V. HASIL DAN PEMBAHASAN

Ukuran: px
Mulai penontonan dengan halaman:

Download "V. HASIL DAN PEMBAHASAN"

Transkripsi

1 V. HASIL DAN PEMBAHASAN Semua mekanisme yang telah berhasil dirancang kemudian dirangkai menjadi satu dengan sistem kontrol. Sistem kontrol yang digunakan berupa sistem kontrol loop tertutup yang menjadikan posisi lengan kopling sebagai input, dengan bagian plant sistem kontrol berupa rangkaian elektronik yang komponen utamanya terdiri atas mikrokontroler DT-51 minimum system, pengatur arah arus (H-Bridge), limitswitch sebagai penghenti arus, ADC sebagai pengkonversi nilai tegangan keluaran dari sensor ke nilai digital, dan monitor sebagai alat pembaca nilai ADC. Output dari sistem kontrol berupa perintah menghidupkan dan mematikan motor DC. Pengendalian dilakukan sesuai dengan pengoperasian secara manual. Walaupun menggunakan sistem kontrol yang sama, namun masing-masing mekanisme pengendali tetap dapat dioperasikan secara bersamaan ataupun secara terpisah guna melakukan uji kalibrasi, validasi, dan uji statis. Pengoperasian masing-masing mekanisme secara terpisah dijelaskan Saat dioperasikan secara bersamaan, sistem kontrol bekerja dengan langkah sebagai berikut; dimulai dengan dihidupkannya traktor, accumulator sebagai sumber listrik mengalirkan arus ke rangkaian sistem kontrol. Kemudian sistem kontrol membaca dan menempatkan roda depan traktor pada posisi lurus, juga menggerakkan pedal kopling dan pedal akselerasi ke posisi minimum penekanan. Selanjutnya pedal kopling digerakkan ke posisi maksimum penekanan, ditahan sampai operator memindahkan tuas persneling. Setelah itu pedal akselerasi ditekan hingga ke kondisi kecepatan tertentu, dan langkah terakhir sistem melepaskan kopling kembali ke posisi awal secara perlahan-lahan. Dan traktor melaju lurus dengan kecepatan konstan. Selama dioperasikan sensor absolute rotary encoder terus membaca posisi roda depan. Jika sewaktu-waktu roda berbelok, sistem kontrol memerintahkan motor pengendali kemudi untuk memutar roda kembali ke posisi awal. Begitu juga jika kecepatan traktor berubah, sistem kontrol memerintahkan motor pengendali akselerasi untuk menggerakkan pedal akselerasi ke posisi awal hingga traktor kembali konstan. Perubahan kecepatan traktor dipantau dengan menggunakan sebuah encoder yang dipasang di roda belakang traktor. Alat ini menghitung jumlah putaran roda belakang sehingga jika jumlah putaran berubah maka berarti kecepatan traktor juga berubah MEKANISME PENGENDALI KOPLING Komponen Penyusun Permasalahan yang ada dalam perancangan mekanik sistem pengendali kopling adalah bagaimana menggerakkan pedal kopling ke posisi maksimum penekanan dan menahannya di posisi tersebut selama waktu yang dibutuhkan operator untuk memindahkan persneling, dan kemudian melepasakannya secara perlahan-lahan. Gaya yang dibutuhkan untuk menekan pedal kopling sangatlah besar, sangat sulit untuk merancang suatu sistem pengendali kopling yang menggunakan gaya tekan langsung di pedal kopling. Karena sumber tenaga listrik yang tersedia di traktor adalah accumulator 12 volt. Kesulitan yang dihadapi adalah mencari motor listrik DC yang tersedia di pasaran. Sehingga perlu dirancang suatu mekanisme yang dapat menurunkan kebutuhan gaya untuk menekan kopling dengan tenaga yang cukup. 31

2 Dari hasil analisis rancangan, komponen penyusun mekanisme pengendali kopling terdiri atas: motor DC sebagai sumber tenaga penggerak, dudukan motor sebagai tempat menempelkan motor ke traktor, lengan kopling yang diperpanjang dan diikat ke pedal kopling traktor dengan menggunakan klem baja berfungsi menurunkan kebutuhan gaya saat menggerakkan pedal kopling, kabel penarik yang berfungsi menarik lengan kopling, dan puli yang berfungsi menggulung dan mengulur kabel penarik. Serta rangkaian elektronik (kontroler) yang berfungsi dalam pengontrolan (sistem kontrol). Kabel Penarik Perpanjangan Lengan Kopling Dudukan Motor DC Puli Motor DC Gambar 23. Hasil Rancangan Mekanisme Pengendali Kopling Gambar 23 menunjukkan pemasangan komponen penyusun mekanisme pengendali kopling. Hal utama yang harus diperhatikan dalam penyusunan komponen di atas adalah maksimum panjang lengan kopling. Semakin panjang lengan, semakin kecil gaya yang dibutuhkan untuk menekan pedal kopling. Tetapi semakin terbatas pula ruang yang tersedia untuk mendudukkan motor, dan menghindari lengan kopling menyentuh roda depan atau tanah saat dioperasikan. Motor DC yang digunakan dalam penelitian ini adalah motor DC 24 volt. Untuk mendapatkan tenaga output yang maksimal tegangan yang dihasilkan dari accumulator dinaikkan dengan menggunakan inverter. Motor dipasang pada dudukan motor yang terdiri atas dua bagian dengan menggunakan baut berukuran sesuai dengan lubang baut pada motor DC. Bagian yang berupa plat baja setebal 5 mm dipilih untuk menghindari kemungkinan terjadi lendutan akibat gaya tarik yang dihasilkan lengan kopling saat mengembalikannya ke posisi awal penekanan. Bagian kedua berupa pipa baja berbentuk kotak yang selain berfungsi menopang motor, bentuk ini disesuaikan dengan posisi dan ukuran lubang baut yang tersedia pada badan traktor. Puli dipasang pada poros keluaran dari motor DC. Sama halnya dengan lengan kopling, ukuran puli sangat penting. Semakin besar diameter puli maka semakin sedikit putaran poros motor yang dibutuhkan untuk menggulung kabel penarik, namun ukuran puli terbatas oleh ketersediaan ruang antara ujung lengan kopling dalam kondisi tertekan ke posisi maksimum penekanan dan letak dudukan motor. Pemasangan puli harus sejajar dengan arah gerak lengan kopling untuk menghasilkan gaya maksimum penarikan. Kabel penarik terbuat dari bahan baja yang umum dijual di pasaran sebagai tali kopling motor, bagian pangkalnya dipasang pada diameter dalam puli dengan cara melubangi puli menggunakan bor 32

3 berdiameter sesuai dengan diameter kabel penarik. Kabel penarik dipasang dalam kondisi tegang untuk memperkecil waktu tunggu (delay) saat puli mulai berputar dan menggulung serta menarik lengan kopling. Bagian ujung kabel penarik dipasang pada lengan kopling dengan cara melubangi baut dan lengan kopling tepat melewati poros keduanya. Lengan kopling berupa pipa baja silinder. Bentuk ini sengaja dipilih dengan mempertimbangkan bentuk lingkaran lebih tahan terhadap gaya tarik-menarik yang terjadi pada lengan kopling dibandingkan dengan bentuk lain dan juga tersedia ruang yang cukup untuk memasang kabel penarik di ujungnya. Di bagian pangkal lengan kopling, digunakan tiga buah klem di sebagai pengikat antara pedal kopling dan lengan kopling Langkah Kerja Sistem Pengendali Setelah mekanisme berhasil dibangun, tahap selanjutnya adalah menggabungkannya dengan sistem kontrol yang telah disediakan. Sistem diset agar beroperasi sesuai dengan langkah pengoperasian traktor secara manual. Tiga hal yang manjadi patokan dalam pengoperasian kopling adalah; saat penekanan, kopling harus ditekan sekaligus dengan cepat hingga ke posisi maksimum penekanan; kemudian kopling ditahan di posisi tersebut selama waktu yang dibutuhkan operator untuk memindahkan tuas persneling traktor; setelah traktor siap dijalankan, kopling dilepas secara perlahan-lahan untuk menghindari lonjakan pada traktor dan mengurangi kemungkinan kerusakan karna aus pada kopling karena besarnya tenaga traktor. Waktu yang diperlukan setiap operator untuk melakukan ketiga hal tersebut sangat relatif. Dalam penelitian ini waktu penekanan ditetapkan selama satu detik, waktu penahanan selama sepuluh detik, dan waktu pelepasan kopling selama dua detik. Saat dinyalakan sistem kontrol memberi perintah untuk menghidupkan motor DC dengan cara mengalirkan arus sehingga puli motor berputar dan memposisikan lengan kopling pada posisi minimum penekanan. Selanjutnya puli kembali berputar dan menggulung kabel penarik sehingga lengan kopling bergerak ke arah bawah ke posisi maksimum penekanan. Saat mencapai posisi tersebut, dimana lengan kopling tepat menyentuh limitswitch, arus listrik otomatis terputus dan motor DC berhenti berputar. Karena motor DC yang dipakai dilengkapi dengan worm gear, poros motor DC dan puli tetap diam menahan lengan kopling diposisi tersebut. Setelah sepuluh detik, sistem kontrol kembali memerintahkan motor dengan arah putar sebaliknya dengan mengalirkan arus listrik yang lebih kecil dan berlawanan arah. Kabel penarik terulur dan lengan kopling kembali ke posisi awal secara perlahan-lahan Hasil Pengujian Mekanisme pengendali kopling hasil rancangan diuji untuk mengetahui apakah motor DC mampu menarik lengan kopling hingga ke posisi maksimum penekanan dalam waktu satu detik, menahannya di posisi tersebut selama sepuluh detik, dan melepaskannya secara perlahan-lahan selama dua detik. Dari hasil pengujian, motor DC mampu menggulung kabel penarik sehingga lengan kopling tertarik dan mencapai posisi maksimum penekanan dalam waktu satu detik. Saat arus listrik ke motor DC diputus, lengan kopling tetap berada pada posisi maksimum penekanan karena tertahan oleh mekanisme worm gear yang ada pada motor DC. Setelah sepuluh detik, motor DC kembali menyala dan berputar 33

4 berlawanan arah sehingga lengan kopling kembali ke posisi awal selama dua detik. Dan tepat pada saat lengan kopling mencapai posisi awal (posisi minimum penekanan), limitswitch tertekan dan arus listrik diputus sehingga motor DC berhenti berputar. Rangkaian ini diharapkan mampu bekerja setiap saat dibutuhkan sesuai perintah yang diberikan oleh sistem kontrol. Selama rangkaian tetap terhubung ke sumber listrik dan tidak ada kerusakan pada kompinen mekanismenya, sistem kontrol dapat sewaktu-waktu memberikan perintah pengendalian kopling. Namun yang menjadi kendala adalah dikarenakan tenaga operator masih dibutuhkan untuk memindahkan tuas persneling secara manual maka operator harus menyesuaikan waktu pengoperasinya baik momen maupun durasi penekanan persneling dengan kerja sistem yang sudah ditetapkan. Kendala lain yang dihadapi dalam pengujian mekanisme ini adalah motor yang digunakan bertegangan 24 volt sedangkan tegangan yang dihasilkan oleh accumulator traktor sebagai sumber daya hanya sebesar 12 volt. Untuk mengatasi masalah ini, digunakan sebuah inverter yang mampu menaikkan tegangan accumulator menjadi 24 volt sehingga dapat digunakan untuk menggerakkan motor DC. Namun demikian, arus yang dihasilkan oleh inverter yang digunakan dalam penelitian kali ini tidak mencukupi. Output arus inverter hanya 4 Ampere, sedangkan berdasarkan pengukuran arus yang dibutuhkan motor DC pada saat dibebani adalah 7.6 Ampere. Sehingga tenaga yang dihasilkan oleh motor tidak maksimal untuk menggerakkan lengan kopling. Solusi terbaik untuk mengatasi kendala di atas adalah dengan menggunakan dua buah accumulator bertegangan output 12 volt dan arus 45 ampere yang dirangkai secara seri. Output dari rangkaian seri accumulator ini menghasilkan output tegangan 24 volt dan arus 45 Ampere. Motor DC dapat menggerakan lengan kopling dengan menggunakan dua buah accumulator yang dirangkaikan secara seri MEKANISME PENGENDALI KEMUDI Komponen Penyusun Mekanisme pengendali kemudi adalah sebuah mekanisme yang mampu memutar kemudi dan membelokkan roda depan traktor ke kiri maupun ke kanan sesuai dengan perintah yang diberikan. Tujuan perancangan mekanisme ini adalah kemudi traktor dapat dikendalikan agar berputar ke posisi tertentu dan mengatur kecepatan putarnya sesuai dengan program yang diperintahkan. Komponen penyusun mekanisme pengendali kemudi terdiri atas; Motor DC sebagai penggerak kemudi; absolute rotary encoder sebagai sensor pendeteksi posisi sudut belok roda depan; Transmisi T-Belt sebagai penyalur tenaga dari motor DC ke kemudi; accumulator sebagai sumber energi listrik untuk motor DC; rangka baja sebagai tiang penyangga, dudukan motor, dan dudukan sensor; rangkaian elektronik (kontroler) yang berfungsi dalam pengontrolan dan masukan instruksi. Gambar 24 menunjukan posisi pemasangan dan pengaplikasian komponen mekanisme pengendali kemudi. Tiang penyangga terbuat dari pipa baja segi empat yang terpasang pada lubang baut yang tersedia pada badan traktor. Diantara kedua tiang penyangga, dudukan motor yang berfungsi menopang motor sekaligus T-Belt dipasang dengan kemiringan sejajar dengan kemiringan kemudi traktor, hal ini dimaksudkan untuk mendapatkan nilai maksimum gaya yang ditransmisikan dari motor ke kemudi. Dengan diapit kedua tiang penyangga, dudukan ini diharapkan menopang motor DC dan T-belt cukup 34

5 kuat sehingga tidak mudah bergeser atau berubah posisi. Puli besar dari transmisi T-Belt dipasang pada poros kemudi, sedangkan puli kecil dipasang pada poros motor DC. Kemudi Traktor Tiang Penyangga Transmisi Timing Belt Dudukan Motor DC Motor DC Gambar 24 a. Pemasangan komponen Mekanisme Pengendali Kemudi (Tampak Atas) Kemudi Traktor Motor DC Dudukan Motor T-Belt Tiang Penyangga Gambar 24 b. Pemasangan komponen Mekanisme Pengendali Kemudi (Tampak Samping) Gambar 25 menunjukkan posisi pemasangan absolute rotary encoder dan limitswicth. Absolute rotary encoder dipasang pada komponen traktor yang mengalami gerak putar ketika kemudi dibelokan ke kiri atau ke kanan, yaitu dipasang pada poros roda depan traktor. Hal ini bertujuan agar perubahan posisi ketika traktor belok kiri atau belok kanan dapat terdeteksi. Limitswicth dipasang pada kedua ujung lintasan putar roda traktor, yaitu pada ujung kiri dan ujung kanan. Limitswicth pada ujung kiri dipasang untuk menghentikan aliran listrik pada motor DC saat traktor belok ke arah kiri mencapai maksimum. Sedangkan limitswicth yang dipasang pada ujung kanan untuk menghentikan aliran listrik pada saat traktor belok kea rah kanan mencapai maksimum. Penghentian aliran listrik ke motor DC bertujuan agar motor DC berhenti berputar ketika sudah mencapai belok maksimum baik ke arah kiri maupun ke arah kanan. 35

6 Rotary Encoder Dudukan Sensor Lintasan Putaran Dudukan Limitswitch Gambar 25. Pemasangan Sensor (Absolute Rotary Encoder) dan Limitswicth Langkah Kerja Sistem Pengendali Mekanisme pengendali kemudi yang sudah dirancang kemudian dirangkai dengan sistem kontrol. Sistem kontrol yang digunakan sama dengan sistem yang mengontrol mekanisme pengendali kopling. Langkah pengoperasian mekanisme pengendali kemudi dimulai dengan pembacaan posisi roda depan dan mengalirkan arus listrik ke motor DC sehingga roda depan bergerak dan berhenti tepat pada nilai encoder saat roda depan dalam posisi lurus. Selanjutnya sensor absolute rotary encoder terus membaca posisi roda depan. Jika sewaktu-waktu posisi roda depan berubah yang ditandai dengan berubahnya nilai encoder yang terbaca, maka sistem kontrol kembali memerintahkan motor DC untuk berputar dan menyesuaikan posisi roda depan traktor kembali ke posisi lurus Hasil Pengujian Uji mekanisme pengendali kemudi bertujuan untuk mengetahui apakah mampu memutar kemudi sesuai perintah yang diberikan oleh sistem kontrol, mengetahui waktu tempuh depan traktor untuk berbelok dari kiri ke kanan dan sebaliknya, mengetahui besaran nilai encoder yang dihasilkan terhadap perubahan sudut belok roda depan traktor (uji kalibrasi), dan untuk mengetahui besarnya sudut belok yang dibentuk oleh roda depan berdasarkan set point nilai encoder yang ditentukan (uji validasi). a. Pengukuran kecepatan putar Pengukuran kecepatan putar roda saat berbelok bertujuan agar pengontrolan yang dilakukan lebih baik dan lebih teliti. Pengukuran kecepatan sudut dilakukan secara manual. Langkah awal dimulai dengan mengukur jarak antara titik belok kiri dan titik belok kanan maksimum roda depan. Pada poros belok salah satu roda depan, masing-masing titik belok maksimum ditandai dan jarak antara keduanya diukur. 36

7 Titik maksimum belok kanan Titik maksimum belok kiri Gambar 26. Jarak antara Dua Titik Belok Maksimum Roda Depan Gambar 26 menunjukan jarak antara dua titik belok maksimum roda depan yaitu sebesar 8 cm dengan jari-jari putaran 6 cm. Dengan rumus perbandingan keliling dan sudut lingkaran, Jarak dua titik belok ( s ) = 8 cm Jari-jari poros ( r ) = 6 cm Keliling poros ( K ) = (2π x r) = 37.7 cm Besar sudut antara dua titik belok = = Perubahan sudut maksimum gerak belok roda depan traktor sebesar Ulangan Jarak Tempuh (cm) Tabel 3. Waktu dan Kecepatan Belok Roda Depan Traktor Sudut Tempuh (derajat) Waktu Tempuh (s) Kecepatan (cm/s) Kecepatan ( 0 /s) Kiri - Kanan Kanan - Kiri Kiri - Kanan Kanan - Kiri Kiri - Kanan Kanan -Kiri Rata-rata Tabel 2 menunjukan hasil pengukuran waktu tempuh dan kecepatan ketika roda depan traktor diputar dari titik belok kiri maksimum ke titik belok kanan maksimum dan sebaliknya. Pengukuran dilakukan dalam keadaan motor DC diberi catu daya maksimum sehingga kecepatan putarnya juga maksimum. Dari tabel diatas dapat dilihat Hal ini menunjukan bahwa waktu tempuh rata-rata gerak belok roda depan dari kiri ke kanan sebesar 7.4 detik dan waktu tempuh dari kanan ke kiri adalah detik. Kecepatan belok roda depan traktor dari kiri ke kanan sebesar /s, sedangan putar ke kiri /s; Kecepatan putar roda berbelok dari kanan ke kiri lebih cepat dibandingkan dengan kecepatan putar roda dari kiri ke kanan. Keadaan ini disebabkan karena tahanan pada roda depan lebih besar ketika roda berputar dari kiri ke kanan. 37

8 b. Kalibrasi Kalibrasi dilakukan untuk mengetahui besaran nilai encoder yang dihasilkan sebagai respon terhadap perubahan sudut roda depan traktor saat berbelok. Total jarak antara titik belok kiri maksimum dan titik belok kanan maksimum dibagi menjadi sembilan titik, masing-masing diberi tanda dari 0 hingga 8, kemudian dilakukan pembacaan nilai encoder pada masing-masing titik tersebut. Pembacaan nilai encoder dapat dilihat pada tabel 4 di bawah ini. Titik Sudut ( 0 ) Tabel 4. Kalibrasi Sudut Belok Roda Depan Traktor Nilai Pembacaan Encoder Ulangan 1 Ulangan 2 Ulangan 3 Ulangan 4 Ulangan 5 Ulangan 6 Rata-rata ,00 Kalibrasi Sudut Belok Roda Traktor Pembacaan Encoder 120,00 80,00 40,00 y = x R² = ,00 0,00 20,00 40,00 60,00 80,00 100,00 Sudut Belok Gambar 27. Grafik Hasil Kalibrasi Sudut Belok Roda Traktor Nilai encoder dicatat mulai dari posisi roda depan traktor berbelok maksimum dari kanan maksimum (titik 0) hingga belok kiri maksimum (titik 8), dengan nilai terkecil encoder adalah dan nilai encoder terbesar adalah 118, sehingga selisih nilai encoder terbesar dengan nilai encoder terkecil adalah 84. Hasil uji kalibrasi kemudian dibuat persamaan. Gambar 27 menunjukkan grafik hasil kalibrasi sudut belok roda depan traktor dan persamaan nilai encoder (y) terhadap sudut belok roda (x) adalah; y = x Pola perubahan nilai encoder terhadap sudut putar berbentuk garis linier, hal ini menunjukkan bahwa absolut encoder yang digunakan adalah linier. 38

9 c.. Validasi Proses validasi dilakukan untuk mengetahui besarnya sudut putaran roda depan yang terbentuk berdasarkan nilai set point encoder yang ditentukan. Hal ini dilakukan untuk mengetahui presisi sudut putaran yang dibentuk oleh mekanisme kontrol yang telah dibuat. Tabel 5 menunjukkan hasil validasi sudut pada tiga titik setting nilai encoder. Tabel 5. Validasi Sudut Belok Roda Depan Traktor Encoder Set Point Sudut hasil kalibrasi ( 0 ) Hasil Kontrol Sudut Ulangan Aktual ( 0 ) Rata-rata ( 0 ) Sudut Hasil Kontrol (0) y = 0,9971x + 0,2562 R² = 1 0 0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 Sudut Set Point (0) Gambar 28. Grafik Validasi Sudut Belok Roda Depan Traktor Dari hasil validasi pada tabel 4 dapat dilihat pada tiga titik set point nilai encoder, besarnya sudut belok roda depan traktor berdasarkan persamaan kalibrasi dibandingkan dengan hasil pembacaan actual tidak jauh berbeda. Perbandingan nilai rata-rata sudut belok dan sudut hasil persamaan kalibrasi ditampilkan pada gambar MEKANISME PENGENDALI AKSELERASI Komponen Penyusun Mekanisme pengendali akselerasi terdiri atas beberapa komponen, yaitu; motor DC sebagai sumber tenaga penggerak; dudukan motor yang berfungsi menopang motor, potensiometer, dan sebagai 39

10 poros batang transmisi; Potensiometer sebagai sensor posisi pedal akselerasi; puli, kabel penarik, sistem transmisi tenaga, dan limitswitch. Posisi pemasangan komponen dapat dilihat pada gambar 29. Satu komponen terakhir yang sangat penting dalam pengoperasian di lapangan adalah sebuah sensor kecepatan berupa encoder yang terpasang di roda belakang traktor. Pada prinsipnya alat ini menghitung jumlah putaran roda belakang permenit untuk mendeteksi laju traktor. Namun karena penelitian kali ini hanya sampai uji statis, kecepatan maju traktor dianggap stabil. Semua komponen memiliki fungsi dan cara pemasangan yang sama dengan dua mekanisme sebelumnya. Kecuali pada sistem transmisi, mekanisme pengendali akselerasi memanfaatkan prinsip mesin sederhana berupa pengungkit dengan titik tumpu (poros) berada di antara titik kuasa, dan titik beban. Poros batang transmisi ini menempel pada dudukan motor. Puli Motor Potensiometer (sensor) Dudukan Motor Kabel Penarik Pedal Akselerasi Batang Penyangga Dudukan Motor Batang Transmisi Gambar 29. Pemasangan dan Pengaplikasian Komponen Pengendali Akselerasi Limitswitch Atas Limitswitch Bawah Batang Transmisi Pedal Akselerasi Langkah Kerja Sistem Pengendali Gambar 30. Posisi limitswicth Atas dan Bawah Seperti yang sudah disinggung sebeblumnya, langkah pengoperasian mekanisme pengendali akselerasi dimulai saat traktor dihidupkan dan arus listrik mengalir ke accumulator. Kemudian sistem kontrol membaca posisi pedal akselerasi dan memerintahkan motor untuk menggerakkannya ke posisi 40

11 minimum penekanan. Dalam penelitian kali ini, mekanisme pengendali akselerasi hanya diuji statis tanpa menguji melakukan uji di lapangan. Oleh karena itu, dalam pengujiannya akselerasi traktor diset pada satu nilai tertentu dan dibaca nilai keluaran sensornya Kalibrasi dan Validasi a.. Pengukuran Kecepatan Kalibrasi dilakukan dengan mengukur jarak antara titik minimum dan maksimum penekanan pedal akselerasi. Kemudian mencatat waktu yang dibutuhkan mekanisme untuk melakukan penekanan dan pelepasan pedal tersebut sehingga didapat kecepatan penekanan dan pelepasan pedal akselerasi. Tabel 6 menunjukkan hasil pengkuran waktu dan kecepatan penekanan pedal akselerasi. Tabel 6. Waktu dan Kecepatan Kendali Akselerasi Waktu (s) Kecepatan (cm/sekon) Ulangan Waktu Pelepasan Waktu Penekanan Kecepatan Kecepatan Penekanan Pelepasan Rata-rata Jarak titik minimum-maksimum pedal akselerasi = 6 cm Rata-rata waktu penekanan pedal = Rata-rata waktu pelepasan pedal = Kecepatan rata-rata penekanan pedal = Kecepatan rata-rata pelepasan pedal = Tabel diatas menunjukan lama waktu saat melakukan penekanan akselerasi dan juga saat melepaskan pedal akselerasi. Tabel tersebut menunjukan waktu yang dibutuhkan untuk melakukan proses pengegasan dan melepaskan pedal akselerasi tidak sama. Waktu untuk melakukan pengegasan lebih lama dibandingkan dengan waktu yang dibutuhkan untuk proses pelepasan pedal akselerasi. Hal ini disebabkan oleh adanya gaya pegas pada pedal akselerasi yang menahan gaya tarik motor saat melakukan proses penekanan pedal akselerasi, sehingga waktu yang dibutuhkan lebih lama dan kecepatan penekanan lebih kecil dibanding kecepatan saat pelepasan. b. Kalibrasi Kalibrasi pada mekanisme pengendalian pedal akselerasi dilakukan untuk mengetahui besaran hambatan keluaran potensiometer yang dihasilkan terhadap perubahan persentase penekanan pedal. Nilai keluaran ini kemudian dikonversi menjadi nilai digital menggunakan ADC. Sebelumnya jarak antara titik maksimum dan minimum penekanan dibagi menjadi empat bagian, masing-masing ditandai sebagai 41

12 persentase penekanan pedal akselerasi dan dicatat berapa waktu yang dibutuhkan untuk masing-masing persentase penekanan. Hasil kalibrasi potensiometer dapat dilihat pada tabel 7 di bawah ini. Persentase Pengegasan (%) Tabel 7. Hasil Kalibrasi Potensiometer Ulangan Pembacaan ADC (decimal) Rata-rata (decimal) Nilai ADC (desimal) y = -0,0084x 2 + 2,5702x + 78,477 R² = 0, Persentase Pengegasan (%) Gambar 31. Grafik Kalibrasi Potesiometer Nilai ADC yang terbaca untuk masing-masing titik kemudian dikonversi sehingga didapatkan persamaan nilai ADC (y) terhadap persentase penekanan pedal gas (x), yaitu; x x Pola perubahan nilai ADC terhadap nilai persentase penekanan pedal membentuk kurva polynomial, hal ini menunjukkan bahwa jenis potensiometer yang digunakan tidak linier. 42

IV. ANALISIS STRUKTURAL DAN FUNGSIONAL

IV. ANALISIS STRUKTURAL DAN FUNGSIONAL IV. ANALISIS STRUKTURAL DAN FUNGSIONAL Tahapan analisis rancangan merupakan tahap yang paling utama karena di tahap inilah kebutuhan spesifik masing-masing komponen ditentukan. Dengan mengacu pada hasil

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN 3.1. WAKTU DAN TEMPAT Kegiatan Penelitian ini dilaksanakan mulai bulan Juni hingga Desember 2011 dan dilaksanakan di laboratorium lapang Siswadhi Soepardjo (Leuwikopo), Departemen

Lebih terperinci

ALTERNATIF DESAIN MEKANISME PENGENDALI

ALTERNATIF DESAIN MEKANISME PENGENDALI LAMPIRAN LAMPIRAN 1 : ALTERNATIF DESAIN MEKANISME PENGENDALI Dari definisi permasalahan yang ada pada masing-masing mekanisme pengendali, beberapa alternatif rancangan dibuat untuk kemudian dipilih dan

Lebih terperinci

HASIL DAN PEMBAHASAN Identifikasi Masalah

HASIL DAN PEMBAHASAN Identifikasi Masalah V HASIL DAN PEMBAHASAN Identifikasi Masalah Tahapan identifikasi masalah bertujuan untuk mengetahui masalah serta kebutuhan yang diperlukan agar otomasi traktor dapat dilaksanakan. Studi pustaka dilakukan

Lebih terperinci

PENDEKATAN RANCANGAN. Kriteria Perancangan

PENDEKATAN RANCANGAN. Kriteria Perancangan IV PENDEKATAN RANCANGAN Kriteria Perancangan Pada prinsipnya suatu proses perancangan terdiri dari beberapa tahap atau proses sehingga menghasilkan suatu desain atau prototype produk yang sesuai dengan

Lebih terperinci

TINJAUAN PUSTAKA. Waktu dan Tempat Penelitian

TINJAUAN PUSTAKA. Waktu dan Tempat Penelitian III TINJAUAN PUSTAKA Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Januari 2012 November 2012 di laboratorium lapangan Siswadi Supardjo, Program Studi Teknik Mesin Pertanian dan Pangan,

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN A. DESAIN PENGGETAR MOLE PLOW Prototip mole plow mempunyai empat bagian utama, yaitu rangka three hitch point, beam, blade, dan mole. Rangka three hitch point merupakan struktur

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Konstruksi Prototipe Manipulator Manipulator telah berhasil dimodifikasi sesuai dengan rancangan yang telah ditentukan. Dimensi tinggi manipulator 1153 mm dengan lebar maksimum

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. SPESIFIKASI MESIN PELUBANG TANAH Sebelum menguji kinerja mesin pelubang tanah ini, perlu diketahui spesifikasi dan detail dari mesin. Mesin pelubang tanah untuk menanam sengon

Lebih terperinci

RANCANG BANGUN SISTEM KONTROL OTOMATIS UNTUK KEMUDI, KOPLING DAN AKSELERATOR PADA TRAKTOR PERTANIAN

RANCANG BANGUN SISTEM KONTROL OTOMATIS UNTUK KEMUDI, KOPLING DAN AKSELERATOR PADA TRAKTOR PERTANIAN RANCANG BANGUN SISTEM KONTROL OTOMATIS UNTUK KEMUDI, KOPLING DAN AKSELERATOR PADA TRAKTOR PERTANIAN Desrial, Cecep Saepul R, I Made Subrata dan Usman Ahmad Departemen Teknik Mesin dan Biosistem, Fateta,

Lebih terperinci

SEMINAR NASIONAL TEKNIK INDUSTRI UNIVERSITAS GADJAH MADA 2011 Yogyakarta, 26 Juli Intisari

SEMINAR NASIONAL TEKNIK INDUSTRI UNIVERSITAS GADJAH MADA 2011 Yogyakarta, 26 Juli Intisari Sistem Pendorong pada Model Mesin Pemilah Otomatis Cokorda Prapti Mahandari dan Yogie Winarno Jurusan Teknik Mesin, Fakultas Teknologi Industri Universitas Gunadarma J1. Margonda Raya No.100, Depok 15424

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. Sistem pneumatik dengan aplikasi pada mobile robot untuk menaiki dan

BAB 4 IMPLEMENTASI DAN EVALUASI. Sistem pneumatik dengan aplikasi pada mobile robot untuk menaiki dan 96 BAB 4 IMPLEMENTASI DAN EVALUASI 4.1. Spesifikasi Sistem Sistem pneumatik dengan aplikasi pada mobile robot untuk menaiki dan menuruni tangga yang dirancang mempunyai spesifikasi/karakteristik antara

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun BAB 4 IMPLEMENTASI DAN EVALUASI Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun keseluruhan sistem, prosedur pengoperasian sistem, implementasi dari sistem dan evaluasi hasil pengujian

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT BAB IV ANALISA DAN PENGUJIAN ALAT 4.1 Umum Robot merupakan kesatuan kerja dari semua kerja perangkat penyusunnya. Perancangan robot dimulai dengan menggali informasi dari berbagai referensi, temukan ide,

Lebih terperinci

BAB IV PENGUJIAN PROPELLER DISPLAY

BAB IV PENGUJIAN PROPELLER DISPLAY BAB IV PENGUJIAN PROPELLER DISPLAY 4.1 Hasil Perancangan Setelah melewati tahap perancangan yang meliputi perancangan mekanik, elektrik, dan pemrograman. Maka terbentuklah sebuah propeller display berbasis

Lebih terperinci

IV. PENDEKATAN DESAIN

IV. PENDEKATAN DESAIN IV. PENDEKATAN DESAIN A. Kriteria Desain Alat pengupas kulit ari kacang tanah ini dirancang untuk memudahkan pengupasan kulit ari kacang tanah. Seperti yang telah diketahui sebelumnya bahwa proses pengupasan

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juni 2014 sampai dengan bulan Juli 2014

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juni 2014 sampai dengan bulan Juli 2014 III. METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian ini dilaksanakan pada bulan Juni 2014 sampai dengan bulan Juli 2014 di Laboratorium Daya, Alat, dan Mesin Pertanian Jurusan Teknik Pertanian Fakultas

Lebih terperinci

BAB II SISTEM KENDALI GERAK SEGWAY

BAB II SISTEM KENDALI GERAK SEGWAY BAB II SISTEM KENDALI GERAK SEGWAY Sistem merupakan suatu rangkaian beberapa organ yang menjadi satu kesatuan. Maka sistem kendali gerak adalah suatu sistem yang terdiri dari beberapa komponen pengendali

Lebih terperinci

Gambar 1.6. Diagram Blok Sistem Pengaturan Digital

Gambar 1.6. Diagram Blok Sistem Pengaturan Digital Gambar 1.6. Diagram Blok Sistem Pengaturan Digital 10 Bab II Sensor 11 2.1. Pendahuluan Sesuai dengan banyaknya jenis pengaturan, maka sensor jenisnya sangat banyak sesuai dengan besaran fisik yang diukurnya

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Maret 2013

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Maret 2013 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Februari 2013 sampai dengan Maret 2013 di Laboratorium Daya dan Alat Mesin Pertanian, Jurusan Teknik Pertanian,

Lebih terperinci

PENDEKATAN DESAIN Kriteria Desain dan Gambaran Umum Proses Pencacahan

PENDEKATAN DESAIN Kriteria Desain dan Gambaran Umum Proses Pencacahan PENDEKATAN DESAIN Kriteria Desain dan Gambaran Umum Proses Pencacahan Mengingat lahan tebu yang cukup luas kegiatan pencacahan serasah tebu hanya bisa dilakukan dengan sistem mekanisasi. Mesin pencacah

Lebih terperinci

Module : Sistem Pengaturan Kecepatan Motor DC

Module : Sistem Pengaturan Kecepatan Motor DC Module : Sistem Pengaturan Kecepatan Motor DC PERCOBAAN 2 SISTEM PENGATURAN KECEPATAN MOTOR DC 2.1. PRASYARAT Memahami komponen yang digunakan dalam praktikum sistem pengaturan kecepatan motor dc Memahami

Lebih terperinci

Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51

Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51 21 Perancangan Model Alat Pemotong Rumput Otomatis Berbasis Mikrokontroler AT89C51 Ahmad Yusup, Muchlas Arkanuddin, Tole Sutikno Program Studi Teknik Elektro, Universitas Ahmad Dahlan Abstrak Penggunaan

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat

III. METODE PENELITIAN. Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei Adapun tempat III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan mulai pada November 2011 hingga Mei 2012. Adapun tempat pelaksanaan penelitian ini adalah di Laboratorium Elektronika Dasar

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN SISTEM

BAB IV ANALISA DAN PENGUJIAN SISTEM BAB IV ANALISA DAN PENGUJIAN SISTEM 4.1 Pengujian Perangkat Keras (Hardware) Pengujian perangkat keras sangat penting dilakukan karena melalui pengujian ini rangkaian-rangkaian elektronika dapat diuji

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN A. PEMBUATAN DAN PERAKITAN ALAT Pembuatan alat dilakukan berdasarkan rancangan yang telah dilakukan. Gambar rancangan alat secara keseluruhan dapat dilihat pada Gambar 5.1. 1 3

Lebih terperinci

PERANCANGAN MESIN LISTRIK PEMOTONG RUMPUT DENGAN ENERGI AKUMULATOR ABSTRAKSI

PERANCANGAN MESIN LISTRIK PEMOTONG RUMPUT DENGAN ENERGI AKUMULATOR ABSTRAKSI Jurnal Emitor Vol.14 No.2 ISSN 1411-8890 PERANCANGAN MESIN LISTRIK PEMOTONG RUMPUT DENGAN ENERGI AKUMULATOR Umar, Agus Tain, Jatmiko Jurusan Teknik Elektro Fakultas Teknik Universitas Muhammadiyah Surakarta

Lebih terperinci

Input ADC Output ADC IN

Input ADC Output ADC IN BAB IV HASIL DAN PEMBAHASAN IV.1. Hasil Dalam bab ini akan dibahas mengenai hasil yang diperoleh dari pengujian alat-alat meliputi mikrokontroler, LCD, dan yang lainnya untuk melihat komponen-komponen

Lebih terperinci

BAB III METODOLOGI PELAKSANAAN. penggerak belakang gokart adalah bengkel Teknik Mesin program Vokasi

BAB III METODOLOGI PELAKSANAAN. penggerak belakang gokart adalah bengkel Teknik Mesin program Vokasi BAB III METODOLOGI PELAKSANAAN 3.1. Tempat Pelaksanaan Tempat yang akan di gunakan untuk perakitan dan pembuatan sistem penggerak belakang gokart adalah bengkel Teknik Mesin program Vokasi Universitas

Lebih terperinci

IV. ANALISA PERANCANGAN

IV. ANALISA PERANCANGAN IV. ANALISA PERANCANGAN Mesin penanam dan pemupuk jagung menggunakan traktor tangan sebagai sumber tenaga tarik dan diintegrasikan bersama dengan alat pembuat guludan dan alat pengolah tanah (rotary tiller).

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN PEMBAHASAN

BAB IV PENGUJIAN ALAT DAN PEMBAHASAN BAB IV PENGUJIAN ALAT DAN PEMBAHASAN 4.1 Uji Coba Alat Dalam bab ini akan dibahas mengenai pengujian alat yang telah dibuat. Dimulai dengan pengujian setiap bagian-bagian dari hardware dan software yang

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. TEMPAT DAN WAKTU PENELITIAN Penelitian dilaksanakan di Laboratorium Lapangan Teknik Mesin Budidaya Pertanian, Departemen Teknik Pertanian, Fakultas Teknologi Pertanian, Institut

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dibahas mengenai perancangan dan realisasi sistem yang dibuat. Gambar 3.1 menunjukkan blok diagram sistem secara keseluruhan. Anak Tangga I Anak Tangga II Anak

Lebih terperinci

HASIL DAN PEMBAHASAN. Rancangan Prototipe Mesin Pemupuk

HASIL DAN PEMBAHASAN. Rancangan Prototipe Mesin Pemupuk HASIL DAN PEMBAHASAN Rancangan Prototipe Mesin Pemupuk Prototipe yang dibuat merupakan pengembangan dari prototipe pada penelitian sebelumnya (Azis 211) sebanyak satu unit. Untuk penelitian ini prototipe

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT Pada bab ini akan dijelaskan mengenai gambaran alat, perancangan dan realisasi dari perangkat keras, serta perangkat lunak dari alat peraga sistem kendali pendulum terbalik. 3.1.

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN A. Pembuatan Prototipe 1. Rangka Utama Bagian terpenting dari alat ini salah satunya adalah rangka utama. Rangka ini merupakan bagian yang menopang poros roda tugal, hopper benih

Lebih terperinci

IV. PENDEKATAN DESAIN A. KRITERIA DESAIN B. DESAIN FUNGSIONAL

IV. PENDEKATAN DESAIN A. KRITERIA DESAIN B. DESAIN FUNGSIONAL IV. PENDEKATAN DESAIN A. KRITERIA DESAIN Perancangan atau desain mesin pencacah serasah tebu ini dimaksudkan untuk mencacah serasah yang ada di lahan tebu yang dapat ditarik oleh traktor dengan daya 110-200

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN Gambar 14. HASIL DAN PEMBAHASAN Gambar mesin sortasi buah manggis hasil rancangan dapat dilihat dalam Bak penampung mutu super Bak penampung mutu 1 Unit pengolahan citra Mangkuk dan sistem transportasi

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN A. Waktu dan Tempat Penelitian dilaksanakan pada bulan April hingga bulan September 2012 di Laboratorium Lapang Siswadhi Soepardjo, Departemen Teknik Mesin dan Biosistem, Fakultas

Lebih terperinci

IMPLEMENTASI KONTROL RPM UNTUK MENGHASILKAN PERUBAHAN RASIO SECARA OTOMATIS PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT)

IMPLEMENTASI KONTROL RPM UNTUK MENGHASILKAN PERUBAHAN RASIO SECARA OTOMATIS PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) IMPLEMENTASI KONTROL RPM UNTUK MENGHASILKAN PERUBAHAN RASIO SECARA OTOMATIS PADA ELECTRICAL CONTINUOUSLY VARIABLE TRANSMISSION (ECVT) I Gede Hartawan 2108 030 002 DOSEN PEMBIMBING Dr. Ir. Bambang Sampurno,

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN. Pengujian sistem elektronik terdiri dari dua bagian yaitu: - Pengujian tegangan catu daya - Pengujian kartu AVR USB8535

BAB IV ANALISA DAN PEMBAHASAN. Pengujian sistem elektronik terdiri dari dua bagian yaitu: - Pengujian tegangan catu daya - Pengujian kartu AVR USB8535 BAB IV ANALISA DAN PEMBAHASAN 4.1. Pengujian Alat Adapun urutan pengujian alat meliputi : - Pengujian sistem elektronik - Pengujian program dan mekanik 4.1.1 Pengujian Sistem Elektronik Pengujian sistem

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. buah silinder dilengkapi bearing dan sabuk. 2. Penggunaan PLC (Programmable Logic Controller) sebagai pengontrol

BAB 4 IMPLEMENTASI DAN EVALUASI. buah silinder dilengkapi bearing dan sabuk. 2. Penggunaan PLC (Programmable Logic Controller) sebagai pengontrol BAB 4 IMPLEMENTASI DAN EVALUASI 4.1. Spesifikasi Sistem Sistem simulasi conveyor untuk proses pengecatan dan pengeringan menggunakan PLC dirancang dengan spesifikasi (memiliki karakteristik utama) sebagai

Lebih terperinci

BAB III PERANCANGAN Gambaran Alat

BAB III PERANCANGAN Gambaran Alat BAB III PERANCANGAN Pada bab ini penulis menjelaskan mengenai perancangan dan realisasi sistem bagaimana kursi roda elektrik mampu melaksanakan perintah suara dan melakukan pengereman otomatis apabila

Lebih terperinci

Bab 4 Perancangan Perangkat Gerak Otomatis

Bab 4 Perancangan Perangkat Gerak Otomatis Bab 4 Perancangan Perangkat Gerak Otomatis 4. 1 Perancangan Mekanisme Sistem Penggerak Arah Deklinasi Komponen penggerak yang dipilih yaitu ball, karena dapat mengkonversi gerakan putaran (rotasi) yang

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Alat Penelitian Susunan peralatan yang akan digunakan pada penelitian alat konversi energi listrik mekanik dari laju kendaraan sebagai berikut: 1 2 8 9 3 4 7 5 6 Gambar 3.1.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan industri skala kecil hingga skala besar di berbagai negara di belahan dunia saat ini tidak terlepas dari pemanfaatan mesin-mesin industri sebagai alat

Lebih terperinci

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN ALAT MESIN PERTANIAN

SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN ALAT MESIN PERTANIAN SUMBER BELAJAR PENUNJANG PLPG 2017 MATA PELAJARAN/PAKET KEAHLIAN ALAT MESIN PERTANIAN BAB V PERSIAPAN MENGHIDUPKAN, MENGHIDUPKAN, MEMATIKAN DAN MENJALANKAN TRAKTOR Drs. Kadirman, MS. KEMENTERIAN PENDIDIKAN

Lebih terperinci

BAB III PERENCANAAN DAN PERANCANGAN

BAB III PERENCANAAN DAN PERANCANGAN BAB III PERENCANAAN DAN PERANCANGAN 3.1 Perencanaan Dalam sebuah robot terdapat dua sistem yaitu sistem elektronis dan sistem mekanis, dimana sistem mekanis dikendalikan oleh sistem elektronis bisa berupa

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik dan pembuatan mekanik turbin. Sedangkan untuk pembuatan media putar untuk

Lebih terperinci

BAB IV PEMBAHASAAN 4.1 PENGERTIAN DAN FUNGSI KOPLING Kopling adalah satu bagian yang mutlak diperlukan pada truk dan jenis lainnya dimana penggerak utamanya diperoleh dari hasil pembakaran di dalam silinder

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1. Perancangan Perangkat Keras Perancangan perangkat keras sistem terdiri dari 3 bagian, yakni mekanik, modul sensor berat, dan modul sensor gas. Berikut dibahas bagian demi

Lebih terperinci

BAB III PERANCANGAN SISTEM ATAP LOUVRE OTOMATIS

BAB III PERANCANGAN SISTEM ATAP LOUVRE OTOMATIS BAB III PERANCANGAN SISTEM ATAP LOUVRE OTOMATIS 3.1 Perencanaan Alat Bab ini akan menjelaskan tentang pembuatan model sistem buka-tutup atap louvre otomatis, yaitu mengenai konstruksi atau rangka utama

Lebih terperinci

RANCANG BANGUN ALAT PEMOTONG KABEL ROBOTIK TIPE WORM GEAR

RANCANG BANGUN ALAT PEMOTONG KABEL ROBOTIK TIPE WORM GEAR RANCAN BANUN ALAT PEMOTON KABEL ROBOTIK TIPE WORM EAR Estiko Rijanto Pusat Penelitian Tenaga Listrik dan Mekatronik (Telimek) LIPI Kompleks LIPI edung 0, Jl. Cisitu No.1/154D, Bandung 40135, Tel: 0-50-3055;

Lebih terperinci

Perancangan ulang alat penekuk pipa untuk mendukung proses produksi pada industri las. Sulistiawan I BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Perancangan ulang alat penekuk pipa untuk mendukung proses produksi pada industri las. Sulistiawan I BAB IV PENGUMPULAN DAN PENGOLAHAN DATA Perancangan ulang alat penekuk pipa untuk mendukung proses produksi pada industri las Sulistiawan I 1303010 BAB IV PENGUMPULAN DAN PENGOLAHAN DATA Pada bab ini akan diuraikan proses pengumpulan dan pengolahan

Lebih terperinci

BAB III PERANCANGAN DAN REALISASI. blok diagram dari sistem yang akan di realisasikan.

BAB III PERANCANGAN DAN REALISASI. blok diagram dari sistem yang akan di realisasikan. 33 BAB III PERANCANGAN DAN REALISASI 3.1 Perancangan Diagram Blok Sistem Dalam perancangan ini menggunakan tiga buah PLC untuk mengatur seluruh sistem. PLC pertama mengatur pergerakan wesel-wesel sedangkan

Lebih terperinci

3. METODE PENELITIAN

3. METODE PENELITIAN 3. METODE PENELITIAN 3.1. Waktu dan Lokasi Penelitian Kegiatan penelitian dilaksanakan selama 8 bulan, dimulai bulan Agustus 2010 sampai dengan Maret 2011. Penelitian dilakukan di dua tempat, yaitu (1)

Lebih terperinci

BAB III PROSES PERANCANGAN TRIBOMETER

BAB III PROSES PERANCANGAN TRIBOMETER BAB III PROSES PERANCANGAN TRIBOMETER 3.1 Diagram Alir Dalam proses perancangan tribometer, ada beberapa tahapan yang harus dilaksanakan. Diagram alir (flow chart diagram) perancangan ditunjukkan seperti

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Bab ini berisi hasil pengujian terhadap alat yang sudah dikerjakan serta analisis sistem yang telah direalisasikan. Pengujian terdiri dari pengujian sistem pengisian data,

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 2.1. TINJAUAN PUSTAKA Potato peeler atau alat pengupas kulit kentang adalah alat bantu yang digunakan untuk mengupas kulit kentang, alat pengupas kulit kentang yang

Lebih terperinci

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560

SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560 1 SISTEM PENGATURAN POSISI SUDUT PUTAR MOTOR DC PADA MODEL ROTARY PARKING MENGGUNAKAN KONTROLER PID BERBASIS ARDUINO MEGA 2560 Adityan Ilmawan Putra, Pembimbing 1: Purwanto, Pembimbing 2: Bambang Siswojo.

Lebih terperinci

BAB III METODE PENELITIAN. Penelitian hampir seluruhnya dilakukan di laboratorium Gedung Fisika Material

BAB III METODE PENELITIAN. Penelitian hampir seluruhnya dilakukan di laboratorium Gedung Fisika Material BAB III METODE PENELITIAN Metode yang dilakukan dalam penelitian ini adalah rancang bangun alat. Penelitian hampir seluruhnya dilakukan di laboratorium Gedung Fisika Material Pusat Teknologi Nuklir Bahan

Lebih terperinci

METODE PENELITIAN. Simulasi putaran/mekanisme pisau pemotong tebu (n:500 rpm, v:0.5 m/s, k: 8)

METODE PENELITIAN. Simulasi putaran/mekanisme pisau pemotong tebu (n:500 rpm, v:0.5 m/s, k: 8) III. METODE PENELITIAN A. Tempat dan Waktu Penelitian Penelitian dilaksanakan pada bulan Maret sampai Juli 2011 di Laboratorium Lapangan Departemen Teknik Mesin dan Biosistem. Pelaksanaan penelitian terbagi

Lebih terperinci

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya

BAB IV HASIL DAN ANALISIS Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya BAB IV HASIL DAN ANALISIS 4.1. Perancangan Sistem Pembangkit Listrik Sepeda Hybrid Berbasis Tenaga Pedal dan Tenaga Surya 4.1.1. Analisis Radiasi Matahari Analisis dilakukan dengan menggunakan data yang

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN ANALISA

BAB IV PENGUJIAN ALAT DAN ANALISA BAB IV Pengujian Alat dan Analisa BAB IV PENGUJIAN ALAT DAN ANALISA 4. Tujuan Pengujian Pada bab ini dibahas mengenai pengujian yang dilakukan terhadap rangkaian sensor, rangkaian pembalik arah putaran

Lebih terperinci

4 RANCANGAN SIMULATOR GETARAN DENGAN OUTPUT ARAH GETARAN DOMINAN VERTIKAL DAN HORIZONTAL

4 RANCANGAN SIMULATOR GETARAN DENGAN OUTPUT ARAH GETARAN DOMINAN VERTIKAL DAN HORIZONTAL 33 4 RANCANGAN SIMULATOR GETARAN DENGAN OUTPUT ARAH GETARAN DOMINAN VERTIKAL DAN HORIZONTAL Perancangan simulator getaran ini dilakukan dalam beberapa tahap yaitu : pengumpulan konsep rancangan dan pembuatan

Lebih terperinci

BAB 24 SISTEM EPS, WIPER, KURSI ELECTRIK

BAB 24 SISTEM EPS, WIPER, KURSI ELECTRIK BAB 24 SISTEM EPS, WIPER, KURSI ELECTRIK 24.1 Sistem EPS (ELEKTRONIK POWER STEERING) Elektronik Power Steering merupakan sistem yang membantu pengoperasian stering waktu dibelokkan dengan menggukan motor

Lebih terperinci

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli sampai dengan Oktober 2013.

III. METODOLOGI PENELITIAN. Penelitian ini dilaksanakan pada bulan Juli sampai dengan Oktober 2013. III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli sampai dengan Oktober 2013. Penelitian ini dilakukan dua tahap, yaitu tahap pembuatan alat yang dilaksanakan

Lebih terperinci

BAB III PERENCANAAN DAN GAMBAR

BAB III PERENCANAAN DAN GAMBAR BAB III PERENCANAAN DAN GAMBAR 3.1 Diagram Alir Proses Perancangan Proses perancangan mesin peniris minyak pada kacang seperti terlihat pada gambar 3.1 berikut ini: Mulai Studi Literatur Gambar Sketsa

Lebih terperinci

Rancang Bangun dan Uji Kinerja Mekanisme Pengendali Otomatis Pedal Rem dan Tuas Transmisi Maju-Mundur pada Traktor Roda Empat

Rancang Bangun dan Uji Kinerja Mekanisme Pengendali Otomatis Pedal Rem dan Tuas Transmisi Maju-Mundur pada Traktor Roda Empat Technical Paper Rancang Bangun dan Uji Kinerja Mekanisme Pengendali Otomatis Pedal Rem dan Tuas Transmisi Maju-Mundur pada Traktor Roda Empat Design and Performance Test of Automatic Controlled Mechanism

Lebih terperinci

Deskrpsi ROBOT LENGAN LENTUR DUA-LINK DENGAN VARIASI BEBAN BAWAAN

Deskrpsi ROBOT LENGAN LENTUR DUA-LINK DENGAN VARIASI BEBAN BAWAAN 1 2 3 Deskrpsi ROBOT LENGAN LENTUR DUA-LINK DENGAN VARIASI BEBAN BAWAAN Bidang Teknik Invensi Invensi ini berhubungan dengan suatu lengan lentur sehingga memperingan gerakan robot lengan, khususnya lengan

Lebih terperinci

2. Mesin Frais/Milling

2. Mesin Frais/Milling 2. Mesin Frais/Milling 2.1 Prinsip Kerja Tenaga untuk pemotongan berasal dari energi listrik yang diubah menjadi gerak utama oleh sebuah motor listrik, selanjutnya gerakan utama tersebut akan diteruskan

Lebih terperinci

BAB III METODE PERANCANGAN DAN PABRIKASI PROTOTIPE PENGUPAS KULIT SINGKONG BERPENGGERAK MOTOR LISTRIK

BAB III METODE PERANCANGAN DAN PABRIKASI PROTOTIPE PENGUPAS KULIT SINGKONG BERPENGGERAK MOTOR LISTRIK BAB III METODE PERANCANGAN DAN PABRIKASI PROTOTIPE PENGUPAS KULIT SINGKONG BERPENGGERAK MOTOR LISTRIK 3.1 Perancangan dan pabrikasi Perancangan dilakukan untuk menentukan desain prototype singkong. Perancangan

Lebih terperinci

BAB IV PERHITUNGAN DAN PEMBAHASAN

BAB IV PERHITUNGAN DAN PEMBAHASAN BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1. Perencanaan Tabung Luar Dan Tabung Dalam a. Perencanaan Tabung Dalam Direncanakan tabung bagian dalam memiliki tebal stainles steel 0,6, perencenaan tabung pengupas

Lebih terperinci

BAB I PENDAHULUAN. aspek kehidupan manusia. Hal ini dapat dilihat dari pembuatan robot-robot cerdas dan otomatis

BAB I PENDAHULUAN. aspek kehidupan manusia. Hal ini dapat dilihat dari pembuatan robot-robot cerdas dan otomatis BAB I PENDAHULUAN I.1. Latar Belakang Perkembangan ilmu pengetahuan dan teknologi memberikan manfaat besar dalam segala aspek kehidupan manusia. Hal ini dapat dilihat dari pembuatan robot-robot cerdas

Lebih terperinci

BAB III PERANCANGAN Gambaran Alat

BAB III PERANCANGAN Gambaran Alat BAB III PERANCANGAN Pada bab ini penulis menjelaskan mengenai perancangan dan realisasi Gravity Light nya. Bahasan perancangan dimulai dengan penjelasan alat secara keseluruhuan yaitu penjelasan singkat

Lebih terperinci

BAB III PERANCANGAN DAN PEMBUATAN ALAT

BAB III PERANCANGAN DAN PEMBUATAN ALAT BAB III PERANCANGAN DAN PEMBUATAN ALAT 3.1 Gambaran Umum Pada bab ini akan dibahas mengenai perencanaan perangkat keras elektronik (hardware) dan pembuatan mekanik robot. Sedangkan untuk pembuatan perangkat

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah negara yang padat penduduk dan dikenal dengan melimpahnya sumber daya alam.

BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah negara yang padat penduduk dan dikenal dengan melimpahnya sumber daya alam. BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia adalah negara yang padat penduduk dan dikenal dengan melimpahnya sumber daya alam. Tidak bisa kita pungkiri dengan kenyataan seperti itu rakyat Indonesia

Lebih terperinci

V. HASIL DAN PEMBAHASAN

V. HASIL DAN PEMBAHASAN V. HASIL DAN PEMBAHASAN 5.1. Pembuatan Prototipe 5.1.1. Modifikasi Rangka Utama Untuk mempermudah dan mempercepat waktu pembuatan, rangka pada prototipe-1 tetap digunakan dengan beberapa modifikasi. Rangka

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM 3.1.Bahan Perancangan BAB III PERANCANGAN SISTEM Perancangan sistem pembangkit listrik Turbin Impuls menggunakan boiler mini yang sudah dirancang dengan anometer dan berfungsi sebagai pemasukan energi

Lebih terperinci

Gambar 11 Sistem kalibrasi dengan satu sensor.

Gambar 11 Sistem kalibrasi dengan satu sensor. 7 Gambar Sistem kalibrasi dengan satu sensor. Besarnya debit aliran diukur dengan menggunakan wadah ukur. Wadah ukur tersebut di tempatkan pada tempat keluarnya aliran yang kemudian diukur volumenya terhadap

Lebih terperinci

PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK

PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK Jurnal Elemen Volume 4 Nomor 1, Juni 2017 ISSN : 2442-4471 PERANCANGAN SISTEM KEMUDI MANUAL PADA MOBIL LISTRIK Kurnia Dwi Artika 1, Rusuminto Syahyuniar 2, Nanda Priono 3 1),2) Staf Pengajar Jurusan Mesin

Lebih terperinci

BAB III METODOLOGI. Pembongkaran mesin dilakukan untuk melakukan pengukuran dan. Selain itu juga kita dapat menentukan komponen komponen mana yang

BAB III METODOLOGI. Pembongkaran mesin dilakukan untuk melakukan pengukuran dan. Selain itu juga kita dapat menentukan komponen komponen mana yang BAB III METODOLOGI 3.1 Pembongkaran Mesin Pembongkaran mesin dilakukan untuk melakukan pengukuran dan mengganti atau memperbaiki komponen yang mengalami kerusakan. Adapun tahapannya adalah membongkar mesin

Lebih terperinci

BAB III PERANCANGAN ALAT. Sistem pengendali tension wire ini meliputi tiga perancangan yaitu perancangan

BAB III PERANCANGAN ALAT. Sistem pengendali tension wire ini meliputi tiga perancangan yaitu perancangan 31 BAB III PERANCANGAN ALAT Sistem pengendali tension wire ini meliputi tiga perancangan yaitu perancangan mekanik alat, perancanga elektronik dan perancangan perangkat lunak meliputi program yang digunakan,

Lebih terperinci

BAB 3 REVERSE ENGINEERING GEARBOX

BAB 3 REVERSE ENGINEERING GEARBOX BAB 3 REVERSE ENGINEERING GEARBOX 3.1 Mencari Informasi Teknik Komponen Gearbox Langkah awal dalam proses RE adalah mencari informasi mengenai komponen yang akan di-re, dalam hal ini komponen gearbox traktor

Lebih terperinci

PENDETEKSI OTOMATIS ARAH SUMBER CAHAYA MATAHARI PADA SEL SURYA. Ahmad Sholihuddin Universitas Islam Balitar Blitar Jl. Majapahit no 4 Blitar.

PENDETEKSI OTOMATIS ARAH SUMBER CAHAYA MATAHARI PADA SEL SURYA. Ahmad Sholihuddin Universitas Islam Balitar Blitar Jl. Majapahit no 4 Blitar. PENDETEKSI OTOMATIS ARAH SUMBER CAHAYA MATAHARI PADA SEL SURYA Ahmad Sholihuddin Universitas Islam Balitar Blitar Jl. Majapahit no 4 Blitar Abstrak Penerapan teknologi otomatis dengan menggunakan sistem

Lebih terperinci

Robot Bergerak Penjejak Jalur Bertenaga Sel Surya

Robot Bergerak Penjejak Jalur Bertenaga Sel Surya Robot Bergerak Penjejak Jalur Bertenaga Sel Surya Indar Sugiarto, Dharmawan Anugrah, Hany Ferdinando Jurusan Teknik Elektro, Fakultas Teknologi Industri, Universitas Kristen Petra Email: indi@petra.ac.id,

Lebih terperinci

Deskripsi ALAT DETEKSI LEBAR REL KERETA API SECARA REAL TIME DAN OTOMATIS

Deskripsi ALAT DETEKSI LEBAR REL KERETA API SECARA REAL TIME DAN OTOMATIS 1 Deskripsi ALAT DETEKSI LEBAR REL KERETA API SECARA REAL TIME DAN OTOMATIS Bidang Teknik Invensi Invensi ini berhubungan dengan suatu alat untuk mendeteksi lebar rel kereta api, khususnya alat ukur tersebut

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI 9 BAB III LANDASAN TEORI 3.1 Umum Dengan semakin berkembangnya teknologi saat ini dan perkembangan itu meliputi para pelaku usaha didunia industri untuk membuat produk yang lebih modern dan ramah lingkungan.

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI

BAB 4 IMPLEMENTASI DAN EVALUASI BAB 4 IMPLEMENTASI DAN EVALUASI Bab ini menjelaskan tentang spesifikasi sistem yang digunakan dari hasil penelitian, prosedur penggunaan alat, dan evaluasi sistem dari data yang di dapat. 4.1 Spesifikasi

Lebih terperinci

UJI GESER LANGSUNG (DIRECT SHEAR TEST) ASTM D

UJI GESER LANGSUNG (DIRECT SHEAR TEST) ASTM D 1. LINGKUP Pedoman ini mencakup metode pengukuran kuat geser tanah menggunakan uji geser langsung UU. Interpretasi kuat geser dengan cara ini bersifat langsung sehingga tidak dibahas secara rinci. 2. DEFINISI

Lebih terperinci

kendali pemotongan kertas pada industri rumah tangga, dimana dengan

kendali pemotongan kertas pada industri rumah tangga, dimana dengan BAB III PERANCANGAN SISTEM 3.1 Gambaran Umum Sistem Hardware yang dibangun merupakan mekanisme perancangan sistem kendali pemotongan kertas pada industri rumah tangga, dimana dengan memanfaatkan media

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA Dalam bab ini membahas pengujian dan analisa alat yang telah dirancang dan dibuat. Pengujian alat dimulai dari masing-masing komponen alat sampai dengan pengujian keseluruhan

Lebih terperinci

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA

PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS BRAWIJAYA KEMENTRIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS BRAWIJAYA FAKULTAS TEKNIK JURUSAN TEKNIK ELEKTRO Jalan MT Haryono 67 Telp & Fax. 5566 Malang 655 KODE PJ- PENGESAHAN PUBLIKASI HASIL PENELITIAN SKRIPSI

Lebih terperinci

BAB IV PROSES PEMBUATAN DAN PENGUJIAN

BAB IV PROSES PEMBUATAN DAN PENGUJIAN BAB IV PROSES PEMBUATAN DAN PENGUJIAN 4.1 Proses Pengerjaan Proses pengerjaan adalah suatu tahap untuk membuat komponen-komponen pada mesin pengayak pasir. Komponen komponen yang akan dibuat adalah komponen

Lebih terperinci

BAB V PENGUJIAN SISTEM. sebesar KHz. Frekuensi tersebut merupakan hasil setting nilai resistansi

BAB V PENGUJIAN SISTEM. sebesar KHz. Frekuensi tersebut merupakan hasil setting nilai resistansi BAB V PENGUJIAN SISTEM 5.1 Kalibrasi Sensor Jarak Inframerah Kalibrasi sensor dilakukan berulang-ulang dengan nilai frekuensi osilator sebesar 1.25-1.282 KHz. Frekuensi tersebut merupakan hasil setting

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISA

BAB IV PENGUJIAN DAN ANALISA BAB IV PENGUJIAN DAN ANALISA 4.1 Umum Perancangan robot merupakan aplikasi dari ilmu tentang robotika yang diketahui. Kinerja alat tersebut dapat berjalan sesuai keinginan kita dengan apa yang kita rancang.

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Langkah-langkah Penelitian Langkah-langkah penelitian yang akan dilakukan oleh penulis yang pertama adalah membahas perancangan alat yang meliputi perancangan mekanik

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN BAB IV ANALISIS DAN PEMBAHASAN 4. a Batasan masalah pembuatan tugas akhir ini adalah terbatas pada sistem kontrol bagaimana solar cell selalu menghadap kearah datangnya sinar matahari, analisa dan pembahasan

Lebih terperinci

IV. PERANCANGANDAN PEMBUATAN INSTRUMENTASI PENGUKURAN SLIP RODA DAN KECEPATAN

IV. PERANCANGANDAN PEMBUATAN INSTRUMENTASI PENGUKURAN SLIP RODA DAN KECEPATAN IV. PERANCANGANDAN PEMBUATAN INSTRUMENTASI PENGUKURAN SLIP RODA DAN KECEPATAN 4.1. Kriteria Perancangan Pada prinsipnya suatu proses perancangan terdiri dari beberapa tahap atau proses sehingga menghasilkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Kajian Pustaka Conveyor merupakan suatu alat transportasi yang umumnya dipakai dalam proses industri. Conveyor dapat mengangkut bahan produksi setengah jadi maupun hasil produksi

Lebih terperinci