KAJIAN SIFAT STRUKTUR KRISTAL PADA BAHAN BARIUM HEKSAFERIT YANG DITAMBAH VARIASI Fe2O3 MENGGUNAKAN ANALISIS RIETVELD

dokumen-dokumen yang mirip
PENGARUH WAKTU MILLING TERHADAP SIFAT FISIS, SIFAT MAGNET DAN STRUKTUR KRISTAL PADA MAGNET BARIUM HEKSAFERIT SKRIPSI EKA F RAHMADHANI

JURNAL PENELITIAN PENDIDIKAN IPA

BAB I PENDAHULUAN 1.1 LATAR BELAKANG

SINTESIS DAN KARAKTERISASI SIFAT MAGNETIK BARIUM M-HEKSAFERRIT DENGAN DOPING ION Zn PADA VARIASI TEMPERATUR RENDAH

JURNAL PENELITIAN PENDIDIKAN IPA

KARAKTERISASI SIFAT MAGNETIK DAN SERAPAN GELOMBANG MIKRO BARIUM M-HEKSAFERIT BaFe 12 O 19

Analisa Sifat Magnetik dan Morfologi Barium Heksaferrit Dopan Co Zn Variasi Fraksi Mol dan Temperatur Sintering

SINTESIS SERBUK BARIUM HEKSAFERIT DENGAN METODE KOPRESIPITASI

Callister, D W Materials Science and Enginering. Eighth Edition. New York : John Willy & Soon.inc

I. PENDAHULUAN. karakteristik dari pasir besi sudah diketahui, namun penelitian ini masih terus

Bab 4 Data dan Analisis

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) F-108

PERUBAHAN BUTIR DAN PENENTUAN TEMPERATUR PEMBENTUKAN BARIUM HEXAFERRITE TERSUBSTITUSI ION Mn +2 Dan Ti +4 MELALUI MEKANISME MEKANIKA MILLING

PEMBUATAN DAN KARAKTERISASI MAGNET PERMANEN BAO.(6-X)FE2O3 DARI BAHAN BAKU LIMBAH FE2O3

PENGARUH ADITIF BaCO 3 PADA KRISTALINITAS DAN SUSEPTIBILITAS BARIUM FERIT DENGAN METODA METALURGI SERBUK ISOTROPIK

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2014) 1-6 1

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang

Erfan Handoko 1, Iwan Sugihartono 1, Zulkarnain Jalil 2, Bambang Soegijono 3

PENGARUH KOMPOSISI BAHAN BAKU SECARA STOIKIOMETRI DAN NON STOIKIOMETRI TERHADAP SIFAT FISIS DAN MAGNET PADA PEMBUATAN MAGNET PERMANEN BaO.

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

J. Pijar MIPA, Vol. X No.1, Maret 2015: 7-13 ISSN (cetak) ISSN (online)

PENGARUH SUBSTITUSI ION Ti-Zn TERHADAP SIFAT KEMAGNETAN dan SIFAT PENYERAPAN GELOMBANG ELEKTROMAGNETIK MATERIAL SISTEM BaFe12-xTix/2Znx/2O19

BAB III METODOLOGI PENELITIAN

PENGARUH KALSIUM TERHADAP SIFAT MAGNET BARIUM HEKSAFERIT HASIL SINTESIS DENGAN METODA KO-PRESIPITASI

Widiyanto, Priyono dan Iis Nurhasanah Jurusan Fisika Universitas Diponegoro Fakultas Sains dan Matematika Universitas Diponegoro

SIDANG TUGAS AKHIR JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

Karakterisasi Suseptibilitas Magnet Barium Ferit yang Disintesis dari Pasir Besi dan Barium Karbonat Menggunakan Metode Metalurgi Serbuk

[KEMENTERIAN PERTAHANAN REPUBLIK INDONESIA] 2012

METODE SOL-GEL RISDIYANI CHASANAH M

SINTESIS SERBUK MgTiO 3 DENGAN METODE PENCAMPURAN DAN PENGGILINGAN SERBUK. Abstrak

SINTESIS SERBUK MgTiO 3 DENGAN ADITIF Ca DARI BATU KAPUR ALAM DENGAN METODE PENCAMPURAN LARUTAN

Bab IV. Hasil dan Pembahasan

IDENTIFIKASI Fase KOMPOSIT OKSIDA BESI - ZEOLIT ALAM

HASIL DAN PEMBAHASAN

JURNAL SAINS DAN SENI ITS Vol. 1, No. 1, (Sept. 2012) ISSN: X B-41

PASI NA R SI NO L SI IK LI A KA

Gabriella Permata W, Budhy Kurniawan Departemen Fisika, FMIPA-UI Kampus Baru UI, Depok ABSTRAK ANALISIS SISTEM DAN UKURAN KRISTAL PADA MATERIAL

Pengaruh Holding Time Kalsinasi Terhadap Sifat Kemagnetan Barium M-hexaferrite (BaFe 12-x Zn x O 19 ) dengan ion doping Zn

Berkala Fisika ISSN : Vol. 15, No. 2, April 2012, hal 63-68

PENGARUH HOLDING TIME KALSINASI TERHADAP SIFAT KEMAGNETAN BARIUM M-HEXAFERRITE (BaFe 12-x Zn x O 19 ) DENGAN ION DOPING Zn

Pengaruh temperatur sintering terhadap struktur dan sifat magnetik La 3+ - barium nanoferit sebagai penyerap gelombang mikro

SINTESIS BARIUM HEXAFERRITE YANG DISUBSTITUSI ION Mn-Co MELALUI REAKSI PADAT DAN PENGARUHNYA TERHADAP PERUBAHAN STUKTUR DAN SIFAT MAGNETIK

LOGO. STUDI EKSPANSI TERMAL KERAMIK PADAT Al 2(1-x) Mg x Ti 1+x O 5 PRESENTASI TESIS. Djunaidi Dwi Pudji Abdullah NRP

Sintesis Komposit TiO 2 /Karbon Aktif Berbasis Bambu Betung (Dendrocalamus asper) dengan Menggunakan Metode Solid State Reaction

The Effect of BaCO3 Compound Changes on the Formation of Magnetic Material BaFe12O19

SINTESIS DAN KARAKTERISASI XRD MULTIFERROIK BiFeO 3 DIDOPING Pb

BAB I PENDAHULUAN. Magnet keras ferit merupakan salah satu material magnet permanen yang

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB III EKSPERIMEN. 1. Bahan dan Alat

BAB III METODOLOGI PENELITIAN

BAB I PENDAHULUAN 1.1 Latar Belakang Permasalahan

BAB 2 Teori Dasar 2.1 Konsep Dasar

ARIUM. JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2012) 1-6

SINTESIS NANOPARTIKEL FERIT UNTUK BAHAN PEMBUATAN MAGNET DOMAIN TUNGGAL DENGAN MECHANICAL ALLOYING

Eksperimen Pembentukan Kristal BPSCCO-2223 dengan Metode Self-Flux

Sintesis dan Karakterisasi XRD Multiferroik BiFeO 3 Didoping Pb

Efek Aditiv Al 2 O 3 Terhadap Struktur dan Sifat Fisis Magnet Permanen BaO.6(Fe 2 O 3 )

PEMBUATAN MAGNETIK BARIUM M-HEKSAFERIT YANG DIDOPING ION Cu

Sintesis dan Karakterisasi Komposit Isotropik Resin Epoksi- PANi / Barium M-Heksaferit BaFe12-2xCoxZnxO19 sebagai Material Antiradar

Sintesis dan Karakterisasi Kalsium Ferit Menggunakan Pasir Besi dan Batu Kapur

PENGARUH TEMPERATUR KALSINASI PADA PEMBENTUKAN LITHIUM IRON PHOSPHATE (LFP) DENGAN METODE SOLID STATE

ANALISIS STRUKTUR KRISTALIN HEMATITE YANG DISUBTITUSI ION MANGANES DAN ION TITANIUM. Skripsi Untuk memenuhi persyaratan mencapai derajat Sarjana S-1

INOVASI TEKNOLOGI PEMBUATAN MAGNET PERMANEN UNTUK MEMBANGUN INDUSTRI MAGNET NASIONAL

BAB IV HASIL PENELITIAN DAN ANALISIS

PENGARUH TEMPERATUR SINTERING TERHADAP SIFAT FISIS, MAGNET DAN MIKROSTRUKTUR DARI BaFe 12 O 19 DENGAN ADITIF Al 2 O 3 SKRIPSI

ANALISIS FASA MINOR DENGAN TEKNIK DIFRAKSI NEUTRON

SINTESIS SUPERKONDUKTOR BSCCO DENGAN VARIASI Bi DAN Pb MELALUI METODE SOL GEL DAN ANALISIS POLA DIFRAKSI SINAR X MENGGUNAKAN METODE RIETVELD FULLPROF

1 BAB I PENDAHULUAN. Salah satu industri yang cukup berkembang di Indonesia saat ini adalah

BAB 3METODOLOGI PENELITIAN

BAB I PENDAHULUAN. Batu bara + O pembakaran. CO 2 + complex combustion product (corrosive gas + molten deposit

I. PENDAHULUAN. Kata Kunci : Barium Heksaferrit, Doping Ni Zn dan Temperatur Sintering.

BAB 1 PENDAHULUAN 1.1 Latar Belakang

SINTESIS TITANIUM DIOKSIDA MENGGUNAKAN METODE LOGAM-TERLARUT ASAM

4.2 Hasil Karakterisasi SEM

BAB 3 METODOLOGI PENELITIAN

BAB 1 PENDAHULUAN 1.1. LATAR BELAKANG

PENGARUH TEMPERATUR TERHADAP UKURAN PARTIKEL FE3O4 DENGAN TEMPLATE PEG-2000 MENGGUNAKAN METODE KOPRESIPITASI

Uji Kekerasan Sintesis Sintesis BCP HASIL DAN PEMBAHASAN Preparasi Bahan Dasar

IDENTIFIKASI PENGARUH VARIASI UKURAN BUTIRAN TERHADAP UNSUR DAN STRUKTUR KRISTAL CANGKANG TELUR AYAM RAS

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang

HASIL DAN PEMBAHASAN. didalamnya dilakukan karakterisasi XRD. 20%, 30%, 40%, dan 50%. Kemudian larutan yang dihasilkan diendapkan

ANALISIS FASA BAHAN MAGNETIK SISTEM Ba 1-X. O 6 Fe 2

KARAKTERISASI STRUKTUR KRISTALIN TIPE-M BARIUM HEKSAFERIT TERSUBTITUSI ION MANGAN DAN ION TITANIUM MENGGUNAKAN ANALISIS RIETVELD

Unnes Physics Journal

dengan panjang a. Ukuran kristal dapat ditentukan dengan menggunakan Persamaan Debye Scherrer. Dilanjutkan dengan sintering pada suhu

PEMBUATAN DAN KARAKTERISASI Α-FE 2 O 3 BERBASIS LIMBAH BAJA MILL SCALE DENGAN ADITIF FeMo

PEMBUATAN KERAMIK BETA ALUMINA (Na 2 O - Al 2 O 3 ) DENGAN ADITIF MgO DAN KARAKTERISASI SIFAT FISIS SERTA STRUKTUR KRISTALNYA.

BAB I PENDAHULUAN. 1.1 Latar Belakang

Asyer Paulus Mahasiswa Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS

BAB IV HASIL DAN PEMBAHASAN

BAB I PENDAHULUAN 1.1. Latar Belakang

PENGARUH PENAMBAHAN LARUTAN MgCl 2 PADA SINTESIS KALSIUM KARBONAT PRESIPITAT BERBAHAN DASAR BATU KAPUR DENGAN METODE KARBONASI

Bab III Metodologi Penelitian

BAB III METODOLOGI PENELITIAN. Metode penelitian yang digunakan pada penelitian ini adalah

Pengaruh Variasi Waktu Milling dan Penambahan Silicon Carbide Terhadap Ukuran Kristal, Remanen, Koersivitas, dan Saturasi Pada Material Iron

ANALISIS STRUKTUR DAN PEMODELAN KRISTAL CALCIUM MANGANESE OXIDE (CaMnO 3 )

Unnes Physics Journal

Transkripsi:

Youngster Physics Journal ISSN : 2302-7371 Vol. 4, No. 2, April 2015, Hal 165-172 KAJIAN SIFAT STRUKTUR KRISTAL PADA BAHAN BARIUM HEKSAFERIT YANG DITAMBAH VARIASI Fe2O3 MENGGUNAKAN ANALISIS RIETVELD Kilat Permana Putra dan Priyono Jurusan Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro,Semarang Email: kilatpermana@st.fisika.undip.ac.id ABSTRACT Barium M - heksaferit known as permanent magnet material which has high competition against other classes of permanent magnet due to the manufacturing process is relatively simple, and has a high stability against heat and the external magnetic field besides having a high economic value. Problems encountered in the synthesis using stoichiometric composition was obtained despite the presence of a second phase in the composition of the minor. In this study the magnetic material synthesized using a non - stoichiometric composition by adding the compound Fe 2O 3 and conducted in-depth analysis on the initial temperature of formation at 950 0 C, while the standard sample stoichiometric performed at a temperature of 1200 0 C are entirely processed by powder metallurgy method using basic compound BaCO 3 and Fe 2O 3. Characterized using XRD to determine the crystal structure formed by the anode source Co which has a wavelength of 1.7889 Å on step scan 0,02 0. The results of XRD characterization followed by matching with international data ICDD - JCPDS then applied rietveld analysis using GSAS software. XRD characterization results showed the sample with stoichiometric composition of the Barium M- Hexaferrite (BaFe 12O 19) as main phase and a little Fe 2O 3 as a minor phase. With increasing 10% Fe the initial formation is dominated by BaFe 2O 4 intermediate phase at 950 0 C. While the addition of 20% Fe is dominated by Fe 2O 3 phase.rietveld analysis results for the material stoichiometric phase obtained better match value than both of samples while the best linearity was obtained at 20% Fe addition. Keywords: Powder Metalurgi, Barium Hexaferrite, XRD, Rietveld. ABSTRAK Barium M-heksaferit dikenal sebagai material magnet permanen yang memiliki kompetisi yang tinggi terhadap kelas magnet permanen lain dikarenakan proses pembuatan yang relatif mudah, memiliki kestabilan yang tinggi terhadap panas dan medan magnet luar disamping memiliki nilai ekonomi yang tinggi. Sintesis material magnet barium heksaferit menggunakan komposisi stoikiometri masih didapatkan adanya fasa kedua meskipun dalam komposisi yang minor. Dalam penelitian ini disintesis bahan magnet menggunakan komposisi non-stoikiometri dengan menambahkan Fe dari senyawa Fe 2O 3 dan dilakukan analisis mendalam mengenai kajian struktur pada temperatur awal pembentukan 950 0 C, sedangkan sampel acuan stoikiometri dilakukan pada temperatur 1200 0 C yang seluruhnya diproses dengan metode metalurgi serbuk menggunakan senyawa dasar BaCO 3 dan Fe 2O 3. Sampel dikarakterisasi menggunakan XRD untuk mengetahui struktur kristal yang terbentuk dengan sumber anoda Co yang memiliki panjang gelombang 1,7889 Å pada step scan 0,02 0. Hasil karakterisasi XRD dilanjutkan pencocokan dengan data internasional ICDD-JCPDS kemudian dilakukan analisis rietveld menggunakan software GSAS. Hasil karakterisasi XRD menunjukan sampel dengan komposisi stoikiometri terbentuk fasa utama Barium M- Heksaferit (BaFe 12O 19) dan sedikit fasa minor Fe 2O 3. Penambahan Fe sebesar 10% menyebabkan awal pembentukan didominasi oleh fasa intermediet BaFe 2O 4 pada temperatur 950 0 C, sedangkan pada penambahan 20% Fe lebih didominasi oleh fasa Fe 2O 3. Hasil analisis rietveld untuk material stoikiometri didapatkan nilai kecocokan fasa yang lebih baik dibandingkan dengan kedua sampel, sedangkan linearitas terbaik diperoleh pada penambahan 20% Fe Kata kunci: Metalurgi Serbuk, Barium Heksaferit, XRD, Rietveld. PENDAHULUAN Barium Heksaferit dengan stuktur heksagonal telah dikenal sebagai material magnetik permanen yang memiliki keuntungan seperti harga yang ekonomis, secara teoritis mempunyai anisotropi kristalin magnet yang cukup besar, koersivitas tinggi, temperatur Curie tinggi, magnetisasi saturasi yang relatif besar, kestabilan kimiawi yang baik, dan tahan korosi [1]. 165

Kilat Permana Putra dan Priyono Kajian Sifat Struktur Barium... Ketersediaan bahan baku Barium Heksaferit relatif murah dan pembuatannya mudah. Kemagnetan dari Barium Heksaferit mudah untuk dilakukan rekayasa melalui mekanisme substitusi ion-ion metal. Bahan magnetik seperti Barium Heksaferit mampu diaplikasikan pada suatu peralatan seperti media perekaman, perangkat surpressi gelombang mikro [2]. Penelitian tentang nanophase barium heksaferit tersubstitusi ion Mn dan Ti dengan metoda mekanik milling dengan menggunakan bahan dasar BaCO3, Fe2O3, MnCO3 dan TiO2 terbukti dapat merubah berbagai parameter magnetik seperti remanensi dan koersivitas [3]. Dari hasil penelitian diperoleh bahwa pembentukan nanophase dimulai pada temperatur 850 0 C [4]. Berbagai kendala yang dihadapi dalam, pembentukan nanophase adalah selalu ditemukan adanya fasa minor dan fasa intermediet dalam bentuk BaOFe2O3. Pada penelitian ini dilakukan pendalaman struktur awal pembentukan fasa tersebut dengan penambahan berbagai fraksi senyawa Fe2O3. DASAR TEORI Magnet permanen diawali dengan penggunaan baja martensit diawal abad 19 dengan cobalt merupakan magnet terbaik pada masa itu [5]. Namun beberapa puluh tahun kemudian terjadi perkembangan pesat dalam penelitian dibidang material magnet seperti magnet Alnico kemudian magnet permanen kelas keramik atau magnet ferit. Bila dibandingkan dengan magnet Alnico, magnet ferit memiliki energi dan remanen yang lebih rendah tetapi memiliki koersivitas yang jauh lebih tinggi. Perkembangan dramatis material magnet permanen terjadi pada 1970-an setelah ditemukan magnet logam tanah jarang [6]. Bahan tipe M-heksaferit, MO.6Fe2O3 (M=Ba, Pb, Sr) telah dikenal mempunyai sifat magnet yang sangat baik sehingga banyak digunakan sebagai magnet permanen [7]. Bahan nanostruktur heksaferit energi tinggi dapat diperoleh apabila dapat dilakukan kontrol terhadap beberapa hal diantaranya: ukuran kristalit dapat diperkecil hingga dalam skala nanometer. Proses interdifusi dalam proses pembentukan fasa heksaferit berjalan dengan cepat pada suhu kalsinasi yang rendah terbentuk sistem kristalit yang mendorong timbulnya efek magnetokristalin sehingga meningkatkan sifat anisotropi magnet bahan mengurangi kemungkinan terjadinya kontaminasi dalam proses fabrikasi, sehingga diperoleh sifat magnet yang maksimal [8]. METODE PENELITIAN Pembentukan material magnet Barium Heksaferit menggunakan metode metalurgi serbuk diawali dengan sintesa stoikiometri. Sebagian sampel ditambah variasi senyawa Fe2O3 untuk mendapatkan campuran nonstoikiometri. Sampel dengan berbagai komposisi dimilling untuk mendapatkan paduan yang homogen. Senyawa paduan selanjutnya dicampur dengan sedikit aquades dan dilanjutkan penghalusan dengan perangkat milling energi tinggi pada kecepatan 400 rpm. Setelah dilakukan pengeringan selanjutnya sampel yang telah kering dicetak pada tekanan 3 ton untuk diperoleh sampel dengan ukuran diameter 2,5 cm dan ketebalan 1,5 cm lalu dibakar dalam furnace 950 0 C. Struktur kristal diuji dengan X-ray difraksi dan dianalisis rietveld yang terlebih dahulu dilakukan pencocokan dengan ICCD-JCPDS. HASIL DAN PEMBAHASAN Gambar 1 menunjukan pola difraksi hasil karakterisasi menggunakan XRD dengan sumber anoda Co. Hasil struktur yang diidentifikasi pada gambar 1 merupakan proses sintesa stoikiometri antara BaCO3 dengan Fe2O3 pada temperatur pemanasan 1200 0 C selama 4 jam sebagai sampel acuan. Dari hasil identifikasi pencocokan data menggunakan daftar tabel ICDD #271029 dan #150615 menunjukkan bahwa terbentuk dua fasa, Barium Heksaferit BaFe12O19 sebagai fasa mayor dan fasa Fe2O3 sebagai fasa minor. 166

Youngster Physics Journal ISSN : 2302-7371 Vol. 4, No. 2, April 2015, Hal 165-172 Gambar 1. Grafik difraksi komposisi stoikiometri pembentukan BaFe 12O 19 pada pemanasan 1200 0 C Tabel 1. Hasil pencocokan data pembentukan fasa BaFe 12O 19 pada pemanasan 1200 0 C dengan ICDD- JCPDS # 271029 dan # 150615 yang disintesis dengan komposisi stoikiometri No. 2 θ ( 0 ) h k l Fasa 1 20,695 1 0 1 BaFe 12O 19 2 22,085 1 0 2 BaFe 12O 19 3 26,728 0 0 6 BaFe 12O 19 4 35,302 1 1 0 BaFe 12O 19 5 35,931 0 0 8 BaFe 12O 19 6 37,538 1 0 7 BaFe 12O 19 7 39,767 1 1 4 BaFe 12O 19 8 41,565 3 1 3 Fe 2O 3 9 43,385 2 0 3 BaFe 12O 19 10 47,161 2 0 5 BaFe 12O 19 11 49,662 2 0 6 BaFe 12O 19 12 58,805 2 1 12 Fe 2O 3 13 64,903 2 1 7 BaFe 12O 19 14 66,472 3 0 4 BaFe 12O 19 15 74,782 2 2 0 BaFe 12O 19 Hasil karakterisasi struktur pada pembentukan fasa BaFe12O19 dengan kelebihan 10% Fe ditunjukkan pada gambar 2. Pada penambahan 10% Fe teridentifikasi dengan baik puncak-puncak difraksi yang memperlihatkan proses awal pembentukan. Penambahan Fe tersebut dapat mempengaruhi terhadap fasa yang terbentuk. Hasil yang terbentuk dapat dijadikan acuan untuk mengetahui proses-proses yang terjadi dalam pembentukan fasa Barium Heksaferit tersebut. 167 Gambar 2. Grafik difraksi komposisi pembentukan BaFe 12O 19 dengan kelebihan 10% Fe pada pemanasan 950 0 C Hasil identifikasi dengan data pada penambahan 10% senyawa Fe2O3 terlihat tiga fasa yaitu BaFe2O4, BaFe12O19 dan fasa Fe2O3. Fasa BaFe2O4 atau BaOFe2O3 merupakan fasa awal proses pembentukan BaFe12O19 dan terlihat mendominasi struktur kristal yang terbentuk. Dengan berlebihnya fasa Fe2O3, maka pembentukan fasa stabil BaFe12O19 akan mudah terbentuk. Tabel 2. Hasil pencocokan data pembentukan fasa BaFe 12O 19 + 10% Fe pada pemanasan 950 0 C dengan ICDD #460113, #271029 dan #130458 yang disintesis dengan komposisi non-stoikiometri No 2 θ ( 0 ) h k l Fasa 1 33,134 2 1 2 BaFe 2O 4 2 40,408 2 2 0 BaFe 2O 4 3 41,581 1 0 8 BaFe 12O 19 4 48,5 3 2 1 γ-fe 2O 3 5 50,757 5 1 3 BaFe 2O 4 6 51,768 4 2 2 BaFe 2O 4 7 62,184 5 2 3 BaFe 2O 4 8 68,605 12 0 0 BaFe 2O 4 9 70,965 2 0 12 BaFe 12O 19 10 72,746 1 3 3 BaFe 2O 4 Tabel 2 memperkuat hasil Analisis di atas karena puncak kristal BaFe12O19 mulai terbentuk pada bidang (1 0 8) dan (2 0 12). Gambar 3 menunjukan hasil difraksi X-ray pada penambahan 20% senyawa Fe dan telah diverifikasi dengan data standard.

Kilat Permana Putra dan Priyono Kajian Sifat Struktur Barium... Dengan tidak ditemukannya fasa BaFe12O19 maka dapat diketahui bahwa penambahan ini sangat berlebih sehingga dapat menghambat proses pembentukan fasa BaFe12O19 Gambar 3.Grafik difraksi komposisi pembentukan BaFe 12O 19 dengan kelebihan 20% Fe pada pemanasan 950 0 C Penambahan 20% Fe ternyata mendominasi fasa yang terbentuk disamping fasa intermediet BaFe2O4 sedangkan fasa BaFe12O19 menjadi fasa minor Hal ini menandakan bahwa kelebihan senyawa Fe2O3 akan menghambat pembentukan fasa tunggal. Hal ini didukung dari hasil pada tabel 3. Tabel 3. Hasil pencocokan data pembentukan fasa BaFe 12O 19 + 20% Fe pada pemanasan 950 0 C dengan ICDD #150615 dan #460113 yang disintesis dengan komposisi non-stoikiometri No. 2 θ ( 0 ) h k l Fasa 1 34,604 2 2 0 BaFe 2O 4 2 35,302 2 0 6 Fe 2O 3 3 36,307 2 2 2 Fe 2O 3 4 37,275 0 0 9 Fe 2O 3 5 38,541 7 1 1 BaFe 2O 4 6 40,408 2 2 0 BaFe 2O 4 7 42,391 1 1 3 BaFe 2O 4 8 46,435 0 2 2 BaFe 2O 4 9 49,737 5 2 1 BaFe 2O 4 10 52,4 1 0 12 Fe 2O 3 11 53,306 2 0 11 Fe 2O 3 12 57,388 2 0 12 Fe 2O 3 13 60,409 3 2 9 Fe 2O 3 14 63,410 2 2 12 Fe 2O 3 15 64,815 0 0 15 Fe 2O 3 16 65,552 1 0 1 BaFe 2O 4 17 67,597 2 1 14 Fe 2O 3 Tabel 3 menyatakan hasil pembentukan pemanasan 950 0 C selama 4 jam dengan adanya tambahan fraksi senyawa Fe sebanyak 20%. Analisis Rietveld Gambar 4 merupakan hasil pencocokan yang dilakukan antara kurva teoritis dan kurva eksperimen. Pada kurva terlihat bahwa semua puncak telah teridentifikasi dengan baik yang ditandai dengan berhimpitnya kurva eksperimen dan data teoritis. Data residu ditunjukkan pada kurva dibawahnya. Dalam kurva residu terlihat bahwa masih terdapat fasa lain yang dimunculkan yang ditandai dengan masih adanya puncak puncak kurva. b a Gambar 4. Hasil analisis rietveld BaFe 12O 19 (a) kurva perbandingan (b) kurva kesalahan (c) kurva least square Setelah dilakukan penghalusan diperoleh nilai goodness of fit sebesar 2,657. Nilai tersebut masih terlalu besar dimana nilai goodness of fit yang baik berada pada rentang <1,9. Goodness of fit adalah faktor yang menunjukan kesesuaian antara data observasi dengan data standar dari crystalography open database. Kesesuaian kurva teoritis dan observasi ditunjukan melalui kurva residu yang terbentuk, semakin lurus kurva residu c 168

Youngster Physics Journal ISSN : 2302-7371 Vol. 4, No. 2, April 2015, Hal 165-172 menunjukan kesesuaian yang baik antara kurva teoritis dan observasi. Kurva kesalahan pada gambar 4b menunjukan pada rentang 5% yang berarti masih terdapat beberapa fasa lain pembentukan fasa Barium Heksaferit. Kurva least square gambar 4c terlihat masih terdapat pembelokan. Hasil yang baik ditunjukan dengan kurva yang linier [5]. Hasil penghalusan nilai residu dari sampel acuan yaitu wrp sebesar 8,90% dan Rp sebesar 6,97%. Residu profil (Rp) dan residu profil berbobot (wrp) menentukan kualitas penghalusan yang dilakukan, semakin kecil nilai residu yang didapat maka semakin baik proses refinement dikarenakan banyaknya kecocokan antara data teoritis dan data observasi. Berdasarkan nilai goodness of fit, Rp dan wrp dapat dikatakan bahwa kualitas penghalusan yang diperoleh cukup baik. Perbedaan hasil refinement ditunjukan tiap sampel, seperti yang terlihat gambar 5 dengan penambahan 10% Fe. a b Gambar 5. Hasil analisis rietveld penambahan 10% Fe (a) kurva perbandingan (b) kurva kesalahan (c) kurva least square c 169 Kurva perbandingan pada gambar 5a menunjukan hasil pencocokan antara kurva teoritis dan data observasi yang ditandai dengan tidak berhimpitnya garis titik-titik sebagai pola difraksi ekseprimen dengan kurva bergaris sebagai pola difraksi teoritis, hal tersebut dapat disebabkan karena pengaruh dari penambahan Fe yang berlebih pada bahan magnet sehingga terbentuk fasa yang lain. Fasa tersebut dapat diketahui melalui kurva perbandingan dimana jika pada pola grafik teoritis tidak terjadi puncak dan tidak dapat dihaluskan menyesuaikan pola difraksi eksperimen yang terjadi puncak. Hal tersebut mengakibatkan selisih antara pola difraksi eksperimen dan pola difraksi teoritis menjadi besar yang ditunjukan pada kurva residu yang berada dibawah kurva perbandingan. Kurva kesalahan pada gambar 5b menunjukan rentang 5 % yang berati masih terdapat fasa yang belum dapat diolah oleh GSAS dan kurva least square pada gambar 5c menunjukan adanya pembelokan pada kurva. Selain itu dengan penambahan 10% Fe diduga menghasilkan terjadinya pembentukan fasa yang lain sehingga tidak dapat dilakukan proses penghalusan oleh GSAS. Hasil refinement diperoleh nilai goodness of fit sebesar 1,820 dan nilai residu wrp 16,44 % dan Rp 12,44 %. Nilai residu yang dihasilkan masih sangat besar yang berada diatas rentang 10%, hal tersebut menunjukan bahwa masih terdapat fasa lain yang belum bisa di refinement atau dilakukan penghalusan oleh GSAS. Faktor fitting pada bahan magnet dengan penambahan 10% Fe masih sangat besar sehingga kualitas penghalusan masih belum baik. Besarnya nilai residu wrp dan Rp ini disebabkan adanya pembentukan fasa pada data observasi yang tidak dapat dilakukan penghalusan oleh GSAS dalam jumlah yang cukup besar sehingga menghasilkan nilai residu wrp dan Rp yang besar. namun hal tersebut tidak berpengaruh terhadap proses penghalusan dikarenakan fasa yang terbentuk bukanlah fasa tunggal. Hasil penghalusan

Kilat Permana Putra dan Priyono Kajian Sifat Struktur Barium... sampel bahan magnet dengan penambahan 20% Fe ditunjukan pada gambar 6. b a Gambar 6. Hasil analisis rietveld penambahan 20% Fe (a) kurva perbandingan (b) kurva kesalahan c) kurva least square Kurva perbandingan pada gambar 6a menunjukan bahwa hasil pencocokan antara garis titik-titik dengan kurva bergaris masih menunjukan tidak berhimpitnya kedua pola tersebut. Hal ini ditandai dengan tingginya kurva residu yang terbentuk, selain itu juga kurva residu yang tidak mendekati garis linear yang menandakan bahwa pola belum sama. Dengan adanya penambahan fasa Fe ini kemungkinan terjadi pembentukan fasa yang lain sehingga terdapat pola difraksi yang tidak bisa dihaluskan sepenuhnya oleh GSAS. Pada gambar 6b kurva kesalahan menunjukan pada rentang 4 % yang berarti masih terdapat fasa yang belum diolah oleh GSAS. Pada kurva least square gambar 6c menunjukan masih terdapat pembelokan pada kurva namun hampir mendekati kurva yang linier. Hasil yang baik ditunjukan dengan kurva yang lurus atau linier. c Hasil penghalusan didapatkan nilai goodness of fit sebesar 1,695. Hal tersebut menunjukan bahwa nilai goodness of fit menunjukan nilai yang baik. Selain itu didapatkan pula nilai residu dari hasil penghalusan GSAS pada sampel dengan penambahan 10 % Fe yaitu wrp sebesar 11,90 % dan Rp sebesar 9,22 %. Nilai residu pada gambar 6 yang didapatkan dari proses penghalusan masih menunjukan nilai diatas 10%. Hal itu menunjukan bahwa dalam proses penghalusan masih adanya fasa lain yang belum bisa dilakukan penghalusan oleh GSAS, tetapi nilai tersebut tidak berpengaruh terhadap hasil kualitas penghalusan yang diperoleh karena fasa yang terbentuk pada sampel bukanlah fasa tunggal. KESIMPULAN Berdasarkan hasil karakterisasi dan analisis yang telah dilakukan dapat disimpulkan beberapa hal yaitu : hasil karakterisasi XRD menunjukan sampel dengan komposisi stoikiometri didominasi oleh fasa BaFe12O19 dan sedikit fasa minor Fe2O3. Penambahan Fe sebesar 10% mengakibatkan awal pembentukan material magnet Barium Heksaferit pada 950 0 C didominasi oleh fasa BaFe2O4 sedangkan pada penambahan 20% Fe sudah tidak terbentuk fasa Barium Heksferit namun lebih didominasi oleh fasa Fe2O3. Berdasarkan refinement menggunakan software GSAS menunjukan material dengan komposisi stoikiometri didapatkan nilai kecocokan fasa yang lebih baik yaitu wrp sebesar 8,90% dan Rpsebesar 6,97% dibandingkan dengan sampel yang lainnya. Sedangkan linearitas terbaik diperoleh pada penambahan 20% yang memiliki nilai goodness of fit sebesar 1,695. UCAPAN TERIMAKASIH Penulis menyampaikan terimakasih kepada laboratorium Fisika Material Jurusan fisika yang telah memberi fasilitas sehingga penelitian ini dapat berlangsung. Ucapan terimaksih juga ditujukan kepada Laboratorium Terpadu Universitas Diponegoro yang telah memberikan fasilitas X-ray untuk analisa struktur. 170

Youngster Physics Journal ISSN : 2302-7371 Vol. 4, No. 2, April 2015, Hal 165-172 DAFTAR PUSTAKA [1] Nur, S., Inayati, dan Zainuri, M., 2012, Pengaruh Variasi ph Pelarut HCl Pada Sintesis Barium M-Heksaferrit Dengan Doping Zn (BaFe11,4Zn0,6O19) Menggunakan Metode Kopresipitasi, JURNAL SAINS DAN SENI ITS, Vol. 1, No. 1, September 2012, Hlm. 41-46. [2] Kosasih, A. N., dan M. Zainuri, 2012, Sintesis dan Karakterisasi Sifat Magnetik Serbuk Barium M-Heksaferrit dengan Doping Ion Zn pada Variasi Temperatur Rendah, JURNAL SAINS DAN SENI ITS, Vol. 1, No. 1, Hlm 52-54 [3] Sulistyo, Marhaendrajaya, I dan Priyono., 2012, Sintesis Dan Karakterisasi Material Magnetik Barium Hexaferrite Tersubstitusi Menggunakan Teori Sol-Gel Untuk Aplikasi Serapan Gelombang Mikro Pada Frekuensi X-Band, Berkala Fisika, Vol. 15, No. 2, April 2012, Hlm. 63 68. [4] Priyono dan Manaf, A., 2008, Pembentukan Nanophase Barium Hexaferrite Tersubstitusi Ion Mn dan Ti Dengan Metoda Alloy Mekanik, Proceeding Seminar Nasional Material Dan Metalurgi-2. [5] Cullity, B. D., dan Graham, C. D., 2008, Introduction To Magnetic Materials, Second Edition, United States Of America, IEE Press [6] Manaf, A., 2007, Potensi Bahan Lokal dalam Pengembangan Material Magnet Untuk Industri di Indonesia, Jurnal sains materi indonesia, Oktober, Hlm17-23. [7] Johan, A., 2010, Analisis Bahan Magnet Nanokristalin Barium Heksaferit (BaO 6Fe2O3) dengan Menggunakan High-Energy Milling, Jurnal Penelitian Sains. Vol.14, No.1(B), Januari 2010, Hlm. 19-24. [8] Winatapura, S. D., Dewi, S. H., Adi, W. A., dan Ridwan, 2012, Pengaruh Kalsium Terhadap Sifat Magnet Barium Heksaferit Hasil Sintesis Dengan Metoda Ko- Presipitasi. Prosiding Insinas, Tangerang, 29-30 November 2012. 171

Kilat Permana Putra dan Priyono Kajian Sifat Struktur Barium... 172