Wall 1 dari produk PT. Multibangun Rekatama Patria. 4.6 DATA SPESIFIKASI GEOGRID Geogrid yang digunakan sebagai perkuatan tanah adalah geogrid dengan tipe Tensar RE dari produk PT. Multibangun Rekatama Patria. BAB V EVALUASI PERENCANAAN 5.1 PENENTUAN TINGGI TIMBUNAN AWAL (H initial ) dan SETTLEMENT (KONDISI EXISTING) Dari hasil perhitungan didapatkan grafik. 10.000 9.000 8.000 7.000 6.000 5.000 4.000 3.000 2.000 1.000 0.000 H inisial (m) Grafik Hubungan H final VS H initial y = -0.0057x 2 + 1.2114x + 0.0802 R² = 1 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 H final (m) Gambar 5.1 Grafik Hfinal VS Hinisial Consolidation Settlement (m) 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 0.00 y = -0.0057x 2 + 0.2114x + 0.0802 R² = 0.9998 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 Gambar 5.2 Grafik Hfinal VS Sc Tabel 5.1 Pemberian Timbunan yang Harus Diberikan pada Masing-masing H rencana pada Oprit 5.2 PENENTUAN TINGGI TIMBUNAN AWAL (H initial ) dan SETTLEMENT (KONDISI EXISTING STONE COLUMN) Dari hasil perhitungan didapatkan grafik. H inisial (m) 9.000 8.000 7.000 6.000 5.000 4.000 3.000 2.000 1.000 0.000 Grafik Hubungan H final VS Consolidation Settlement (Sc) H final (m) H final (m) H inisial (m) Sc (m) 1 1.286 0.286 2 2.480 0.480 3 3.663 0.663 4 4.835 0.835 5 5.995 0.995 6 7.143 1.143 7 8.281 1.281 8 9.407 1.407 Grafik Hubungan H final VS H initial y = -0.0028x 2 + 1.1103x + 0.0415 R² = 1 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 H final (m) Gambar 5.3 Grafik Hfinal VS Hinisial 6

Grafik Hubungan H final VS Consolidation Settlement (Sc) Grafik Hubungan H final VS Consolidation Settlement (Sc) Consolidation Settlement (m) 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 y = -0.0028x 2 + 0.1103x + 0.0415 R² = 0.9998 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 H final (m) Consolidation Settlement (m) 0.60 0.50 0.40 0.30 0.20 0.10 0.00 y = -0.0022x 2 + 0.0762x + 0.0486 R² = 0.9997 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 H final (m) Gambar 5.4 Grafik Hfinal VS Sc Tabel 5.2 Pemberian Timbunan yang Harus Diberikan pada Masing-masing H rencana pada Oprit H final (m) H inisial (m) Sc (m) 1 1.149 0.149 2 2.251 0.251 3 3.347 0.347 4 4.438 0.438 5 5.523 0.523 6 6.603 0.603 7 7.676 0.676 8 8.745 0.745 5.3 PENENTUAN TINGGI TIMBUNAN AWAL (H initial ) dan SETTLEMENT (KONDISI DINDING PENAHAN TANAH) Dari hasil perhitungan didapatkan grafik. Gambar 5.6 Grafik Hfinal VS Sc Tabel 5.3 Pemberian Timbunan yang Harus Diberikan pada Masing-masing H rencana pada Oprit H final (m) H inisial (m) Sc (m) 1 1.123 0.123 2 2.192 0.192 3 3.257 0.257 4 4.318 0.318 5 5.375 0.375 6 6.427 0.427 7 7.474 0.474 8 8.517 0.517 5.4 PERENCANAAN KOMBINASI SHEET PILE - GEOTEXTILE 5.4.1 Perencanaan sheet pile beton Untuk H = 8m Persamaan untuk mencari nilai D dengan sebagai berikut : H inisial (m) 9.000 8.000 7.000 6.000 5.000 4.000 3.000 2.000 1.000 0.000 Grafik Hubungan H final VS H initial y = -0.0022x 2 + 1.0762x + 0.0486 R² = 1 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 H final (m) Gambar 5.5 Grafik Hfinal VS Hinisial 7

Tabel 5.4 Mencari nilai D (kedalaman sheet pile) dengan cara trial & error D(m) 2.35 10.934 45.692 Σ = 0 1 2.35 10.934 45.692-54.276 2 9.4 21.868 45.692-58.160 3 21.15 32.802 45.692-57.344 4 37.6 43.736 45.692-51.828 5 58.75 54.67 45.692-41.612 6 84.6 65.604 45.692-26.696 7 115.15 76.538 45.692-7.080 7.310 125.575 79.928 45.692-0.045 Untuk desain kedalaman pelaksanaan panjang sheet pile perlu ditambah faktor safety 30% - 60 % Panjang total sheet pile = H + (D x 1,3) = 8 + (7,31 x 1,3) = 17,503 m Panjang sheet pile yang digunakan adalah 18 m. Mmax pada sheet pile : Tabel 5.5 Mencari nilai D (kedalaman sheet pile) dengan cara trial & error D(m) 3.25 6.4 22.903 Σ = 0 0.5 0.8125 3.2 22.903-25.291 1 3.25 6.4 22.903-26.053 1.5 7.3125 9.6 22.903-25.191 2 13 12.8 22.903-22.703 2.5 20.3125 16 22.903-18.591 3 29.25 19.2 22.903-12.853 3.5 39.8125 22.4 22.903-5.491 3.820 47.425 24.448 22.903 0.074 Untuk desain kedalaman pelaksanaan panjang sheet pile perlu ditambah faktor safety 30% - 60 % Panjang total sheet pile = H + (D x 1,3) = 6 + (3,82 x 1,3) = 10,966 m Panjang sheet pile yang digunakan adalah 11 m. Mmax pada sheet pile : Dari hasil perhitungan, maka desain sheet pile yang dipakai : Sheet pile Beton PT. WIKA BETON Tipe W- 450 B 1000 yang miliki Moment Cracking (40,4 t.m) > Mmax (21,825 t.m) dengan panjang 18 m. Untuk H = 6m Persamaan untuk mencari nilai D dengan sebagai berikut : Dari hasil perhitungan, maka desain sheet pile yang dipakai : Sheet pile Beton PT. WIKA BETON Tipe W- 325 A 1000 yang miliki Moment Cracking (11,4 t.m) > Mmax (8,475 t.m) dengan panjang 11 m. Untuk H = 4m Persamaan untuk mencari nilai D dengan sebagai berikut : 8

Tabel 5.6 Mencari nilai D (kedalaman sheet pile) dengan cara trial & error D(m) 4.15 3.066 8.639 Σ = 0 0.3 0.3735 0.9198 8.639-9.185 0.6 1.494 1.8396 8.639-8.985 0.9 3.3615 2.7594 8.639-8.037 1.2 5.976 3.6792 8.639-6.342 1.5 9.3375 4.599 8.639-3.901 1.8 13.446 5.5188 8.639-0.712 1.85 14.20338 5.6721 8.639-0.108 1.86 14.35734 5.70276 8.639 0.016 Untuk desain kedalaman pelaksanaan panjang sheet pile perlu ditambah faktor safety 30% - 60 % Panjang total sheet pile = H + (D x 1,3) = 4 + (1,86 x 1,3) = 6,418 m Panjang sheet pile yang digunakan adalah 8 m. Mmax pada sheet pile : Kontrol Daya Dukung :,, 1 6 8,790 2 1 0,476 1 2 1 6 9,866 / 4,395 0,715 5,109 / Syarat σt (q ijin) 5,109 t/m 9,866 t/m...ok 5.4.2 Perencanaan geotextile Pada perencanaan geotextile pada perkuatan tanah timbunan dibagi menjadi 3 layer bagian dari ketinggian 8m. Untuk jenis dan tipe geotextile yang digunakan adalah jenis polypropylene woven geotextiles dan tipe UW- 250 yang mempunyai kekuatan tarik sebesar 52 kn/m. Tabel 5.7 Tabel Faktor Reduksi untuk Pemasangan Geotextile Dari hasil perhitungan, maka desain sheet pile yang dipakai : Sheet pile Beton PT. WIKA BETON Tipe W- 325 A 1000 yang miliki Moment Cracking (11,4 t.m) > Mmax (2,550 t.m) dengan panjang 8 m. Untuk H = 2m (Dinding Penahan Tanah Beton Bertulang) Kontrol Guling : 11,574 5,106 2,307 5,106 1,5 Kontrol Geser : 3,199 2,191 1,460 2,191 1,5 1 5,2,,,, 1,313 / 1,8 0,333 1 0,333 0,5994 0,333 Untuk Z = 3,5 m (Zone A-B) dan FS = 1,3 Sv = 0,5 m Jumlah 7 Lapis geotextile, jadi 0,5 x 7 = 3,5 m Untuk Z = 5,25 m (Zone B-C) dan FS = 1,3 Sv = 0,35 m Jumlah 5 Lapis geotextile, jadi 0,35 x 5 = 1,75 m Untuk Z = 7,5 m (Zone C-D) dan FS = 1,3 Sv = 0,25 m 9

Jumlah 9 Lapis geotextile, jadi 0,25 x 9 = 2,25 m Kontrol Guling : 14,58 1,8 14,49 2,3 46,08 3,2 4,925 6,4 13,352 8 3 6,611 3 Kontrol Geser :. Σ σ δ δ 1,318 14,637 6,333 20,8 13,352 4,511 3 Kontrol Daya Dukung : 36,288 3,142 3. 11,55 5.5 PERENCANAAN KOMBINASI MULTIBLOCK GEOGRID Perencanaan dinding segmental (multiblock) geogrid Multiblock yang digunakan sebagai dinding penahan tanah (segmental) adalah multiblock dengan tipe Tensar Wall 1 dan Geogrid yang digunakan sebagai perkuatan tanah adalah geogrid dengan tipe Tensar 40RE yang memiliki kuat tarik sebesar 5,25 t/m. Kontrol Stabiltas Eksternal Kontrol Geser : 45 φ 45 0,333 FS,,,, 2,, 2 1,409 5,68 5,7, 2,, 2,007 2 Kontrol Guling : 45 φ 45 0,333,,,, 2,, 2 4,044 2 Kontrol Daya Dukung : σ γ. H q K γ. H 3. q σ 1,8.8 1 0,3331,8.8 3.1, σ 26,825 ton/m² 30 ton/m². σ γ. H q K γ. H 3. q σ 1,8.8 1 0,3331,8.8 3.1, σ 3,975 ton/m² 0 ton/m² Kontrol Stabilitas Internal 45 φ 45 0,333 Tabel 5.8 Spesifikasi Geogrid.. 3 0,333 1,8. 1 0,333 1,8. 3.1,,,,.,,.., Tabel 5.9 Jarak Pemasangan Geogrid Tipe TENSAR 40 RE hi (m) Vi max 40 RE 0 9,72 0,5 4,25 1 2,80 1,5 2,08 2 1,65 2,5 1,36 3 1,15 3,5 1,00 4 0,88 4,5 0,78 5 0,71 5,5 0,64 6 0,59 6,5 0,54 7 0,50 7,5 0,47 8 0,44 10

h i(m) 9 8 7 6 5 4 3 2 1 0 Grafik Hubungan hi VS Vi (max) 0,00 2,00 4,00 6,00 8,00 10,00 12,00 Gambar 5.7 Grafik hubungan antara ketinggian konstruksi dan jarak pemasangan Perhitungan jarak geogrid yang terpasang 1,8 0,333 1 0,333 0,5994 0,333 Untuk Z = 3,8 m,,,, 1,241 1,2 Untuk Z = 5,8 m,,,, 0,851 0,8 Untuk Z = 7,8 m Vi max (m),,,, 0,647 0,6 Tabel 5.10 Jarak Vertikal Geogrid Tipe TENSAR 40 RE Zi Sv (m) (m) 1,2 1,2 2,4 1,2 3,6 1,2 4,4 0,8 5,2 0,8 6 0,8 6,6 0,6 7,2 0,6 7,8 0,6 hi (m) 9,00 8,00 7,00 6,00 5,00 4,00 3,00 2,00 1,00 0,00 Grafik Hubungan Zi (m) VS Sv (m) 0 0,2 0,4 0,6 0,8 1 1,2 1,4 Sv (m) Gambar 5.8 Grafik hubungan antara ketinggian konstruksi dan jarak vertical pemasangan geogrid Tabel 5.11 Tabel Kebutuhan Geogrid Area Layer No. Z Sv L 2 Sisi L kebutuhan Volume (m) (m) (m) (m) (m) (m2) 9 3,8 1,200 5,7 11,4 11,4 1140 3 8 3,8 1,200 5,7 11,4 11,4 1140 7 3,8 1,200 5,7 11,4 11,4 1140 6 5,8 0,800 5,7 11,4 11,4 1140 2 5 5,8 0,800 5,7 11,4 11,4 1140 4 5,8 0,800 5,7 11,4 11,4 1140 3 7,8 0,600 5,7 11,4 11,4 1140 1 2 7,8 0,600 5,7 11,4 11,4 1140 1 7,8 0,600 5,7 11,4 11,4 1140 Total 10260 5.6 ANALISA BIAYA 5.6.1 ANALISA BIAYA SHEET PILE GEOTEXTILE Tabel 5.12 Tabel Analisa Biaya Sheet pile Geotextile I II III IV V Pekerjaan Persiapan Harga Satuan (Rp) SubTotal 1 Pembersihan Lahan 2496 m2 6,236.75 15,566,928.00 2 Pembuatan Bouwplank 240 m' 70,363.84 16,887,321.60 Pekerjaan Tanah 1 Penggalian Tanah Untuk Konstruksi 150 m3 68,401.62 10,260,243.00 2 Pengurugan Tanah Kembali Untuk 150 m3 22,800.54 3,420,081.00 konstruksi 3 Pengurugan Sirtu Dengan Pemadatan 5905.12 m3 244,720.97 1,445,106,670.75 Menggunakan Alat Berat Pekerjaan Beton 1 Pekerjaan Pondasi Beton Bertulang 35 m3 3,255,830.38 113,954,063.20 2 Pekerjaan Dinding Beton Bertulang 47.25 m3 4,825,034.38 227,982,874.31 Pekerjaan Pemancangan Sheet Pile 1 Sheet Pile Type W-450 B 1000 50 m' 1,599,251.29 79,962,564.35 2 Sheet Pile Type W-325 A 1000 100 m' 1,048,251.29 104,825,128.70 Pekerjaan Perkuatan Tanah ANALISA BIAYA DINDING SHEET PILE - GEOTEXTILE No Item Pekerjaan Volume Satuan 1 Pemasangan Geotextile 43680 m2 26,218.12 1,145,207,637.97 (Rp) Total 3,163,173,512.87 PPn 10% 316,317,351.29 Grand Total 3,479,490,864.16 11

5.6.2 ANALISA BIAYA MULTIBLOCK GEOGRID Tabel 5.13 Tabel Analisa Biaya Multiblock Geogrid No I II III IV V Pekerjaan Persiapan Harga Satuan SubTotal 1 Pembersihan Lahan 2496 m2 6,236.75 15,566,928.00 2 Pembuatan Bouwplank 240 m' 70,363.84 16,887,321.60 Pekerjaan Tanah 1 Penggalian Tanah Untuk Konstruksi (Sloof) 32 m3 68,401.62 2,188,851.84 2 Pengurugan Sirtu Dengan Pemadatan 5905.12 m3 244,720.97 1,445,106,670.75 Menggunakan Alat Berat Pekerjaan Beton 1 Pekerjaan Sloof Beton Bertulang 24 m3 4,007,133.89 96,171,213.38 Pemasangan Multiblock 1 Pemasangan Multiblock 800 m2 736,218.12 588,974,498.86 Pekerjaan Perkuatan Tanah ANALISA BIAYA DINDING SEGMENTAL (MULTIBLOCK) - GEOGRID Item Pekerjaan Volume Satuan 1 Pemasangan Geogrid 10260 m2 49,828.12 511,236,547.93 5.7 METODA PELAKSANAAN 5.7.1 Metode Pelaksanaan Sheet pile Geotextile 1. Pekerjaan persiapan a) Pembersihan Lahan Dalam pekerjaan persiapan diantaranya termasuk pekerjaan pembersihan lahan. Lokasi proyek harus dibersihkan dari pohonpohon dan terutama dari bendabenda tajam yang dapat merobek geotextile. b) Pembuatan Bouwplank Setelah pembersihan lahan selesai dilaksanakan, diperlukan pembuatan bouwplank. Pembuatan bouwplank ini dimaksudkan sebagai patokan sebelum bangunan didirikan, sebagai pedoman penggalian tanah untuk pondasi dan juga alur kontruksi dinding sheet pile. 2. Pemancangan Sheet pile Untuk pemasangan stelling dan hammer menggunakan dengan crane. Setelah stelling dan hammer terpasang pada crane, sheet pile ditarik, diangkat, dan distel pada posisi pemancangan dan dicek menggunakan theodolit. (Rp) (Rp) Total 2,676,132,032.36 PPn 10% 267,613,203.24 Grand Total 2,943,745,235.60 Setelah posisi sheet pile sudah tepat sesuai dengan rencana, baru pemancangan sheet pile dapat dilaksanakan. Pemancangan sheet pile sesuai dengan kedalaman sheet pile yang direncanakan. Gambar 5.21 Pemasangan sheet pile Gambar 5.22 Pemasangan sheet pile (1) Gambar 5.23 Pemasangan sheet pile (2) Gambar 5.24 Pemasangan sheet pile (3) 12

3. Pekerjaan Tanah a) Penggalian Tanah Untuk Konstruksi Pondasi Penggalian ini bertujuan untuk mempermudah proses pelaksanaan pondasi beton bertulang pada dinding penahan tanah. Untuk kedalaman pondasi 1 m dan lebar 3m sepanjang kontruksi dinding penahan tanah beton bertulang 25 m. b) Pengurugan Tanah Untuk Konstruksi Pondasi Pengurugan ini bertujuan untuk menutup kembali pondasi beton bertulang yang sudah dikerjakan. Untuk kedalaman pondasi 1 m dan lebar 3m sepanjang kontruksi dinding penahan tanah beton bertulang 25 m. 6. Pemasangan Geotextile Untuk perkuatan digunakan geotextile dengan tipe woven. Perkuatan tanah (geotextile) harus dihamparkan horisontal pada tanah timbunan (sirtu) yang telah dipadatkan, jarak Pemasangan geotextile bervariasi sesuai dengan ketinggian layer yang direncanakan, untuk ketinggian layer 0 m - 2,25 m jarak vertikal pemasangan geotextile 25 cm, ketinggian layer 2,25 m - 4 m jarak vertikal pemasangan geotextile 35 cm, ketinggian layer 4 m 7,5 m jarak vertikal pemasangan geotextile 50 cm untuk lebar geotextile selebar konstruksi oprit flyover yaitu 20,8 m. 4. Pekerjaan Beton a) Pekerjaan Pondasi Beton Bertulang b) Pekerjaan Dinding Penahan Tanah Bertulang 5. Pengurugan Sirtu dengan Pemadatan Dump Truck mengangkut dan menumpahkan sirtu dilokasi pekerjaan. Dengan menggunanakan Motor Grader, sirtu dihamparkan sesuai rencana pengurugan. Tanah dihamparkan merata dengan ketebalan rata-rata 20 cm 30 cm. Setelah sirtu dihamparkan, kemudian disiram air dengan water tanker untuk mendapatkan kepadatan optimum. Setelah mencapai kadar air optimum maka dilakukan pemdatan dengan menggunakan Vibrator Roller. Selama pemadatan pekerja akan merapikan tepi hamparan dan level permukaan dengan alat bantu. Gambar 5.25 Penghamparan geotextile Gambar 5.26 Perataan timbunan diatas geotextile Gambar 5.27 Pelaksanaan sheet pile dengan geotextile 13

5.7.2 Metode Pelaksanaan Dinding Multiblock Geogrid 1. Pekerjaan persiapan a) Pembersihan Lahan Dalam pekerjaan persiapan diantaranya termasuk pekerjaan pembersihan lahan. Lokasi proyek harus dibersihkan dari pohon-pohon dan terutama dari benda-benda tajam yang dapat merusak geogrid. b) Pembuatan Bouwplank Setelah pembersihan lahan selesai dilaksanakan, diperlukan pembuatan bouwplank. Pembuatan bouwplank ini dimaksudkan sebagai patokan sebelum bangunan didirikan, sebagai pedoman penggalian tanah untuk pondasi dan juga alur kontruksi dinding penahan tanah segmental (multiblock). 2. Penggalian Tanah Untuk Konstruksi Sloof (Levelling Pad) Penggalian ini bertujuan untuk konstruksi sloof (Levelling Pad) dinding penahan tanah segmental yang berdimensi 0,3m x 0,4m sepanjang kontruksi dinding penahan tanah segmental (multiblock) 100 m. 3. Pekerjaan Sloof Pekerjaan sloof (leveling pad) berfungsi sebagai tempat meletakan dinding multiblock pada bagian dasar (bawah) dan untuk menjamin hubungan yang menyeluruh antara unit dinding multiblock dengan tanah dasar. 4. Pemasangan Multiblock Tempatkan lapis pertama multiblock di atas lantai perletakan perata (leveling pad). Penempatan lapis pertama multiblock harus diperiksa untuk ketinggian dan alignmentnya. Masing-masing unit multiblock harus menyentuh bagian lantai perletakan seluruhnya. Setiap unit multiblock ditempatkan bersebelahan pada tiap lapis secara memanjang disepanjang dinding sesuai dengan alignment yang ditetapkan. Memasang connector grid dan mengisi seluruh rongga multiblock dengan batu pecah dan dipadatkan. Bersihkan sisa-sisa material yang terdapat pada permukaan multiblock sebelum dilaksanakan penempatan lapisan berikutnya. Elevasi dinding dapat diubah mengikuti ketinggian yang bertingkat-tingkat dan unit multiblock dapat disusun bertingkat-tingkat mengikuti gradasi ketinggian yang direncanakan. 5. Pengurugan Sirtu dengan Pemadatan Dump Truck mengangkut dan menumpahkan sirtu dilokasi pekerjaan. Dengan menggunanakan Motor Grader, sirtu dihamparkan sesuai rencana pengurugan. Tanah dihamparkan merata dengan ketebalan rata-rata 20 cm 30 cm. Setelah sirtu dihamparkan, kemudian disiram air dengan water tanker untuk mendapatkan kepadatan optimum. Setelah mencapai kadar air optimum maka dilakukan pemdatan dengan menggunakan Vibrator Roller. Selama pemadatan pekerja akan merapikan tepi hamparan dan level permukaan dengan alat bantu. 6. Pemasangan Geogrid Perkuatan tanah (geogrid) harus dihamparkan horisontal pada tanah timbunan (sirtu) yang telah dipadatkan serta dikaitkan pada connector grid yang diletakkan di antara multiblock yang saling menumpang. Tarik lembaran geogrid hingga tegang dan dipasak sebelum 14

ditimbun dengan tanah timbunan (sirtu). Hubungan antara geogrid dengan multiblock harus benar-benar kencang dan datar. Geogrid harus dihamparkan pada elevasi yang direncanakan. Tarik hingga rapi lembaran geogrid yang sudah terkait untuk mengurangi/menghilangkan lipatanlipatan. Pancang atau tahan bagian belakang grid sebelum maupun selama dilaksanakan proses penimbunan dan pemadatan. Gambar 5.28 Pemasangan multiblock den gan geogrid BAB VI PENUTUP 6.1 Kesimpulan Dari perhitungan dan analisa data yang sudah didapat dengan mengacu pada dasar teori maka dapat ditarik kesimpulan bahwa : 1. Tinggi awal timbunan (H initial ) yang harus diletakkan sebelum pemampatan terjadi pada : a) Kondisi kontruksi timbunan (existing) Tabel 6.1 Tabel H final, H inisial, dan Settlement H final (m) H inisial (m) Sc (m) 1 1.286 0.286 2 2.480 0.480 3 3.663 0.663 4 4.835 0.835 5 5.995 0.995 6 7.143 1.143 7 8.281 1.281 8 9.407 1.407 Total Settlement (Sc) yang harus dihilangkan adalah sebesar 1,407 m. Untuk menghilangkan 90% dari total settlement (U% = 90%) diperlukan waktu 4,11 tahun. b) Kondisi konstruksi timbunan (existing) dengan perkuatan stone column Tabel 6.2 Tabel H final, H inisia l, dan Settlement H final (m) H inisial (m) Sc (m) Gambar 5.29 Tampak Penghamparan geogrid 1 1.149 0.149 2 2.251 0.251 3 3.347 0.347 4 4.438 0.438 5 5.523 0.523 6 6.603 0.603 7 7.676 0.676 8 8.745 0.745 Total Settlement (Sc) yang harus dihilangkan adalah sebesar 0,745 m. Untuk menghilangkan 90% dari total settlement (U% = 90%) diperlukan waktu 4,11 tahun. 15

c) Kondisi konstruksi dinding penahan tanah Tabel 6.3 Tabel H final, H inisia l, dan Settlement H final (m) H inisial (m) Sc (m) 1 1.123 0.123 2 2.192 0.192 3 3.257 0.257 4 4.318 0.318 5 5.375 0.375 6 6.427 0.427 7 7.474 0.474 8 8.517 0.517 Total Settlement (Sc) yang harus dihilangkan adalah sebesar 0,517 m. Untuk menghilangkan 90% dari total settlement (U% = 90%) diperlukan waktu 4,11 tahun. 2. Perencanaan sheet pile geotextile Sheet pile Untuk perhitungan sheet pile direncanakan dengan tinggi konstruksi timbunan yang bervariasi yaitu 8m, 6m, dan 4m, agar dimensi sheet pile yang dibutuhkan tidak terlalu besar menurut elevasi ketinggian oprit flyover. Untuk H = 8m Sheet pile Beton PT. WIKA BETON Tipe W-450 B 1000 yang miliki Moment Cracking (40,4 t.m) > Mmax (21,825 t.m) dengan panjang 18 m. Untuk H = 6m Sheet pile Beton PT. WIKA BETON Tipe W-325 A 1000 yang miliki Moment Cracking (11,4 t.m) > Mmax (8,475 t.m) dengan panjang 11 m. Untuk H = 4m Sheet pile Beton PT. WIKA BETON Tipe W-325 A 1000 yang miliki Moment Cracking (11,4 t.m) > Mmax (2,550 t.m) dengan panjang 8 m. Untuk H = 2m Direncanakan dengan dinding penahan tanah beton bertulang agar dapat meminimalkan pemakaian sheet pile pada ketinggian tersebut. Kontrol Guling : 5,106 1,5 Kontrol Geser : 2,191 1,5 Kontrol Daya Dukung : 5,109 / 9,866 / Geotextile Pada perencanaan geotextile pada perkuatan tanah timbunan dibagi menjadi 3 layer bagian dari ketinggian 8m. Untuk jenis dan tipe geotextile yang digunakan adalah jenis polypropylene woven geotextiles dan tipe UW-250 yang mempunyai kekuatan tarik sebesar 52 kn/m. Untuk Z = 3,5 m (Zone A-B) dan FS = 1,3 Sv = 0,5 m Jumlah 7 Lapis geotextile, jadi 0,5 x 7 = 3,5 m Untuk Z = 5,25 m (Zone B-C) dan FS = 1,3 Sv = 0,35 m Jumlah 5 Lapis geotextile, jadi 0,35 x 5 = 1,75 m Untuk Z = 7,5 m (Zone C-D) dan FS = 1,3 Sv = 0,25 m Jumlah 9 Lapis geotextile, jadi 0,25 x 9 = 2,25 m Kontrol Guling : 6,611 3 Kontrol Geser : 4,511 3 Kontrol Daya Dukung : 3,142 3 3. Perencanaan dinding segmental (multiblock) geogrid Multiblock yang digunakan sebagai dinding penahan tanah (segmental) adalah multiblock dengan tipe Tensar Wall 1 dan Geogrid yang digunakan sebagai perkuatan tanah adalah geogrid 16

dengan tipe Tensar 40RE yang memiliki kuat tarik sebesar 5,25 t/m. Untuk Z = 3,8 m (Zone A-B) Sv = 1,2 m Jumlah 3 Lapis geogrid, jadi 1,2 x 3 = 3,6 m Untuk Z = 5,8 m (Zone B-C) Sv = 0,8 m Jumlah 3 Lapis geogrid, jadi 0,8 x 3 = 2,4 m Untuk Z = 7,8 m (Zone C-D) Sv = 0,6 m Jumlah 3 Lapis geogrid, jadi 0,6 x 3 = 1,8 m Kontrol Guling : 2,007 2 Kontrol Geser : 4,044 2 Kontrol Daya Dukung : σ 26,825 ton/m² 30 ton/m². σ 3,975 ton/m² 0 ton/m² dalam pelaksanaannya dilapangan karena sedikit membutuhkan alat berat dibandingkan dengan alternatif sheet pile geotextile. 6.2 Saran 1. Untuk melakukan analisa perencanaan, data-data yang diperlukan benar-benar akurat agar perencanaannya sesuai dengan yang diinginkan. 2. Untuk pemilihan perkuatan tanah (geosintetik) disesuaikan dengan desain yang direncanakan dan fungsinya. 3. Dalam proses pelaksanaan dilapangan perlu memperhatikan metode pelaksanaannya agar dapat diaplikasikan dilapangan. 4. Jadwal pelaksanaan harus ditunjukkan agar dapat memilih alternatif dinding penahan tanah yang lebih baik. 4. Biaya yang diperlukan untuk desain oprit dengan konstruksi sheet pile - geotextile adalah Rp. 3.479.490.864,16 biaya sudah termasuk PPN 10% dan Biaya yang diperlukan untuk desain oprit dengan konstruksi dinding segmental (multiblock) - geogrid adalah Rp. 2.943.745.235,60 biaya sudah termasuk PPN 10%. Alternatif dinding penahan tanah yang dipilih untuk oprit flyover adalah dinding penahan tanah segmental (multiblock) geogrid. Dinding penahan tanah segmental (multiblock) geogrid dalam faktor angka keamanan yang dihasilkan lebih aman dibandingkan dengan alternatif sheet pile geotextile. Dinding penahan tanah segmental (multiblock) geogrid dalam pelaksanaannya membutuhkan biaya yang lebih murah dibandingkan dengan alternatif sheet pile geotextile. Dinding penahan tanah segmental (multiblock) geogrid lebih mudah 17