PENGGANTIAN JEMBATAN KALIGUNG TUWEL DENGAN MENGGUNAKAN KONSTRUKSI RANGKA BAJA

dokumen-dokumen yang mirip
PENGGANTIAN JEMBATAN KALIGUNG TUWEL DENGAN MENGGUNAKAN KONSTRUKSI RANGKA BAJA

PERENCANAAN PENGGANTIAN JEMBATAN JUWET KABUPATEN PEMALANG

HALAMAN PENGESAHAN LAPORAN TUGAS AKHIR PERENCANAAN JEMBATAN LAYANG PERLINTASAN KERETA API KALIGAWE DENGAN U GIRDER

PERENCANAAN JEMBATAN PRATEGANG KALI SURU PEMALANG

PERANCANGAN JEMBATAN KATUNGAU KALIMANTAN BARAT

PERANCANGAN JEMBATAN WOTGALEH BANTUL YOGYAKARTA. Laporan Tugas Akhir. Atma Jaya Yogyakarta. Oleh : HENDRIK TH N N F RODRIQUEZ NPM :

PERENCANAAN UNDERPASS SIMPANG TUJUH JOGLO SURAKARTA

PERENCANAAN ALTERNATIF DESAIN JEMBATAN JURANG GEMPAL KABUPATEN WONOGIRI

PERENCANAAN JEMBATAN RANGKA BAJA SUNGAI AMPEL KABUPATEN PEKALONGAN

PROYEK AKHIR. PROGRAM DIPLOMA III TEKNIK SIPIL Fakultas Teknik Sipil Dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya

BAB II TINJAUAN PUSTAKA. Menurut Supriyadi (1997) struktur pokok jembatan antara lain seperti

BAB II TINJAUAN PUSTAKA. Menurut Supriyadi (1997) struktur pokok jembatan antara lain : Struktur jembatan atas merupakan bagian bagian jembatan yang

Nama : Mohammad Zahid Alim Al Hasyimi NRP : Dosen Konsultasi : Ir. Djoko Irawan, MS. Dr. Ir. Djoko Untung. Tugas Akhir

PENGANTAR PERENCANAAN JALAN RAYA SO324 - REKAYASA TRANSPORTASI UNIVERSITAS BINA NUSANTARA 2006

BAB 3 LANDASAN TEORI. perencanaan underpass yang dikerjakan dalam tugas akhir ini. Perencanaan

MODIFIKASI PERENCANAAN JEMBATAN BANTAR III BANTUL-KULON PROGO (PROV. D. I. YOGYAKARTA) DENGAN BUSUR RANGKA BAJA MENGGUNAKAN BATANG TARIK

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI DESAIN

MODIFIKASI PERENCANAAN STRUKTUR JEMBATAN MALO-KALITIDU DENGAN SYSTEM BUSUR BOX BAJA DI KABUPATEN BOJONEGORO M. ZAINUDDIN

LAPORAN TUGAS AKHIR PENGEMBANGAN SIRKUIT TAWANG MAS SEMARANG MENJADI SIRKUIT BALAP MOBIL WAHYU YAN NUGROHO L2A ZUHWAN ASBAH L2A

LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN JEMBATAN KALI TEMPUR PADA RUAS JALAN TOL SEMARANG BAWEN

No. Klasifikasi Medan Jalan Raya Utama 1 Datar (D) 0 9,9 % 2 Perbukitan (B) 10 24,9 % 3 Pegunungan (G) >24,9 %

Kajian Pengaruh Panjang Back Span pada Jembatan Busur Tiga Bentang

HALAMAN PENGESAHAN PERENCANAAN JEMBATAN GANTUNG TUGU SOEHARTO KELURAHAN SUKOREJO KECAMATAN GUNUNGPATI SEMARANG

Perencanaan Jembatan Leho Kawasan Pesisir Kabupaten Karimun, Kepulauan Riau, dengan Struktur Jembatan Pelengkung (Arch Bridge).

OLEH : ANDREANUS DEVA C.B DOSEN PEMBIMBING : DJOKO UNTUNG, Ir, Dr DJOKO IRAWAN, Ir, MS

ABSTRAK. Oleh : Wahyu Rifai Dosen Pembimbing : Sapto Budi Wasono, ST, MT

LEMBAR PENGESAHAN TUGAS AKHIR EVALUASI DAN PERANCANGAN PENINGKATAN JALAN SELATAN-SELATAN CILACAP RUAS SIDAREJA - JERUKLEGI

PERENCANAAN JEMBATAN MALANGSARI MENGGUNAKAN STRUKTUR JEMBATAN BUSUR RANGKA TIPE THROUGH - ARCH. : Faizal Oky Setyawan

Disusun Oleh: ADIB FAUZY L2A ERSY PERDHANA L2A Semarang, Nopember 2010 Disetujui :

TUGAS AKHIR PERENCANAAN STRUKTUR JEMBATAN RANGKA BAJA KALI KRASAK II

III. METODE PENELITIAN. Pada penelitian ini metode yang digunakan adalah dengan analisis studi kasus

BAB III METODOLOGI. Bab III Metodologi 3.1. PERSIAPAN

DESAIN FLY OVER PADA PERLINTASAN SEBIDANG JALAN KERETA API DI JALAN SLAMET RIYADI SURAKARTA

EVALUASI JALAN LAYANG NON TOL PAKET CASABLANCA KUNINGAN- JAKARTA. Alan Elang Filtrana, Ester Melina, Sri Tudjono *), Ilham Nurhuda *)

BAB III LANDASAN TEORI. Kendaraan rencana dikelompokan kedalam 3 kategori, yaitu: 1. kendaraan kecil, diwakili oleh mobil penumpang,

BAB V EVALUASI V-1 BAB V EVALUASI

NOTASI ISTILAH DEFINISI

MODIFIKASI PERENCANAAN JEMBATAN JUANDA DENGAN METODE BUSUR RANGKA BAJA DI KOTA DEPOK

PERENCANAAN STRUKTUR RANGKA BAJA JEMBATAN LINGKAR UNAND,PADANG

BAB III LANDASAN TEORI. tanah adalah tidak rata. Tujuannya adalah menciptakan sesuatu hubungan yang

PERENCANAAN JEMBATAN KALI TUNTANG DESA PILANGWETAN KABUPATEN GROBOGAN

PERENCANAAN JALAN DAN JEMBATAN AKSES MENUJU TERMINAL BARU BANDARA INTERNASIONAL AHMAD YANI SEMARANG

PERENCANAAN JEMBATAN COMPOSITE GIRDER YABANDA JAYAPURA, PAPUA TUGAS AKHIR SARJANA STRATA SATU. Oleh : RIVANDI OKBERTUS ANGRIANTO NPM :

TUGAS AKHIR PERENCANAAN STRUKTUR JEMBATAN RANGKA BAJA KALI CIBEREUM KABUPATEN CILACAP JAWA TENGAH

HALAMAN PENGESAHAN. Judul Tugas Akhir : EVALUASI DAN PERENCANAAN JEMBATAN KALI PELUS PURWOKERTO. Disusun oleh : Semarang, Agustus 2006

PERENCANAAN STRUKTUR ATAS JEMBATAN RANGKA BAJA MUSI VI KOTA PALEMBANG SUMATERA SELATAN. Laporan Tugas Akhir. Universitas Atma Jaya Yogyakarta.

BAB II TINJAUAN PUSTAKA

BAB III METODOLOGI. 3.2 TAHAPAN PENULISAN TUGAS AKHIR Bagan Alir Penulisan Tugas Akhir START. Persiapan

BAB IV ANALISA DATA BAB IV ANALISA DAN PENGOLAHAN DATA IV - 1

SKRIPSI PERBANDINGAN PERHITUNGAN PERKERASAN LENTUR DAN KAKU, DAN PERENCANAAN GEOMETRIK JALAN (STUDI KASUS BANGKALAN-SOCAH)

DAFTAR ISI HALAMAN PENGESAHAN HALAMAN PERNYATAAN KATA PENGANTAR DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN DAFTAR LAMBANG, NOTASI, DAN SINGKATAN

PERENCANAAN PELEBARAN JEMBATAN JATINGALEH KOTA SEMARANG

LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN FLY OVER PERLINTASAN JALAN RAYA DAN JALAN REL DI BENDAN PEKALONGAN. Semarang, Agustus 2009 Disetujui:

HALAMAN PENGESAHAN UNIVERSITAS DIPONEGORO

OPTIMASI BERAT STRUKTUR RANGKA BATANG PADA JEMBATAN BAJA TERHADAP VARIASI BENTANG. Heavy Optimation Of Truss At Steel Bridge To Length Variation

BAB II STUDI PUSTAKA

BAB III LANDASAN TEORI

PERENCANAAN GEOMETRIK JALAN DAN TEBAL PERKERASAN LENTUR PADA RUAS JALAN GARENDONG-JANALA

PERENCANAAN STRUKTUR JEMBATAN BANGILTAK DESA KEDUNG RINGIN KECAMATAN BEJI KABUPATEN PASURUAN DENGAN BUSUR RANGKA BAJA

Bab 4 KAJIAN TEKNIS FLY OVER

BAB I PENDAHULUAN I.1 Definisi dan Klasifikasi jembatan serta standar struktur jembatan I.1.1 Definisi Jembatan : Jembatan adalah suatu struktur yang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

PEMBANDINGAN DISAIN JEMBATAN RANGKA BAJA MENGGUNAKAN PERATURAN AASHTO DAN RSNI

PERENCANAAN GEOMETRIK JALAN PADA PROYEK PENINGKATAN JALAN BATAS KABUPATEN TAPANULI UTARA SIPIROK (SECTION 2)

KAJIAN PEMANFAATAN KABEL PADA PERANCANGAN JEMBATAN RANGKA BATANG KAYU

LEMBAR PENGESAHAN LAPORAN TUGAS AKHIR EVALUASI RANCANGAN JALAN TOL KANCI - PEJAGAN

PERENCANAAN JALAN LINGKAR UTARA KOTA WONOSARI, KABUPATEN GUNUNG KIDUL, PROVINSI DAERAH ISTIMEWA YOGYAKARTA

LEMBAR PENGESAHAN. TUGAS AKHIR PERENCANAAN JALAN LINGKAR SELATAN SEMARANG ( Design of Semarang Southern Ringroad )

PERENCANAAN GEOMETRIK JALAN (HSKB 250) Lengkung Geometrik

MODIFIKASI PERANCANGAN JEMBATAN TRISULA MENGGUNAKAN BUSUR RANGKA BAJA DENGAN DILENGKAPI DAMPER PADA ZONA GEMPA 4

PERENCANAAN GEOMETRIK DAN PERKERASAN RUAS JALAN ARIMBET-MAJU-UJUNG-BUKIT-IWUR PROVINSI PAPUA

KONTROL ULANG PENULANGAN JEMBATAN PRESTRESSED KOMPLANG II NUSUKAN KOTA SURAKARTA

DAFTAR ISI. HALAMAN JUDUL...i. LEMBAR PENGESAHAN... ii. LEMBAR PERSEMBAHAN... iii. KATA PENGANTAR...iv. DAFTAR ISI...vi. DAFTAR GAMBAR...

BAB II STUDI PUSTAKA 2.1 Tinjauan Umum 2.2 Aspek Lalu Lintas

JEMBATAN RANGKA BAJA. bentang jembatan 30m. Gambar 7.1. Struktur Rangka Utama Jembatan

DAFTAR ISI KATA PENGATAR

disusun oleh : MOCHAMAD RIDWAN ( ) Dosen pembimbing : 1. Ir. IBNU PUDJI RAHARDJO,MS 2. Dr. RIDHO BAYUAJI,ST.MT

2.2. ASPEK LALU LINTAS

DESAIN STRUKTUR JEMBATAN RANGKA BAJA BENTANG 80 METER BERDASARKAN RSNI T ABSTRAK

Oleh : ARIF SETIYAFUDIN ( )

PERENCANAAN GEOMETRIK PADA RUAS JALAN TANJUNG MANIS NILAS KECAMATAN SANGKULIRANG

TUGAS AKHIR RC

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Motto dan Persembahan ABSTRAK ABSTRACT KATA PENGANTAR

BAB IV ANALISIS DATA

BAB V PERHITUNGAN STRUKTUR

LAPORAN TUGAS AKHIR PERENCANAAN JALAN TOL SEMARANG KENDAL

PERHITUNGAN STRUKTUR JEMBATAN BETON PRATEGANG SEI DELI KECAMATAN MEDAN-BELAWAN TUGAS AKHIR GRACE HELGA MONALISA BAKARA NIM:

PERENCANAAN PENINGKATAN JALAN BATAS DELI SERDANG DOLOK MASIHUL-BATAS TEBING TINGGI PROVINSI SUMATERA UTARA

TUGAS AKHIR DESAIN JEMBATAN KAYU DENGAN MENGGUNAKAN KAYU MERBAU DI KABUPATEN SORONG PROVINSI PAPUA BARAT. Disusun Oleh : Eric Kristianto Upessy

Jembatan Komposit dan Penghubung Geser (Composite Bridge and Shear Connector)

LEMBAR PENGESAHAN TUGAS AKHIR PERENCANAAN PENINGKATAN JALAN UNGARAN - CANGKIRAN. (Design Increasing Ungaran Cangkiran of Road)

PERENCANAAN JALAN LAYANG PADA JALAN AKSES BANDARA A. YANI SEMARANG

BAB II TINJAUAN PUSTAKA. meskipun istilah aliran lebih tepat untuk menyatakan arus lalu lintas dan

xxi DAFTAR DEFINISI, ISTILAH DAN SIMBOL Ukuran kinerja umum NOTASI ISTILAH DEFINISI

BAB II PERATURAN PERENCANAAN

BAB IV PERENCANAAN. Perkerasan Lentur Jalan Raya Dengan Metode Analisa Komponen SKBI

BAB II TINJAUAN PUSTAKA

5/11/2012. Civil Engineering Diploma Program Vocational School Gadjah Mada University. Nursyamsu Hidayat, Ph.D. Source:. Gambar Situasi Skala 1:1000

TUBAGUS KAMALUDIN DOSEN PEMBIMBING : Prof. Tavio, ST., MT., Ph.D. Dr. Ir. Hidayat Soegihardjo, M.S.

Transkripsi:

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1109 JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1109 1119 Online di: http://ejournal-s1.undip.ac.id/index.php/jkts PENGGANTIAN JEMBATAN KALIGUNG TUWEL DENGAN MENGGUNAKAN KONSTRUKSI RANGKA BAJA Gilar Taswindo, Wahyu Agung Nugroho, Moga Narayudha *), Ilham Nurhuda *) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Diponegoro Jl. Prof Soedarto, Tembalang, Semarang. 50239, Telp.: (024)7474770, Fax.: (024)7460060 ABSTRAK Jembatan Kaligung Tuwel terletak di Desa Tuwel, Slawi, Kabupaten Tegal yang menghubungkan daerah Bumijawa dan daerah Tuwel membentang sepanjang 70 meter di atas sungai Kaligung. Penggantian jembatan Kaligung Tuwel ini didasarkan pada kondisi jembatan yang sudah melampaui umur rencana, rangka baja jembatan yang sudah berkarat serta lebar efektif jembatan yang tidak memenuhi standar untuk melayani kebutuhan transportasi. Pada kondisi awalnya Jembatan ini didesain dengan menggunakan tipe struktur jembatan lalu lintas atas, kemudian dalam tugas akhir ini dilakukan perancangan untuk penggantian Jembatan Kaligung Tuwel dengan menggunakan jembatan tipe struktur rangka baja lalu lintas bawah. Pada tahap awal dilakukan analisa kondisi eksisting, perencanaan struktur atas dan bawah jembatan serta perhitungan Rencana Anggaran Biaya (RAB). Perencanaan struktur atas memperhitungkan beban yang mungkin terjadi yaitu berat sendiri, beban mati tambahan, beban lalu lintas, beban angin, dan beban gempa. Dalam perancangan jembatan ini dilakukan perhitungan menggunakan metode LRFD (Load and Resistance Factor Design). Selanjutnya dilakukan perencanaan struktur bawah dengan langkah awal melakukan pendimensian pondasi dan abutmen. Untuk pondasi digunakan pondasi sumuran dan untuk bagian abutmen menggunakan tipe kantilever. kata kunci : Penggantian Jembatan Kaligung Tuwel, rangka baja, lalu lintas ABSTRACT Kaligung Bridge is located in Tuwel village of Slawi in Tegal regency. The Bridge connects Bumijawa and Tuwel area and stretches along 70 meters above Kaligung river. In this project, Kaligung Tuwel bridge was designed as a steel truss system. The design steps are as follows : analysis of the existing conditions, design the upper structure and the substructure of the bridge, and calculate budget plan ( RAB ). The Design of the upper structure considers loads such as : self weight, dead load, traffic load, wind load, and seismic load. The design was carried out using LRFD (Load and Resistance Factor Design) method. Next, the substructure was designed by calculating the dimension of the foundation and abutment. The foundation was designed as a caisson while the abutment was of cantilever type. *) Penulis Penanggung Jawab 1109

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1110 keywords: Replacement, Kaligung Tuwel Bridge, Steel truss, Traffic. PENDAHULUAN Di wilayah kabupaten Tegal khususnya di kecamatan Bojong, terdapat beberapa jembatan sebagai sarana transportasi salah satunya adalah jembatan Kaligung Tuwel. Jembatan Kaligung Tuwel ini berada di desa Tuwel kecamatan Bojong yang terletak di daerah dataran tinggi kabupaten Tegal. Jembatan Kaligung Tuwel sendiri merupakan salah satu akses yang menghubungkan daerah Tuwel dengan daerah Bumijawa kabupaten Tegal, dengan karakteristik lalu lintas yang beraneka ragam seperti sepeda motor, angkutan, mobil, bus dan truk tentu jembatan ini sangat strategis untuk kelancaran transportasi. Berdasarkan informasi yang didapatkan dari Tim Teknis Bina marga Provinsi Jawa Tengah diketahui bahwa jembatan kaligung Tuwel ini sudah memasuki tahap penggantian dikarenakan umur rencana yang sudah terlampaui. Disamping itu terdapat adanya beberapa kerusakan yaitu konstruksi lantai jembatan yang hanya menggunakan deplang atau plat kayu kondisinya sudah rusak. Dengan mempertimbangkan aspek dan kondisi tersebut maka sangat perlu untuk dilakukan penggantian jembatan Kaligung Tuwel. BATASAN MASALAH Ruang lingkup dan batasan masalah yang akan kami bahas dalam Tugas Akhir ini sebagai berikut : - Perhitungan struktur bangunan atas dan bawah jembatan meliputi : Bangunan atas : trotoar, railing, rangka utama, lantai kendaraan Bangunan bawah : abutment dan pondasi. - Rencana anggaran biaya pelaksanaan penggantian jembatan. - Gambar hasil perhitungan struktur jembatan. HASIL DAN PEMBAHASAN Hasil Analisa Data Analisa Penentuan Alinyemen Penentuan ini disesuaikan dengan keadaan topografi, sehingga penggantian jembatan dapat dilakukan semaksimal mungkin. Topografi dapat diartikan sebagai ketinggian suatu tempat dari permukaan air laut sehingga dapat ditentukan elevasi tanah asli, lebar sungai dan bentang efektif jembatan. Berikut alternatif terpilih berdasarkan tingkat kesulitan dalam pelaksanaan, keamanan dan kenyamanan. Gambar 1. Alinyemen terpilih 1110

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1111 Analisa Penentuan Bangunan Atas Dengan mengamati dan melihat lokasi proyek yaitu daerah pegunungan, perlu ditentukkan kriteria desain yang cocok dengan kondisi tersebut. Bangunan atas yang dipilih yaitu menggunakan Rangka Baja. Analisa Penentuan Bangunan Bawah Tipe abutment yang direncanakan dalam penggantian jembatan ini yaitu Tipe Kantilever. Penggunaan tipe abutment ini didasarkan pertimbangan akan sisi ekonomis dan memenuhi tuntutan kebutuhan teknis agar dapat mengurangi berat sendiri pangkal yang akan dibebankan pada bagian pondasi. Analisa Penentuan Pondasi Dalam penemilihan bentuk pondasi perlu diperhatikkan apakah pondasi cocok untuk berbagai keadaan lingkungan. Dari hasil sondir S.1 yang diukur dari permukaan tanah setempat letak tanah keras dengan dinilai qc > 150 kg/cm 2 pada kedalaman 3,20 m dan pada pengujian hasil SPT didapat nilai N-SPT pada kedalaman 3,00 sebesar 47 dan pada kedalaman 6,00 m sebesar 53 yang diukur dari muka tanah setempat. Dengan melihat hasil tersebut pondasi yang dapat digunakan adalah jenis pondasi dangkal atau pondasi sumuran. Analisa Penentuan Lebar Jembatan Lebar efektif jembatan sangat dipengaruhi oleh besarnya volume lalu-lintas yang ada. Perbandingan volume lalu lintas yang melewati jalur jalan tersebut akan menjadi dasar perancangan geometri jalan dan lebar rencana jembatan.kinerja lalu lintas diukur berdasarkan perbandingan antara volume lalu lintas dengan kapasitas jalannya atau derajat jenuh (degree of saturation). Penentuan lebar lajur kendaraan untuk jembatan ini mengacu pada buku Peraturan Perencanaan Geometrik Jalan Raya No.13/1970. Pada Jembatan ini lebar lajur yang dipakai sebesar 3,50 m. Jumlah lajur ditentukan oleh perbandingan kapasitas standar dan volume lalu lintas rencana. Analisa kapasitas untuk jalan luar kota ditentukan dengan rumus pada persamaan (1) berikut ini (MKJI, 1997) : C = C o x FC w x FC SP x FC SF x FC CS... (1) Dimana : C = kapasitas (smp/jam) C o = kapasitas dasar (smp/jam) FC w = faktor penyesuaian lebar jalur lalu lintas FC SP = faktor penyesuaian pemisah arah FC SF = faktor penyesuaian hambatan samping = faktor penyesuaian ukuran kota. FC CS Untuk perhitungan analisa kapasitas jalan luar kota adalah sebagai berikut : C = 2900 x 1,00 x 1,00 x 1,00 x 1,00 = 2900 smp/ jam 1111

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1112 Besarnya Volume Lalu-lintas Harian Rerata untuk tahun 2033 dengan total LHRT 2033 = 8.529 smp/hari. Besarnya arus lalu-lintas pada jam rencana dapat ditentukan dengan rumus pada persamaan (2) berikut ini (MKJI, 1997): QDH = k x LHRT 2033... (2) Dimana : QDH = Arus lalu-lintas jam rencana k = Rasio antara arus jam rencana dan LHRT; LHRT = Lalu-lintas harian rata-rata tahunan (kend/hari) untuk tahun penelitian/kejadian. Untuk perhitungan Besarnya arus lalu-lintas pada jam rencana adalah sebagai berikut : QDH = 0,09 x 8.529 = 767,61 smp/jam Penentuan Derajat Kejenuhan (DS) ditentukan dengan rumus pada persamaan (3) berikut ini (MKJI, 1997) : DS (LRHT2033) = QDH C... (3) DS (LRHT2033) = 767,61 0, 265 2900 Tahun Unit Tahun Tabel 1. Perhitungan Derajat Kejenuhan (DS) LHR VJP C DS Keterangan 2014 6 5.237 471.3588 2900 0.162538 Layak 2015 7 5.411 486.9486 2900 0.167913 Layak 2016 8 5.584 502.5384 2900 0.173289 Layak 2017 9 5.757 518.1282 2900 0.178665 Layak 2018 10 5.930 533.718 2900 0.184041 Layak 2019 11 6.103 549.3078 2900 0.189416 Layak 2020 12 6.277 564.8976 2900 0.194792 Layak 2021 13 6.450 580.4874 2900 0.200168 Layak 2022 14 6.623 596.0772 2900 0.205544 Layak 2023 15 6.796 611.667 2900 0.21092 Layak 2024 16 6.970 627.2568 2900 0.216295 Layak 2025 17 7.143 642.8466 2900 0.221671 Layak 2026 18 7.316 658.4364 2900 0.227047 Layak 2027 19 7.489 674.0262 2900 0.232423 Layak 2028 20 7.662 689.616 2900 0.237799 Layak 2029 21 7.836 705.2058 2900 0.243174 Layak 2030 22 8.009 720.7956 2900 0.24855 Layak 2031 23 8.182 736.3854 2900 0.253926 Layak 2032 24 8.355 751.9752 2900 0.259302 Layak 2033 25 8.529 767.565 2900 0.264678 Layak 2034 26 8.702 783.1548 2900 0.270053 Layak Sumber: Hasil Perhitungan 1112

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1113 Dari hasil perhitungan nilai parameter tingkat kinerja jalan di atas, besarnya DS pada tahun 2034 yaitu 0,27 memenuhi persyaratan (DS ideal adalah 0,75), Klasifikasi Penggantian Jembatan Kaligung Tuwel dipergunakan jalan 2 lajur 2 arah tanpa median (2/2 UD) dengan kelas jalan kolektor sekunder kelas II dan kecepatan rencana (v) 50 km/jam. Lebar Lajur = 2 x 3,5 m = 7,0 m Lebar Trotoar = 2 x 1,00 m = 2,0 m + Lebar Jembatan = 9,00 m Analisa Penentuan Tinggi Bebas Jembatan Pada analisis ini yang dihitung adalah tinggi muka air banjir yang dihasilkan oleh debit banjir rencana 50 tahunan untuk mengetahui pengaruh tinggi muka air banjir rencana yang pada akhirnya dapat diperhitungkan tinggi jagaan (freeboard) dan tinggi jembatan itu sendiri. Debit banjir rencana (Qr ) = 3.219,4 m 3 /det Kemiringan dasar ( i ) = 0,0065 Panjang aliran Sungai ( L ) = 89.400 m Lebar Sungai ( B ) = 8 m Elevasi tertinggi pangkal jembatan = +886 m dpl Elevasi dasar sungai = +860,37 m dpl H = 886 dpl - 860,37 dpl = 25,63 m Perhitungan muka air banjir (MAB) dapat diketahui dengan persamaan (4) berikut ini (Suripin,2004). 1 2 Q 50 = * R 3 n 1 * S 2 * A, 3.219,4... (4) = 1 * 0, 017 (8 10h) h 3 8 2h 1 2 10 2 2 1 * 0,011 2 *(8 + 10h) h = 8,625m Maka didapatkan Tinggi bebas jembatan = (H MAB) = 25,63-8,625 = 17,005 m Perhitungan Konstruksi Data teknis untuk jembatan Kaligung Tuwel sebagai berikut : Konstruksi = Jembatan rangka baja Bentang = 70 m - Konstruksi Atas Jembatan : Lebar perkerasan jembatan = 2 x 3,50 m Lebar trotoar jembatan = 2 x 1,00 m Lebar Jembatan = 9 m - Konstruksi Bawah Jembatan : Abutment = Beton bertulang Tipe pondasi = Sumuran 1113

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1114 Perhitungan Pembebanan Berdasarkan RSNI T-02 2005 pembebanan pada jembatan terdiri dari: Beban berat sendiri (beban mati), beban mati tambahan, beban truk T, beban lajur D, beban akibat Gaya rem, beban pejalan kaki, dan beban angin. 1/2 p 1/2 q p q q2 q1 q2 1/2 p 5,5 1/2 q 5,5 1,00 0.75 5,50 9.00 0,75 1,00 Gambar 2. Pemodelan pembebanan Perhitungan Struktur Atas Perhitungan struktur atas mencakup perhitungan pelat lantai, balok pembagi (stringer), balok melintang (cross girder), balok utama (main beam), penggantung (hanger), rusuk pelengkung (arch rib), ikatan angin atas, dan ikatan angin bawah. Perhitungan pelat lantai dilakukan dengan membuat pemodelan segmen pelat lantai yang dibebani beban roda truk (beban T ) untuk mendapatkan gaya dalam yang maksimum, kemudian didapatkan besarnya tulangan dan jarak antar tulangan untuk pelat lantai pada arah memanjang dan melintang. Perhitungan balok pembagi (stringer) dilakukan dengan menentukan beban yang bekerja pada balok ditunjukan pada gambar 3. Gambar 3. Pemodelan pembebanan plat lantai Setelah membuat model pembebanan pada balok pembagi, kemudian dicari gaya dalamnya untuk mendapatkan Momen dan gaya lintang maksimum. Pendimensian balok pembagi dilakukan dengan mengontrol kapasitas penampang terhadap kapasitas lentur, kapasitas geser dan interaksi gaya geser dengan lentur untuk memastikan kekuatan penampang tersebut. Perhitungan balok melintang (cross girder) dilakukan secara perhitungan balok komposit dengan asumsi gaya geser tersalurkan dengan shear connector. 1114

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1115 Perhitungan Shear Connector Shear Connector digunakan untuk menahan gaya geser memanjang yang terjadi pada bidang pertemuan antara pelat beton dengan balok baja. Gambar 4. Pemodelan gaya lintang Untuk P1 dan P2 adalah beban mati terpusat pada kondisi pra komposit dan post komposit. Pembebanan Shear Connector ditambahkan dengan beban gelagar melintang, beban hidup dan beban trotoar terlihat pada Gambar 5 sebagai berikut: Perencanaan Rangka Induk Gambar 5.Tegangan Geser Gelagar Melintang Rangka induk direncanakan menggunakan profil baja dengan spesifikasi : - G memanjang = IWF 350.175.7.11-49,6 kg/m - G melintang = IWF 708.302.15.28-215 kg/m - Rangka utama = IWF 428.407.20.35-283 kg/cm Pada Perhitungan pembebanan, beban diasumsikan beban antara rangka induk ditahan masing masing setengahnya oleh rangka induk. Pengaruh pendistribusian beban mati pada rangka induk meliputi beban gelagar melintang, gelagar memanjang, beban plat beton, beban lapis perkerasan, beban trotoar, beban air hujan, beban sandaran dan beban ikatan angin serta ikatan angin atas. Pembebanan beban hidup sendiri dihitung dengan pemodelan pada SAP 2000 dengan menggunakan beban berjalan terlihat pada keluaran SAP.2000 pada Gambar 6 berikut ini: SB1 = SB14 Gambar 6. Output SAP 2000 garis pengaruh 1115

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1116 Untuk selanjutnya dapat dilakukan pendimensian untuk setiap batang diagonal serta perhitungan sambungan. Untuk sambungan rangka utama digunakan sambungan baut dan Sambungan gelagar melintang dengan rangka utama direncanakan menggunakan pelat penyambung dengan tebal 20 mm yang dilas pada ujung gelagar melintang. Perhitungan Struktur Bawah. Perhitungan struktur bawah mencakup perhitungan pelat injak, perhitungan abutmen, dan perhitungan pondasi tiang pancang. Perhitungan pelat injak dilakukan dengan menganalisa beban yang bekerja untuk mengetahui gaya dalam yang bekerja pada pelat injak. Gambar 7. Pemodelan pembebanan plat injak Perhitungan abutmen dilakukan dengan menentukan seluruh beban yang bekerja pada abutmen pada arah vertikal dan arah horisontal baik ke arah memanjang sumbu jembatan maupun kearah tegak lurus terhadap sumbu jembatan. Gambar 8. Pemodelan akibat Beban Mati Berdasar hasil software SAP 2000 ver.12 didapatkan reaksi diatas tumpuan sebesar 70,93 ton, dimana satu buah abutment menerima 2 reaksi tumpuan daru 2 rangka baja. Sehingga abutment menerima beban mati sebesar : Pm = Joint Reaction = 2 x 70,93 = 141,86 ton Lengan terhadap B = 2,3 m M B = 2,3 x 141,86 = 323,978 Tm Pendimensian tulangan dan jarak antar tulangan pada bagian-bagian abutmen seperti pada badan abutmen, pelat pemisah, dan konsol penyanggah, maka dilakukan kontrol momen terhadap titik acuan pada lokasi tulangan tersebut. Untuk perhitungan pondasi sumuran di awali dengan perhitungan pembebanan, besarnya beban yang digunakan dalam perhitungan pondasi sumuran diambil dari kombinasi pembebanan yang menghasilkan beban dan momen terbesar. Untuk selanjutnya dapat dilakukan kontrol terhadap tekanan tanah pasif dan daya dukung tanah. 1116

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1117 Perencanaan Jalan Pendekat (Oprit) Oprit dibangun agar memberikan kenyamanan saat peralihan dari ruas jalan ke jembatan. Adapun perencanaan oprit sendiri meliputi perencanaan alinyemen vertikal dan horisontal. Perencanaan Aliyemen Vertikal Dalam perencanaan alinyemen vertikal ini direncanakan menggunakan kecepatan 50 km/jam. Besaran kecepatan ini akan dipakai dalam perencanaan alinyemen vertikal yang akan ditentukan berdasarkan Tata Cara Perencanaan Geometrik Jalan Antar Kota 1997, Dirjen Bina Marga. Dari trase jalan yang telah direncanakan terdapat 2 alinyemen vertikal yaitu lengkung : Pada alinyemen vertikal cekung = STA 0+275, dengan pertimbangan ekonomis maka diambil LV = 50 m. Dapat dilihat pada gambar 9 sebagai berikut : Gambar 9. Lengkung Vertikal Cekung Untuk alinyemen vertikal cembung = STA 0+125, dengan pertimbangan ekonomis maka diambil LV = 40 m. Dapat dilihat pada gambar 10 sebagai berikut : Perencanaan Aliyemen Horisontal Gambar 10. Lengkung Vertikal Cembung Dalam perencanaan alinyemen horisontal ini terdapat tiga kriteria utama sebagai dasar dan kontrol perancangan. Ketiga kriteria tersebut adalah panjang tangen (T) yang tersedia, panjang offset (E) dan jari-jari tikungan (R). proses perancangan tikungan secara umum adalah suatu proses inisiatif dengan penyesuaian jari-jari, sehingga diperoleh nilai T dan E yang sesuai dengan keinginan, seperti dapat dilihat pada gambar 11 sebagai berikut : 1117

k JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1118 Gambar 11. Bagan Alir Perancangan Alinyemen Horisontal Ada tiga jenis tikungan yang umum digunakan dalam perancangan geometrik jalan, yaitu tikungan lingkaran penuh (full circle), tikungan spiral-lingkaran (spiral-circle-spiral) dan tikungan spiral (spiral-spiral). Metode yang digunakan adalah metode Bina Marga. Pada STA 0+380, 1 = 15 o = 165 o, (Vr) : 50 km/jam, e max : 10% = 0,1; (Vr) : 50 km/jam, e max : 10% = 0,1. Untuk kecepatan rencana < 80 km/jam, koefisien gesek perkerasan terlihat pada persamaan (5), (PGJAK, 1997) berikut ini : fmax = -0,00065 Vr + 0,192... (5) = -0,00065 x 50 + 0,192 = 0,159 2 Rmin = Vr 100 = 50 2 127 e max fm, 127 0, 1 fm Fm = 0,097 Dari tabel superelevasi PGJAK 1997, R = 100 m berada pada range 100 R < 130, diperoleh e = 9% = 0,09. Berdasar waktu tempuh maksimum didapatkan lengkung peralihan (Ls) sebesar 41,667 m ~ 50 m. Asumsi awal digunakan lengkung spiralcircle-spiral (SCS) seperti terlihat pada Gambar 12. Xs Ts S SC Ys PI Es CS TS P RC RC ST S S S O Gambar 12. Diagram Superelevasi Lengkung Spiral Circle Spiral (SCS) 1118

JURNAL KARYA TEKNIK SIPIL, Volume 3, Nomor 4, Tahun 2014, Halaman 1119 Untuk selanjutnya dilakukan pemilihan tipe tikungan. Untuk jenis lengkung horisontal jenis spiral-spiral (SS) didapatkan besar nilai panjang total sebesar 100 m. Perencanaan Perkerasan Jalan Perencanaan jalan pendekat jembatan Kaligung Tuwel ini menggunakan jenis struktur perkerasan lentur (flexible pavement). Perkerasan ini direncanakan untuk jangka waktu 10 tahun dengan pertimbangan akan ada perbaikan pada massa umur rencana. Perencanaan perkerasan ini menggunakan metode Analisa Komponen, SKBI-2.3.26.1987, Departemen Pekerjaan Umum yang berdasarkan pada AASHTO 1972. Untuk struktur lapisan tebal perkerasan lentur terlihat pada gambar 13 berikut ini. KESIMPULAN Gambar 13. Struktur Lapisan Tebal Perkerasan Dalam proses perancangan struktur jembatan perlu mempertimbangkan faktor-faktor yang sangat menentukan untung rugi proyek tersebut dari berbagai aspek yaitu: kekuatan dan stabilitas struktural, kelayakan, keawetan, kemudahan pelaksanaan, ekonomis, dan bentuk estetika yang baik. SARAN Pemilihan bahan, pemilihan karakter jembatan (bentang, lebar dan ukuran), pondasi yang digunakan dalam perancangan jembatan merupakan faktor penting yang mempengaruhi efisien dan keamanan jembatan baik dalam proses perancangan maupun saat jembatan dioperasikan. Pemilihan bentang baiknya tidak terlalu dekat dengan pinggir sungai untuk mengantisipasi longsoran karena dalamnya tebing sungai. Pemilihan pondasi yang sesuai dengan karakteristik tanah sehingga terjamin keamanannya. DAFTAR PUSTAKA AASHTO, 2007. LRFD, Bridge Design Specifications. Departemen Pekerjaan Umum Direktorat Jendral Bina Marga dan Direktorat Bina Jalan Kota. 1997, Manual Kapasitas Jalan Indonesia (MKJI). Departemen Pekerjaan Umum, 1987. SKBI-2.3.26.1987. Departemen Pekerjaan Umum, 2002. SNI-03-2847-2002. Departemen Pekerjaan Umum, 2004. SNI-T-12-2004. Departemen Pekerjaan Umum, 2005. RSNI T-02-2005. Departemen Pekerjaan Umum, 2008. SNI-03-2833-2008. 1119