Implementasi Arsitektur Behavior-Based dengan Menggunakan Fuzzy untuk Navigasi Car-Like Mobile Robot dalam Lingkungan yang Tak Dikenal

dokumen-dokumen yang mirip
BAB I PENDAHULUAN. Mobile robot otonom adalah topik yang sangat menarik baik dalam penelitian

IMPLEMENTASI ARSITEKTUR BEHAVIOR-BASED DENGAN MENGGUNAKAN FUZZY UNTUK NAVIGASI CAR-LIKE MOBILE ROBOT DALAM LINGKUNGAN YANG TAK DIKENAL

Perancangan Kontroler Fuzzy untuk Tracking Control Robot Soccer

BAB III PERANCANGAN SIMULASI. 3.1 Perancangan Sistem Parkir Mobil Seri Otomatis

Penerapan Logika Fuzzy Pada Sistem Parkir Truk

NAVIGASI BERBASIS BEHAVIOR DAN FUZZY LOGIC PADA SIMULASI ROBOT BERGERAK OTONOM

Perancangan dan Implementasi Embedded Fuzzy Logic Controller Untuk Pengaturan Kestabilan Gerak Robot Segway Mini. Helmi Wiratran

Stabilisasi Robot Pendulum Terbalik Beroda Dua Menggunakan Kontrol Fuzzy Hybrid

BAB I PENDAHULUAN Tujuan Merancang dan merealisasikan robot pengikut dinding dengan menerapkan algoritma logika fuzzy.

DESAIN DAN IMPLEMENTASI ROBOT MOBIL OTOMATIS PENGHINDAR HAMBATAN BERBASIS SENSOR KINECT: SISTEM KONTROL MENGGUNAKAN LOGIKA FUZZY

PERANCANGAN MOBILE ROBOT DENGAN SENSOR KAMERA MENGGUNAKAN SISTEM KENDALI FUZZY

Kata kunci:sensor rotary encoder, IC L 298, Sensor ultrasonik. i Universitas Kristen Maranatha

PERANCANGAN PROTOTYPE ROBOT SOUND TRACKER BERBASIS MIKROKONTROLER DENGAN METODE FUZZY LOGIC

IMPLEMENTASI FUZZY LOGIC CONTROLLER PADA ROBOT LINE FOLLOWER

Proceeding Tugas Akhir-Januari

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-58

BAB II TINJAUAN PUSTAKA. Pada BAB ini akan dibahas teori penunjang yang mendukung penelitian ini.

PENERAPAN MULTI-MIKROKONTROLER PADA MODEL ROBOT MOBIL BERBASIS LOGIKA FUZI

BAB 3 PENANGANAN JARINGAN KOMUNIKASI MULTIHOP TERKONFIGURASI SENDIRI UNTUK PAIRFORM-COMMUNICATION

REALISASI ROBOT MOBIL HOLONOMIC Disusun Oleh : Nama : Santony Nrp :

BAB III ANALISIS DAN PERANCANGAN SISTEM

Oleh : Abi Nawang Gustica Pembimbing : 1. Dr. Muhammad Rivai, ST., MT. 2. Ir. Tasripan, MT.

JURUSAN TEKNIK FISIKA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID

BAB I PENDAHULUAN. Sistem pendeteksi pada robot menghindar halangan banyak

Desain dan Implementasi Kendali Cerdas untuk Robot Quadpod (Berkaki Empat) Studi Kasus Robot Pemadam Api (RPA)

Ahmadi *1), Richa Watiasih a), Ferry Wimbanu A a)

BALANCING ROBOT BERBASIS FUZZY LOGIC Sumantri K Risandriya, ST, MT (1), Rifqi Amalya Fatekha, S.ST (2), Irda Zusmaniar (3)

Perancangan Graphical User Interface untuk Pengendalian Suhu pada Stirred Tank Heater Berbasis Microsoft Visual Basic 6.0

Implementasi Sistem Navigasi Behavior Based Robotic dan Kontroler Fuzzy pada Manuver Robot Cerdas Pemadam Api

Implementasi Metode Fuzzy Logic Controller Pada Kontrol Posisi Lengan Robot 1 DOF

Perancangan Sistem Navigasi Robot Kapal Katamaran untuk Menghindari Rintangan Menggunakan Logika Fuzzy

Rancang Bangun Robot Vacuum Cleaner Berbasis Mikrokontroler

GPENELITIAN MANDIRI RANCANG BANGUN SISTEM KENDALI MOTOR DC MENGGUNAKAN FUZZY LOGIC BERBASIS MIKROKONTROLER

BAB II LANDASAN TEORI. Pada bab ini berisi tentang teori mengenai permasalahan yang akan dibahas

RANCANG BANGUN ROBOT PENGIKUT GARIS (LINE FOLLOWER) MENGGUNAKAN SENSOR INFRA MERAH (PHOTODIODE)

Perancangan Sistem Kontrol Sandar Kapal Otomatis Berbasis Logika Fuzzy di Pelabuhan Tanjung Perak Surabaya

BAB I PENDAHULUAN. Inggris, Jepang, Perancis) berlomba-lomba untuk menciptakan robot-robot

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun

PERANCANGAN DAN IMPLEMENTASI PENGATURAN KONDISI MOBIL PADA LINTASAN MENGGUNAKAN LOGIKA FUZZY PADA TRANSPORTASI MOBIL KAMPUS

BAB III PERANCANGAN Sistem Kontrol Robot. Gambar 3.1. Blok Diagram Sistem

OPTIMASI PENCAPAIAN TARGET PADA SIMULASI PERENCANAAN JALUR ROBOT BERGERAK DI LINGKUNGAN DINAMIS

PENERAPAN BEHAVIOR BASED ROBOTIC PADA SISTEM NAVIGASI DAN KONTROL ROBOT SOCCER

Kendaraan Otonom Berbasis Kendali Teaching And Playback Dengan Kemampuan Menghindari Halangan

Penerapan Behavior-Based Control dan Fuzzy Logic Controller pada Sistem Navigasi Robot Soccer

Penggunaan Sensor Kesetimbangan Accelerometer dan Sensor Halangan Ultrasonic pada Aplikasi Robot Berkaki Dua

LAMPIRAN. Universitas Sumatera Utara

Implementasi Kalman Filter Pada Sensor Jarak Berbasis Ultrasonik

GERAKAN BERJALAN OMNIDIRECTIONAL UNTUK ROBOT HUMANOID PEMAIN BOLA

IMPLEMENTASI SISTEM GERAK HOLONOMIC PADA ROBOT KRSBI BERODA 2017 IMPLEMENTATION OF HOLONOMIC MOTION IN INDONESIAN SOCCER WHEELED ROBOT CONTEST 2017

REALISASI ROBOT PENCARI JALAN DALAM MAZE DENGAN METODE RUNUT-BALIK ABSTRAK

Perancangan Kendali Robot pada Smartphone Menggunakan Sensor Accelerometer Berbasis Metode Fuzzy Logic

BAB I PENDAHULUAN. ilmu pengetahuan dan teknologi dalam setiap kehidupan dan kegiatan manusia..

BAB I PENDAHULUAN. Universitas Internasional Batam

PENGONTROL TEMPERATUR CAMPURAN AIR DENGAN LOOK-UP TABLE BERBASIS MIKROKONTROLER AVR ABSTRAK

KENDALI LOGIKA FUZZY PADA PENGATURAN LAMPU LALU LINTAS BERDASARKAN URGENCY DAN STOP DEGREE

BAB IV PENGUJIAN DAN ANALISIS

Cooperative Driving Pada Perempatan Jalan Berbasis Fuzzy Logic Menggunakan Komunikasi Antar Kendaraan

Kata Kunci: robot soccer, fuzzy logic, tracking I PENDAHULUAN

SIMULASI AUTONOMOUS VEHICLE DI UNIVERSITAS KRISTEN SATYA WACANA SALATIGA

UNIVERSITAS BINA NUSANTARA SIMULASI KINEMATIKA ROBOT MOBIL DENGAN FUZZY LOGIC

RANCANG BANGUN ROBOT WALL FOLLOWER PENYEDOT DEBU BERBASIS MIKROKONTROLER ATMEGA8535

IMPLEMENTASI METODE LOGIKA FUZZY PADA KONTROL KESEIMBANGAN ROBOT MOBIL BERODA DUA

Kontrol Keseimbangan Robot Mobil Beroda Dua Dengan. Metode Logika Fuzzy

BAB III PERANCANGAN ALAT

SYAHIDAL WAHID

BAB I PENDAHULUAN Latar Belakang

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

PERANCANGAN KONTROLER LOGIKA FUZZY UNTUK TRACKING CONTROL PADA ROBOT SUMO

SIMULASI PENGENDALIAN KECEPATAN MOBIL OTOMATIS MENGGUNAKAN LOGIKA FUZZY DAN ALGORITMA GENETIKA

SEMINAR TUGAS AKHIR PERANCANGAN SISTEM KONTROL BERBASIS LOGIKA FUZZY UNTUK MENGHINDARI BENDA ASING DI PERAIRAN TANJUNG PERAK

Grafik hubungan antara Jarak (cm) terhadap Data pengukuran (cm) y = 0.950x Data pengukuran (cm) Gambar 9 Grafik fungsi persamaan gradien

Pengendalian Gerak Robot Penghindar Halangan Menggunakan Citra dengan Kontrol PID

Penerapan Metode Fuzzy Mamdani Pada Rem Otomatis Mobil Cerdas

PENGONTROL PID BERBASIS PENGONTROL MIKRO UNTUK MENGGERAKKAN ROBOT BERODA. Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Maranatha

DAFTAR ISI. iii PRAKATA. iv ARTI LAMBANG DAN SINGKATAN. vi ABSTACT. vii INTISARI. viii DAFTAR ISI

BAB 3 PERANCANGAN SISTEM

Perancangan Robot Pemadam Api Divisi Senior Berkaki

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

ALGORITMA FUZZY LOGIC DAN WALLFOLLOWER PADA SISTEM NAVIGASI ROBOT HEXAPOD BERBASIS MIKROKONTROLLER AVR

HALAMAN JUDUL LEMBAR PENGESAHAN ABSTRAK...

PERANCANGAN KONTROLER LOGIKA FUZZY UNTUK TRACKING CONTROL PADA ROBOT SUMO

PENERAPAN SINYAL ULTRASONIK PADA SISTEM PENGENDALIAN ROBOT MOBIL PUBLIKASI ILMIAH

Kata kunci: Algoritma identifikasi ruang, robot berkaki enam, sensor jarak, sensor fotodioda, kompas elektronik

Rekayasa Elektrika. Jurnal AGUSTUS 2017 VOLUME 13 NOMOR 2. TERAKREDITASI RISTEKDIKTI No. 36b/E/KPT/2016

INTEGRATION AND EVALUATION USING PATTERN RECOGNITION FOR MOBILE ROBOT NAVIGATION. Iman H. Kartowisastro.; Budiyanto Mulianto; Valentinus Rahardjo

ISSN : e-proceeding of Engineering : Vol.2, No.2 Agustus 2015 Page 2254

BAB 2 LANDASAN TEORI

PENGENDALIAN ROBOT BERODA MELALUI SMART PHONE ANDROID. Disusun oleh : Riyan Herliadi ( )

ROBOT OMNI DIRECTIONAL STEERING BERBASIS MIKROKONTROLER. Muchamad Nur Hudi. Dyah Lestari

MODEL PEMBELAJARAN JARINGAN SYARAF TIRUAN UNTUK OTOMATISASI PENGEMUDIAN KENDARAAN BERODA TIGA

Aplikasi Metoda Random Walks untuk Kontrol Gerak Robot Berbasis Citra

PENERAPAN FUZZY LOGIC CONTROLLER UNTUK MEMPERTAHANKAN KESETABILAN SISTEM AKIBAT PERUBAHAN DEADTIME PADA SISTEM KONTROL PROSES DENGAN DEADTIME

V. HASIL DAN PEMBAHASAN

PENCARIAN JALUR TERPENDEK UNTUK ROBOT MICROMOUSE DENGAN MENGGUNAKAN ALGORITMA BACKTRACKING

BAB IV HASIL PERANCANGAN DAN ANALISA

BAB II LANDASAN TEORI

BAB III PERANCANGAN. Gambar 3.1. Sistem instruksi dan kontrol robot.

KENDALI KECEPATAN MOBIL LISTRIK MENGGUNAKAN DUA MOTOR LISTRIK DENGAN FUZZY-PID CONTROL SPEED OF ELECTRIC CAR USES TWO ELECTRIC MOTORS WITH FUZZY-PID

PERANCANGAN DAN IMPLEMENTASI SISTEM KENDALI PID SEBAGAI PENGONTROL KECEPATAN ROBOT MOBIL PADA LINTASAN DATAR, TANJAKAN, DAN TURUNAN TUGAS AKHIR

Transkripsi:

Jurnal Generic, Vol. 9, No. 2, September 2014, pp. 320~331 ISSN: 1907-4093 (print), 2087-9814 (online) 320 Implementasi Arsitektur Behavior-Based dengan Menggunakan Fuzzy untuk Navigasi Car-Like Mobile Robot dalam Lingkungan yang Tak Dikenal Sarmayanta Sembiring 1, Usman Baafai 2, Tulus 3, dan Pernantin Tarigan 4 1 Jurusan Sistem Komputer Fakultas Ilmu Komputer Universitas Sriwijaya 2,4 Departemen Teknik Elektro, Fakultas Teknik Universitas Sumatera Utara 3 Departemen Matematika, FMIPA Universitas Sumatera Utara E-mail: yanta_pelawi@yahoo.co.id, ubaafai@usu.ac.id, Tulus@usu.ac.id, Perrytar@yahoo.com Abstrak Sebuah fuzzy logic controller dengan arsitektur behavior-based dirancang untuk menavigasi Car-Like Mobile Robot dalam lingkungan tak dikenal. Sistem ini terdiri dari tiga perilaku dasar, yaitu goal seeking behavior, obstacle avoidance behavior, dan move backward behavior. Setiap perilaku memberikan informasi untuk mengendalikan sudut kemudi dan kecepatan linear. Sebuah behavior-controller dirancang untuk mengatur penggunaan behavior berdasarkan perioritas dalam mengendalikan sudut kemudi dan kecepatan linear. Hasil eksperimen menunjukkan bahwa arsitektur ini dapat membawa car-like mobile robot menuju target dengan aman tanpa bertabrakan pada lingkungan yang tak dikenal, dapat menghindari rintangan, dan dapat keluar dari kondisi kebuntuan saat menghadapi rintangan cekung. Kata kunci: Fuzzy logic controller, car-like mobile robot, basic-behavior, behaviorcontroller. Abstract A fuzzy logic controller with behavior-based architecture was designed for the navigation of car-like mobile robot in the unknown environment. This system consisted of three basic-behaviors such as goal-seeking behavior, obstacle-avoidance behavior, and move backward behavior. Each behavior provided information to control steering angle and linear speed. A behavior-controller was designed to control the use of behavior based on priority in controlling the steering angle and linear speed. The result of the experiment showed that this architecture can bring the car-like mobile robot safely to the target without collision in the unknown environment, can avoid obstacle, and can get out of deadlock condition when facing concave obstacle. Keywords: Fuzzy Logic Controller, Car-Like Mobile Robot, Basic-Behavior, Behavior- Controller 1. Pendahuluan Salah satu tipe dari mobile robot adalah car-like mobile robot (CLMR). Berdasarkan tipe penggeraknya, CLMR termasuk dengan model penggerak nonholonomic yang dalam pergerakannya harus memenuhi fungsi geometri tertentu yang berhubungan dengan arah hadap untuk mendapatkan posisi yang diinginkan. Mobil Copyright 2014 Jurnal Generic. All rights reserved

Jurnal Generic ISSN: 1907-4093 321 merupakan salah satu contoh kendaraan dengan penggerak non holonomic, dimana mobil membutuhkan gerakan yang kompleks (termasuk gerakan mundur) untuk melakukan gerakan parkir, berputar berbalik arah dalam ruang terbatas, dan menghindari rintangan pada jarak yang relatif dekat. Dalam mengembangkan sistem navigasi otonom CLMR kendala non holonomic harus dipertimbangkan dalam perancangan algoritma yang efesien dan akurat untuk navigasi CLMR [1]. Untuk memecahkan masalah navigasi pada robot CLMR, yang memiliki beberapa perilaku dibutuhkan suatu pendekatan untuk mengendalikan actuator. Robot berbasis perilaku (behavior-based robot) adalah suatu pendekatan yang cocok untuk diaplikasikan pada sistem ini. Metode robot berbasis perilaku adalah suatu pendekatan yang diinspirasikan dari sistem biologis, dimana suatu sistem didistribusikan dalam beberapa modul kecil yang disusun secara paralel [2]. Setiap modul disebut sebagai perilaku (behavior), memiliki target tertentu yang harus dicapai dan berlaku seperti sebuah kendali individu [3]. Banyak metode yang dapat digunakan untuk merancang sistem kendali setiap perilaku, baik secara konvensional maupun dengan metode-metode lain, seperti metode yang menggunakan kecerdasan buatan. Pengendali perilaku konvensional didasarkan pada model lingkungan yang akurat dan model matematika robot, namun pada umumnya sulit membangun model matematika akurat dari lingkungan gerak robot untuk sistem mobile robot dengan karakteristik non linear dan kopling kuat [4]. Fuzzy logic controller (FLC) adalah salah satu solusi dalam merancang sistem kendali perilaku individual robot dengan berbasiskan pengetahuan yang dirumuskan dalam bentuk aturan (rule base). Jika dibandingkan dengan logika konvensional, kelebihan logika fuzzy adalah kemampuannya dalam proses penalaran secara bahasa sehingga dalam perancangannya tidak memerlukan persamaan matematika yang rumit [5], selain itu sistem fuzzy memiliki kemampuan untuk menangani informasi yang tidak pasti dan tidak tepat yang diperoleh dari sensor dengan menggunakan aturan bahasa [6]. Berdasarkan uraian tersebut, penelitian ini mengusulkan sebuah arsitektur behavior based dengan menggunakan FLC untuk navigasi CLMR dalam lingkungan yang tak dikenal. Metode ini merupakan gabungan dari pendekatan behavior based dan metode logika fuzzy [6]. Pertama merancang tiga basic-behavior, behavior ini adalah goal seeking behavior, obstacle avoidance behavior, dan move backward behavior. Langkah selanjutnya merancang behavior-controller untuk mengintegrasikan perilaku dasar agar CLMR dapat mengendalikan sudut kemudi dan kecepatan linear berdasarkan perioritas. 2. Metodologi Penelitian 2.1 Perancangan Perangkat Keras Perancangan perangkat keras terbagi atas dua bagian utama, yaitu rancangan dan spesifikasi mekanik dan perancangan elektronik. Pada penelitian ini, mekanik CLMR dirakit dengan spesifikasi mekanik CLMR adalah sebagai berikut: a. Jarak sumbu roda belakang ke sumbu roda depan (L) = 15 cm; b. Diameter roda belakang = 6,4 cm; c. Diameter roda depan = 4,5 cm; Implementasi Arsitektur Behavior-Based dengan Menggunakan Fuzzy untuk Navigasi Car-Like Mobile Robot dalam Lingkungan yang Tak Dikenal (Sarmayanta Sembiring)

322 ISSN: 1907-4093 0 16,69 0 16,23 d. Jangkauan sudut kemudi depan = e. Tinggi sensor belakang dari permukaan = 7 cm; f. Tinggi sensor depan dari permukaan = 8 cm; g. Tinggi permukaan lintasan terhadap sasis CLMR = 4 cm. Perancangan sistem elektronik secara keseluruhan menggunakan 3 buah mikrokontroler ATMega8535, 3 buah sensor Sharp GP2D12 (sensor depan), 2 buah sensor Sharp GP2D120 (sensor belakang), DI-Smart rotary encoder, IC L293D, IC ULN2003, dan 4 buah micro switch. Gambar 1 menunjukkan diagram blok perangkat keras secara keseluruhan beserta pengalokasian pin yang digunakan pada setiap mikrokontroler. Gambar 1: Diagram Blok Perangkat Keras Keseluruhan 2.2 Update-Posisi Update-posisi digunakan untuk mengetahui posisi CLMR terhadap target posisi yang ingin dicapai secara real-time. Sistem kordinat CLMR ditunjukkan pada Gambar 2. Jurnal Generic Vol. 9, No. 2, September 2014: 320~331

Jurnal Generic ISSN: 1907-4093 323 Y y T y R x R y 1 y R E P(0) E P(1) E O(1) (1) (0) 0 (1) x R x 1 Gambar 2: Sistem Koordinat CLMR x T X Keterangan Gambar 2: E P (position error) = Jarak robot terhadap target, E O (orientation error) = Orientasi robot terhadap target, ( X, Y) = Kordinat global robot, ( x R, yr ) = Kordinat lokal robot, x, ) = Kordinar robot saat ini. ( 1 y1 Pada Gambar 2 menunjukkan keadaan awal kordinat global akan sejajar dengan kordinat lokal maka E P(0) dan E 0(0) ditunjukkan pada Persamaan 1 dan 2. E 2 2 P( 0) xt yt (1) 1 yt E O( 0) 0 tan (2) xt Saat robot bergerak dari kordinat (0,0) ke (x 1,y 1 ) maka E P(1) dan E 0(1) ditunjukkan pada Persamaan 3 dan 4 [1]. 2 2 E P 1 x y (3) E (4) O 2 Implementasi Arsitektur Behavior-Based dengan Menggunakan Fuzzy untuk Navigasi Car-Like Mobile Robot dalam Lingkungan yang Tak Dikenal (Sarmayanta Sembiring)

324 ISSN: 1907-4093 Dengan: x xt y yt tan 1 x 1 y 1 y x Kordinat lokal CLMR dapat dicari menggunakan persamaan trigonometri seperti yang ditunjukkan pada Persamaan 5 dan 6. x E Cos E (5) R P( 1). O(1) y E Sin E (6) R P( 1). O(1) 2.3 Perancangan Basic-Behavior Tiga buah Basic-Behavior dirancang menggunakan Fuzzy metode Takagi-Sugeno- Kang (TSK), Behavior tersebut adalah Goal seeking behavior, obstacle avoidance Behavior, dan move backward behavior. Fungsi keanggotaan output sudut kemudi disusun dalam bentuk singletone seperti yang ditunjukkan pada Gambar 3(a) dan Fungsi keanggotaan output kecepatan disusun dalam bentuk singletone seperti yang ditunjukkan pada Gambar 3(b). Gambar 3: Fungsi keanggotaan output dalam satuan ( 0 ) (a) Fungsi keanggotaan output sudut kemudi (b) Fungsi keanggotaan output kecepatan linear dalam (cm/s) Keterangan Gambar 3(a): RB = Right Big, RM = Right Medium, LS = Right Small, ZE = Zero, LS = Left Small, LM = Left Medium, dan LB = Left Big. Tanda (-) menyatakan sudut kemudi diputar ke arah kanan dan tanda (+) menyatakan sudut kemudi diputar kearah kiri. Keterangan Gambar 3(b): S = Slow, M = Medium, dan F = Fast. Jurnal Generic Vol. 9, No. 2, September 2014: 320~331

Jurnal Generic ISSN: 1907-4093 325 2.3.1 Goal Seeking Behavior Goal seeking behavior adalah sebuah perilaku yang membantu robot mencapai target berupa koordinat x, y ) yang telah ditentukan dalam kordinat 2D pada bidang ( t t datar. Output dari Perilaku ini adalah kecepatan linear t dan sudut kemudi t yang membawa robot mendekati target. Variabel fuzzy dibagi menjadi 2 variabel input, yaitu variabel E O dan variabel E P [1], fungsi keanggotaan E O dan E P ditunjukkan pada Gambar 4. Basis aturan goal seeking behavior ditunjukkan pada Tabel 1. Gambar 4: Fungsi keanggotaan untuk Goal Seeking Behavior (a) Fungsi keanggotaan E O dalam satuan derajat, (b) Fungsi keanggotaan E P dalam satuan (cm). Tabel 1: Basis aturan goal seeking behavior EP N M F VF E O NB NM NS ZE PS PM PB RM RS LB ZE RB LS LM S M S S S M S LB LB LM ZE RM RB RB S S S M S S S LB LM LS ZE RS RM RB S S M F M S S LM LS LS ZE RS RS RM S M M F M M S Fungsi keanggotaan E O terdiri dari 7 himpunan fuzzy, yaitu NB: Negative Big, NM = Negative Medium, NS = Negative Small, ZE = Zero, PS = Positive Small, PM = Positive Medium, dan PB = Positive Big. Tanda negative menandakan Orientation Error (E O ) berada di sebelah kiri robot, dan tanda positive menandakan Orientation Error (E O ) berada di sebelah kanan robot. Fungsi keanggotaan E P terdiri dari 4 himpunan fuzzy, yaitu, N =Near, M= Medium, F = Far, dan VF = Very Far. 2.4 Obstacle Avoidance Behavior Obstacle avoidance behavior adalah perilaku berbasis sensor, yang membimbing robot bergerak bebas tanpa bertabrakan dalam lingkungan yang tidak dikenal. Pengaturan sudut kemudi ditentukan berdasarkan jarak deteksi sensor depan (FC) Implementasi Arsitektur Behavior-Based dengan Menggunakan Fuzzy untuk Navigasi Car-Like Mobile Robot dalam Lingkungan yang Tak Dikenal (Sarmayanta Sembiring)

326 ISSN: 1907-4093 dengan mengacu kepada karakteristik geometri CLMR untuk lintasan yang terbentuk berdasarkan radius terluar yang dibentuk CLMR dengan memperhitungkan jarak ambang minimum (pada penelitian ini ditetapkan 12 cm) pembacaan sensor pada kedua sisi robot sebagai batas jarak aman. Input crisp dari perilau ini berasal dari sensor jarak front left, front center, dan front right. Perilaku ini menghasilkan kecepatan linear t dan sudut kemudi t yang membawa robot menjauhi rintangan dengan arah maju. Variabel input terdiri atas 2 variabel fuzzy, yaitu variabel FC dan variabel FSOD [6]. FSOD (Front Side Obstacle Distance) merupakan selisih jarak hambatan kanan (FR) terhadap jarak hambatan kiri (FL), (FSOD = FR FL). Fungsi keanggotaan FC dan FSOD ditunjukkan pada Gambar 5. Gambar 5: Fungsi keanggotaan untuk Obstacle Avoidance Behavior (a) Fungsi keanggotaan FC dalam satuan (cm), (b) Fungsi keanggotaan FSOD dalam satuan (cm). Fungsi keanggotaan FC terdiri dari 2 himpunan fuzzy, yaitu N = Near dan F = Far. Fungsi keanggotaan FSOD terdiri dari 3 himpunan fuzzy, yaitu N = Negative, ZE = Zero, dan P = Positive. Himpunan yang dinyatakan dengan tanda negative menandakan rintangan lebih dekat di sisi kanan dan tanda positive menandakan rintangan lebih dekat di sisi kiri. Himpunan fuzzy ZE menandakan jarak hambatan sisi kiri sama dengan jarak hambatan sisi kanan atau tidak ada hambatan yang terdeteksi pada sisi kiri dan kanan. Basis aturan obstacle avoidance behavior ditunjukkan pada Tabel 2. Tabel 2: Basis Aturan (Rules Base) Obstacle Avoidance Behavior FC N F FSOD N ZE P LB LB RB S S S LM ZE RM M F M 2.5 Move Backward Behavior Move backward behavior adalah perilaku bergerak mundur yang membantu CLMR mengatasi keterbatasan sudut kemudi pada saat perilaku obstacle avoidance tidak dapat Jurnal Generic Vol. 9, No. 2, September 2014: 320~331

Jurnal Generic ISSN: 1907-4093 327 dilaksanakan dengan baik. Selain dapat membantu CLMR menghindari rintangan pada jarak deteksi yang relatif dekat, perilaku ini juga dapat membantu CLMR untuk berbalik arah saat menjumpai rintangan cekung (rintangan yang membawa CLMR dalam kondisi kebuntuan) dengan kombinasi obstacle avoidance behavior. Perilaku ini akan digunakan saat robot menghadapi rintangan dengan jarak rintangan batas minimum dari salah satu atau kombinasi sensor depan. Output perilaku ini adalah sudut kemudi dengan kecepatan konstan 8 cm/s. t Skenario yang diterapkan untuk move backward behavior sangat sederhana, yaitu menjauhi rintangan dengan arah mundur dengan pengaturan sudut kemudi berlawanan arah saat menghindari rintangan dalam arah maju. Variabel fuzzy pada perilaku ini adalah back side obstacle distance (BSOD) dan last steering angle (LSA). Crisp input pada perilaku ini berasal dari sensor jarak belakang dan sudut kemudi terakhir yang digunakan untuk bergerak maju (obstacle avoidance behavior). Sensor belakang terdiri dari back left dan back right, crisp input untuk variabel BSOD merupakan pengurangan jarak sensor belakang kanan dengan sensor belakang kiri (BSOD = BR BL)). Fungsi keanggotaan LSA dan BSOD ditunjukkan pada Gambar 6. Gambar 6: Fungsi keanggotaan untuk Move Backward Behavior (a) Fungsi keanggotaan LSA dalam satuan ( 0 ), (b) Fungsi keanggotaan BSOD dalam satuan (cm). Fungsi keanggotaan LSA dibagi menjadi 2 himpunan fuzzy, yaitu SR = Steering Right dan SL = Steering Left. Fungsi keanggotaan BSOD dibagi menjadi 2 himpunan fuzzy, yaitu L =Left dan R = Right. Basis aturan move backward behavior ditunjukkan pada Tabel 3. Tabel 3: Basis aturan (rules base) move backward behavior BSOD L LSA SR LB L R R SL SR SL RM LM RB Implementasi Arsitektur Behavior-Based dengan Menggunakan Fuzzy untuk Navigasi Car-Like Mobile Robot dalam Lingkungan yang Tak Dikenal (Sarmayanta Sembiring)

328 ISSN: 1907-4093 2.6 Perancangan Behavior-Controller Behavior-controller dirancang untuk mengintegrasikan basic-behavior berdasarkan perioritas tinggi. Behavior yang memiliki perioritas tinggi mengendalikan sudut kemudi dan kecepatan CLMR dan posisi CLMR akan selalu di-update. Skenario behavior-controller adalah sebagai berikut: a. Apabila target belum tercapai dan tidak ada rintangan terditeksi, maka Goal seeking Behavior yang memiliki perioritas tinggi; b. Apabila target belum tercapai dan ada rintangan terditeksi sensor depan (FL, FC, atau FR) maka Obstacle Avoidance behavior yang memiliki perioritas tinggi; c. Apabila target belum tercapai dan ada rintangan terditeksi sensor depan (FL, FC, atau FR) di bawah / sama dengan batas minimum yang ditentukan, maka Move Backward Behavior yang memiliki perioritas tinggi. Akhir penggunaan behavior ini saat sensor belakang (BL dan BR) menditeksi rintangan lebih kecil atau sama dengan jarak yang ditentukan atau sensor depan (FL, FC, dan FR) tidak menditeksi rintangan; d. Apabila target telah tercapai, maka proses selesai. 3. Hasil dan Analisis Pengujian dilakukan untuk pencarian target dalam 4 skenario yang berbeda, yaitu pengujian tanpa rintangan, pengujian dengan rintangan dan pengujian dengan rintangan cekung. Starting point berada pada titik referensi CLMR terhadap terhadap ruang konfigurasi awal (X = 0, dan Y = 0) dengan orientasi bagian depan CLMR terhadap sumbu X positif. 3.1 Pengujian Pengujian pencarian target pada titik (X = 100 cm, Y = 200 cm) tanpa rintangan dan dengan rintangan model-1 dan model-2 seperti yang ditunjukkan pada Gambar 7. Pengujian dengan rintangan model-3 dengan target berada di titik (X = 200 cm, Y = 0 cm) seperti yang ditunjukkan pada Gambar 8. Gambar 7: Pengujian pencarian target dengan rintangan (a) Model-1 (b) Model-2 Jurnal Generic Vol. 9, No. 2, September 2014: 320~331

Jurnal Generic ISSN: 1907-4093 329 Gambar 8: Pengujian pencarian target dengan rintangan model-3 3.2 Hasil Percobaan Hasil yang didapat dari eksperimen ini adalah pencapaian target dan lintasan CLMR yang digambarkan dalam bentuk Grafik. Segi empat (kotak) berwarna hitam menyatakan arah CLMR bergerak maju, sedangkan segi empat berwarna merah menyatakan arah CLMR bergerak mundur. Pada pengujian pencarian target tanpa rintangan CLMR berhenti pada titik (X = 192 cm, Y = 104 cm) seperti yang ditunjukkan pada Gambar 9(a). Pada pengujian pencarian target dengan rintangan model-1, CLMR berhenti pada titik (X = 200 cm, Y = 108 cm) seperti yang ditunjukkan pada Gambar 9(b). Pada pengujian pencarian target dengan rintangan model-2, CLMR berhenti pada titik (X = 195 cm, Y = 91 cm) seperti yang ditunjukkan pada Gambar 10(a). Pada pengujian pencarian target dengan rintangan model-3, CLMR berhenti pada titik (X = 212 cm, Y = -10 cm) seperti yang ditunjukkan pada Gambar 10(b). Gambar 9: Hasil pengujian tanpa rintangan dan dengan rintangan model-1 (a) Hasil pencarian target tanpa rintangan, (b) Hasil pencarian target dengan rintangan model-1. Implementasi Arsitektur Behavior-Based dengan Menggunakan Fuzzy untuk Navigasi Car-Like Mobile Robot dalam Lingkungan yang Tak Dikenal (Sarmayanta Sembiring)

330 ISSN: 1907-4093 Gambar 10: Hasil pengujian dengan rintangan model-2 dan model-3 (a) Hasil pencarian target dengan rintangan model-2, (b) Hasil pencarian target dengan rintangan model-3. 4. Kesimpulan Berdasarkan perancangan sistem, pengujian, dan pembahasan maka dapat disimpulkan beberapa hal sebagai berikut: 1. Adanya move backward behavior CLMR dapat menghindari rintangan saat obstacle avoidance behavior tidak dapat dilaksanakan dengan baik akibat jarak robot terhadap rintangan relatif dekat atau rintangan menyinggung lintasan yang dibentuk dengan sudut kemudi maksimum; 2. Besar sudut kemudi dan jarak diteksi sensor jarak terhadap rintangan mempengaruhi keberhasilan menghindari rintangan dengan menggunakan obstacle avoidance behavior; 3. Hasil eksperimen menunjukkan arsitektur yang diusulkan memungkinkan CLMR mencapai posisi relatif terhadap target dengan aman tanpa bertabrakan. Referensi [1] N. Ouadah, L. Ourak, & F. Boudjema, Car-Like Mobile Robot Oriented Positioning by Fuzzy Controllers, International Journal of Advanced Robotic System, Vol.5, No.3, pp. 249-256, 2008. [2] R.C. Arkin, Behavior Based Robotics, The MIT Press, 1998. [3] A. Adriansyah, Pengendalian robot bergerak berbasis perilaku menggunakan particle swarm fuzzy controller, Seminar Nasional Informatika 2008 (Semnas 2008) UPN "Vetran" Yogyakarta, hal. 130-138, 2008. [4] S. Duan, Y. Li, S. Chen, L. Chen, L. Zou, Zh. Ma, & J. Ding, Study of Obstacle Avoidance Based on Fuzzy Planner for Wheeled Mobile Robot, Proceeding of the 8 th World Congress on Intelligent Control and Automation, pp. 672-676, Teipei, 2011. Jurnal Generic Vol. 9, No. 2, September 2014: 320~331

Jurnal Generic ISSN: 1907-4093 331 [5] T. Sutojo, E. Mulyanto, & V. Suhartono, Kecerdasan Buatan, Yogyakarta: Andi, 2011. [6] B. Quing-Yong, L. Shun-ming, S. Wei-Yan, & An Mu-Jin, A Fuzzy Behavior- Based Architecture for Mobile Robot Navigation in Unknown Envirotments, IEEE International Conference on Artificial Intelligence and Computational Intelligence, 257-261, 2009. Implementasi Arsitektur Behavior-Based dengan Menggunakan Fuzzy untuk Navigasi Car-Like Mobile Robot dalam Lingkungan yang Tak Dikenal (Sarmayanta Sembiring)