Simulasi Radius Jarak Pengaruhnya terhadap Kebaikan Model Regresi Logistik Spasial 1. Abstrak

dokumen-dokumen yang mirip
PERBANDINGAN HASIL AKURASI PREDIKSI MODEL REGRESI LOGISTIK SPASIAL UNTUK BERBAGAI MODEL VARIOGRAM. Vinda Pratama G

DIAGNOSTIK SISAAN DENGAN AUTOCORRELOGRAM PADA MODEL REGRESI LOGISTIK. (Studi Kasus pada Pendugaan Desa Miskin di Jawa Barat) 1

PEMBOBOT JARAK DAN TITIK POTONG OPTIMUM DALAM REGRESI LOGISTIK SPASIAL UNTUK PENDUGAAN STATUS KEMISKINAN DESA DI JAWA BARAT POPPY SUPRAPTI

EKSPLORASI SISAAN PADA MODEL REGRESI LOGISTIK SPASIAL STATUS KEMISKINAN DESA DI JAWA BARAT SALAMATUTTANZIL

PENERAPAN REGRESI LOGISTIK ORDINAL MULTILEVEL TERHADAP NILAI AKHIR METODE STATISTIKA FMIPA IPB IIN MAENA

PROSIDING ISSN : Seminar Nasional Statistika 12 November 2011 Vol 2, November 2011

Semakin besar persentase CCR yang dihasilkan, maka tingkat akurasi yang dihasilkan semakin tinggi (Hair et. al., 1995).

ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG) DENGAN METODE FISHER SCORING

Generalized Ordinal Logistic Regression Model pada Pemodelan Data Nilai Pesantren Mahasiswa Baru FMIPA Universitas Islam Bandung Tahun 2017

IDENTIFIKASI FAKTOR-FAKTOR YANG MEMPENGARUHI MAHASISWA PASCASARJANA IPB BERHENTI STUDI MENGGUNAKAN ANALISIS CHAID DAN REGRESI LOGISTIK

Faktor yang Mempengaruhi Terjangkitnya Penyakit Diare pada Balita di Propinsi Nanggroe Aceh Darussalam

Others Institution Credit Job Code

KETEPATAN KLASIFIKASI PEMILIHAN METODE KONTRASEPSI DI KOTA SEMARANG MENGGUNAKAN BOOSTSTRAP AGGREGATTING REGRESI LOGISTIK MULTINOMIAL

PEMODELAN DISPARITAS GENDER DI JAWA TIMUR DENGAN PENDEKATAN MODEL REGRESI PROBIT ORDINAL

Informasi Fisher pada Algoritme Fisher Scoring untuk Estimasi Parameter Model Regresi Logistik Ordinal Terboboti Geografis (RLOTG)

METODE BOOTSTRAP AGGREGATING REGRESI LOGISTIK BINER UNTUK KETEPATAN KLASIFIKASI KESEJAHTERAAN RUMAH TANGGA DI KOTA PATI

PENERAPAN ANALISIS REGRESI LOGISTIK PADA PEMAKAIAN ALAT KONTRASEPSI WANITA

Forum Statistika dan Komputasi, Oktober 2010 p : ISSN :

pendekatan dalam penelitian ini dinilai cukup beralasan.

MASALAH NILAI AWAL ITERASI NEWTON RAPHSON UNTUK ESTIMASI PARAMETER MODEL REGRESI LOGISTIK ORDINAL TERBOBOTI GEOGRAFIS (RLOTG)

(DS.4) MODEL OTOREGRESIF SIMULTAN BAYES UNTUK ANALISIS DATA KEMISKINAN

PEMODELAN KEMISKINAN MENGGUNAKAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION DENGAN FUNGSI PEMBOBOT FIXED KERNEL

S - 13 PEMODELAN SPASIAL KEMISKINAN DENGAN MIXED GEOGRAPHICALLY WEIGHTED POISSON REGRESSION DAN FLEXIBLY SHAPED SPATIAL SCAN STATISTIC

FAKTOR-FAKTOR YANG MEMPENGARUHI JUMLAH PENDUDUK DI JAWA TENGAH MENGGUNAKAN MODEL REGRESI ROBUST DENGAN ESTIMASI LEAST MEDIAN OF SQUARES (LMS)

PENERAPAN REGRESI LOGISTIK ORDINAL SPASIAL UNTUK MENDUGA STATUS KEMISKINAN KABUPATEN DI PULAU JAWA TUTI PURWANINGSIH

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KEPUTUSAN KONSUMEN MEMBELI SUATU PRODUK DENGAN METODE ANALISIS REGRESI LOGISTIK ORDINAL

Model Probit Untuk Ordinal Response

ANALISIS PELUANG STATUS GIZI ANAK DENGAN MENGGUNAKAN METODE REGRESI LOGISTIK MULTINOMIAL BERBASIS KOMPUTER

Masalah Overdispersi dalam Model Regresi Logistik Multinomial

ANALISIS DISKRIMINAN LOGISTIK UNTUK KLASIFIKASI SEKOLAH STANDAR INTERNASIONAL BERDASARKAN STATUS AFILIASI

Sarimah. ABSTRACT

SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE

Sem 5-4. Garis Besar Rencana Pembelajaran (GBRP)

ANALISIS CHAID UNTUK IDENTIFIKASI KETEPATAN WAKTU LULUS BERDASARKAN KARAKTERISTIK MAHASISWA

PEMODELAN REGRESI TIGA LEVEL PADA DATA PENGAMATAN BERULANG. Indahwati, Yenni Angraeni, Tri Wuri Sastuti

Pemodelan Angka Putus Sekolah Tingkat SLTP dan sederajat di Jawa Timur Tahun 2012 dengan Menggunakan Analisis Regresi Logistik Ordinal

(DS.5) MODEL SPASIAL BAYES DALAM PENDUGAAN AREA KECIL DENGAN PEUBAH RESPON BINER

MODEL PARTISIPASI PEMILIH MASYARAKAT KABUPATEN DHAMASRAYA PADA PEMILU 2014 DENGAN MENGGUNAKAN METODE REGRESI LOGISTIK BAYESIAN

BAB V KESIMPULAN DAN SARAN

JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 71-81, Agustus 2001, ISSN :

ANALISIS TINGKAT KEMAJUAN DESA DI KABUPATEN BOGOR DENGAN METODE CHAID DAN REGRESI LOGISTIK ORDINAL DENI SUHANDANI

ABSTRAK METODE REGRESI LOGISTIK UNTUK MENGANALISIS FAKTOR RISIKO PENYAKIT JANTUNG KORONER

ESTIMASI PARAMETER REGRESI LOGISTIK BINER DENGAN METODE PARTIAL LEAST SQUARES

ANALISIS STATUS KREDIT MIKRO DENGAN REGRESI LOGISTIK TJIPTO AJI SUDARSO

SEMINAR TUGAS AKHIR. Oleh : Arief Yudissanta ( ) Pembimbing : Dra. Madu Ratna, M.Si

PENANGANAN MULTIKOLINEARITAS (KEKOLINEARAN GANDA) DENGAN ANALISIS REGRESI KOMPONEN UTAMA. Tatik Widiharih Jurusan Matematika FMIPA UNDIP

(R.2) KAJIAN PREDIKSI KLASIFIKASI OBYEK PADA VARIABEL RESPON BINER

REGRESI LOGISTIK UNTUK PEMODELAN INDEKS PEMBANGUNAN KESEHATAN MASYARAKAT KABUPATEN/KOTA DI PULAU KALIMANTAN

LOGO. Prof. Dra. Susanti Linuwih, M.Stat, PhD Wibawati, S.Si, M.Si

TINJAUAN PUSTAKA. merupakan nilai peubah bebas ke-p pada merupakan nilai koefisien peubah penjelas merupakan galat acak pengamatan ke-i.

PIKA SILVIANTI, M.SI

MODEL REGRESI DATA TAHAN HIDUP TERSENSOR TIPE III BERDISTRIBUSI EKSPONENSIAL. Jln. Prof. H. Soedarto, S.H., Tembalang, Semarang.

HASIL DAN PEMBAHASAN. Analisis data menggunakan software SPSS 11.5 for windows, Microsoft Excel, dan SAS 9.1. Profil Responden

IV. METODE PENELITIAN

Dosen Pembimbing : Dr. Purhadi, M.Sc

MODEL SPASIAL BAYES DALAM PENDUGAAN AREA KECIL DENGAN PEUBAH RESPON BINER

PROSIDING ISSN: M-14 ANALISIS K-MEANS CLUSTER UNTUK PENGELOMPOKAN KABUPATEN /KOTA DI JAWABARAT BERDASARKAN INDIKATOR MASYARAKAT

KAJIAN PERBANDINGAN MODEL CREDIT SCORING TERHADAP DATA NUMERIK DAN DATA KATEGORIK MENGGUNAKAN REGRESI LOGISTIK PERA TINFIKA MUTIARA

PEMODELAN JUMLAH KEMATIAN AKIBAT DIFTERI DI PROVINSI JAWA TIMUR DENGAN REGRESI BINOMIAL NEGATIF DAN ZERO-INFLATED POISSON

FAKTOR-FAKTOR YANG MEMPENGARUHI RUMAH TANGGA NELAYAN BERPERILAKU HIDUP BERSIH DAN SEHAT DENGAN ANALISIS REGRESI LOGISTIK

(Geographically Weighted Binary Logistic Regression with Fixed Bi-Square Weight)

BAB III METODE PENELITIAN

ANALISIS PENDUDUK BEKERJA BERDASARKAN SEKTOR PEKERJAAN DAN JAM KERJA MENGGUNAKAN REGRESI PROBIT BIVARIAT DI PROVINSI ACEH

PENERAPAN SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE (SMOTE) TERHADAP DATA TIDAK SEIMBANG PADA PEMBUATAN MODEL KOMPOSISI JAMU

Algoritme Least Angle Regression untuk Model Geographically Weighted Least Absolute Shrinkage and Selection Operator

ANALISIS REGRESI LOGISTIK UNTUK MENENTUKAN FAKTOR-FAKTOR KETERTINGGALAN DESA DI KABUPATEN BOGOR

PERBANDINGAN METODE KLASIFIKASI REGRESI LOGISTIK BINER DAN NAIVE BAYES PADA STATUS PENGGUNA KB DI KOTA TEGAL TAHUN 2014

HASIL DAN PEMBAHASAN. Deskripsi Data

PERBANDINGAN ANTARA MODEL LINIER DENGAN FAKTOR TETAP (GLM) DENGAN MODEL LINIER DENGAN FAKTOR TETAP DAN ACAK (GLMM) WULAN METAFURRY

ANALISIS GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) DENGAN PEMBOBOT KERNEL GAUSSIAN UNTUK DATA KEMISKINAN. Rita Rahmawati 1, Anik Djuraidah 2.

STATISTIKA INDUSTRI 2 TIN 4004

PENERAPAN HURDLE NEGATIVE BINOMIAL PADA DATA TERSENSOR

BAB III MODEL GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION SEMIPARAMETRIC (GWLRS)

BAB 2 LANDASAN TEORI

ESTIMASI EROR STANDAR PARAMETER REGRESI LOGISTIK MENGGUNAKAN METODE BOOTSTRAP

EKSPLORASI DAN KLASIFIKASI DESA TERTINGGAL DI INDONESIA MENGGUNAKAN PENDEKATAN DATA MINING

Jurnal Gradien Vol 8 No 2 Juli 2012: Yuli Andriani, Uxti Mezulianti, dan Herlina Hanum

RMSE = dimana : y = nilai observasi ke-i V PEMBAHASAN. = Jenis kelamin responden (GENDER) X. = Pendidikan responden (EDU) X

GENERALIZED LINEAR MODELS (GLM) UNTUK DATA ASURANSI DALAM MENENTUKAN HARGA PREMI

PEMAKAIAN VARIABEL INDIKATOR DALAM PEMODELAN. Mike Susmikanti *

TINJAUAN PUSTAKA Pemilihan Peubah Gizi Buruk

Klasifikasi Kecamatan Berdasarkan Nilai Akhir SMA/MA di Kabupaten Aceh Selatan Menggunakan Analisis Diskriminan

ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI PENERIMAAN PESERTA DIDIK SMA NEGERI 2 SEMARANG MENGGUNAKAN METODE REGRESI LOGISTIK ORDINAL

MODEL REGRESI LOGISTIK BINER UNTUK MENENTUKAN FAKTOR YANG BERPENGARUH TERHADAP ANAK PUTUS SEKOLAH DI SULAWESI TENGAH

PENERAPAN REGRESI ZERO-INFLATED NEGATIVE BINOMIAL (ZINB) UNTUK PENDUGAAN KEMATIAN ANAK BALITA

STUDI KOMPARATIF METODE KUADRAT TERKECIL DENGAN METODE REGRESI ROBUST PEMBOBOT WELSCH PADA DATA YANG MENGANDUNG PENCILAN

Penerapan Hurdle Negative Binomial pada Data Tersensor

BAB III METODOLOGI PENELITIAN

(R.1) KAJIAN MODEL GEOGRAPHICALLY WEIGHTED POISSON REGRESSION UNTUK MASALAH DATA SPASIAL DISKRIT

VIII. DAFTAR PUSTAKA

BAB 2 TINJAUAN TEORITIS

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman Online di:

Kelas 2. Kelas 1 Mahasiswa. Mahasiswa. Gambar 1 Struktur data kelompok dalam pengukuran berulang pada data Metode Statistika

PENERAPAN DOMINANCE ANALYSIS

Statistik Deskriptif. Perumahan. Seminar Hasil Tugas Akhir

Hary Mega Gancar Prakosa Dosen Pembimbing Dr. Suhartono, S.Si, M.Sc Co Pembimbing Dr. Bambang Wijanarko Otok, S.Si, M.

PENERAPAN MODEL SPASIAL DURBIN PADA ANGKA PARTISIPASI MURNI JENJANG SMA SEDERAJAT DI PROVINSI JAWA TENGAH

(α = 0.01). Jika D i > , maka x i atau pengamatan ke-i dianggap pencilan (i = 1, 2,..., 100). HASIL DAN PEMBAHASAN

PEMODELAN RISIKO PENYAKIT PNEUMONIA PADA BALITA DI PROVINSI JAWA TIMUR DENGAN PENDEKATAN GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman Online di:

Transkripsi:

Simulasi Radius Jarak Pengaruhnya terhadap Kebaikan Model Regresi Logistik Spasial 1 Utami Dyah Syafitri 2, Agus M Sholeh 2, Poppy Suprapti 3 Abstrak Pemodelan regresi logistik dengan basis ruang spasial perlu mengakomodir pengaruh spasial tersebut. Salah satu pendekatan untuk mengakomodir pengaruh spasial tersebut dengan pendekatan variogram. Pembobot spasial yang diberikan tergantung jarak antar desanya. Pada penelitian ini akan dilakukan simulasi radius jarak yang digunakan dalam pembobotan untuk kebaikan hasil pendugaan dengan regresi logistik spasial. Studi kasus yang diambil dalam penelitian ini adalah pendugaan status kemiskinan desa di Jawa Barat. Hasil simulasi menunjukkan bahwa jarak yang digunakan dalam pembobot spasial mempengaruhi hasil pendugaan yang dihasilkan. Berdasarkan nilai c-statistic dan correct clasification rate-nya, bahwa jarak radius yang semakin dekat akan menghasilkan prediksi yang lebih baik. Kata kunci : model regresi logistik spasial, variogram, simulasi PENDAHULUAN Latar Belakang Pemodelan regresi logistik dengan basis ruang (spasial) perlu mengakomodir pengaruh spasial tersebut. Beberapa pendekatan yang dapat digunakan dalam mengakomodir pengaruh spasial antara lain dengan pendekatan generalized linear mixed model, variogram, serta matriks kontiguity. Pratama (2008) melakukan pemodelan regresi logistik spasial terhadap status kemiskinan desa di Jawa Barat. Pembobot spasial yang digunakan menggunakan pendekatan fungsi-fungsi variogram. Pembobot spasial dilakukan pada jarak desa yang ber-radius 27,5 km. Hasil yag diperoleh menunjukkan bahwa regresi logistik spasial dengan pendekatan variogram menunjukkan tingkat akurasi prediksi sedikit lebih baik dibandingkan dengan regresi logistik klasik. Namun hasil yang didapatkan belum cukup memuaskan. Salah satu faktor yang ditenggarai mampu memperbaiki model adalah definisi jarak desa yang digunakan. Sehingga dalam penelitian ini dilakukan simulasi berbagai kemungkinan jarak yang digunakan untuk memperbaiki pendugaan model regresi logistik spasial. Tujuan Penelitian ini bertujuan untuk mengetahui jarak antar desa yang menghasilkan prediksi yang lebih baik dari Pratama (2008) dalam menduga status kemiskinan desa di Jawa Barat. Kerangka Pikir Penelitian Andaikan sebuah bidang S tersekat-sekat n buah sub bidang (lokasi) yang saling lepas, yaitu s 1, s 2,..., s n dengan... S si I sj = 1 2 n sus U Us = dan. Setiap subbidang si memiliki sentroid pada titik c i. Nilai pengukuran Y, X 1, X 2, X p di masing-masing sub-bidang adalah y i, x 1i, x 2i, x pi. Jika Y memiliki hubungan spasial, dan dipengaruhi oleh X 1, X 2, X p maka model yang bisa dibentuk adalah : yi = xi β + zi y β* + εi...(1) dengan xi = (1x1i, 1x2i,, 1xpi) merupakan vektor p x 1 yang berisi nilai-nilai pengamatan peubah X 1, X 2, X p pada sub-bidang s i dan y = (y 1, y 2 y n ) adalah nilai-nilai pengamatan peubah Y dari seluruh lokasi. Vektor z berukuran n x 1 menyatakan bobot spasial antar sub-bidang terhadap nilai di sub-bidang lainnya. Menggunakan notasi matriks, model (1) dapat dituliskan sebagai y = X β + Zy β*+ ε...(2) pada model (2) terdapat Z yang merupakan sebuah matriks pembobot spasial. Matriks pembobot spasial diharapkan dapat menggambarkan pengaruh 1 Diseminarkan pada Seminar Nasional Matematika dan Pendidikan Matematika di Univeristas Negeri Yogyakarta, Jumat 28 November 2008, 2 Staf Pengajar Departemen Statistika FMIPAIPB 3 Mahasiswa Departemen Statistika FMIPA IPB 45

antar desa, dimana desa yang berdekatan memberikan pengaruh yang lebih besar dibandingkan dengan desa yang berjauhan. Variogram yang akan digunakan untuk menghitung matriks pembobot spasial menggambarkan keragaman antar daerah berdasarkan jaraknya. Semakin jauh jarak antar daerah maka keragaman yang terbentuk akan semakin besar menuju kekonvergenan. Pada jarak tertentu maka keragaman yang terbentuk mulai menuju titik kekonvergenan. Jika titik telah konvergen maka pengaruh spasialnya juga semakin berkurang. Sehingga batasan jarak yang digunakan adalah di sekitar titik mulai kekonvergenan (sill). Berkaitan dengan pembobotan, desa desa yang mempunyai jarak yang dekat diberikan pembobot yang besar. Sebaliknya desa-desa yang berjarak jauh diberi pembobot yang kecil. Oleh karena itu, dilakukan proses pembalikan matriks variogram kemudian hasil pembalikan matriks variogram dijadikan matriks pembobot spasial. Matriks pembobot spasial (Z) dikalikan dengan vektor y yang kemudian dianggap sebagai sebuah peubah penjelas baru (w) dan akan digunakan dalam analisis regresi logistik. TINJAUAN PUSTAKA Regresi Logistik Spasial Hosmer dan Lemeshow (1989) menjelaskan bahwa yang membedakan model regresi logistik dan model regresi linear adalah peubah hasil pada regresi logistik berskala biner atau dikhotom, sedangkan pada regresi linear peubah hasilnya berskala numerik. Model regresi logistik dengan E(Y=1 x) Sebagai π ( x) adalah : e g( x) π ( x) = 1 + e g ( x) dalam regresi logistik diperlukan fungsi penghubung logit, transformasi logit sebagai fungsi dari π ( x) adalah π ( x) gx ( ) = ln = β + β... 0 1 1 p 1 π ( x) X + + β px Preisler et al. (1995) dalam Fernandez (2003) menyebutkan bahwa pendekatan dengan memasukkan hubungan spasial ke dalam model terdapat dua pendekatan yaitu memasukkan lokasi ke dalam model dan memasukkan suku autologistik. Augustin et al. (1996) dalam Fernadez (2003) menggunakan model dalam bentuk : log π ( x) y = + βψ 1 π ( x ) ψ = = i k w $ ij y j 1 wij i model dari ψ merupakan bentuk dari autokovarian dan merupakan rataan terboboti dari jumlah kejadian dalam suatu lokasi ke-i yang terdiri dari k tetangganya. Pembobot dari lokasi ke-j adalah wij = 1/hij dimana hij adalah jarak euclidean antara lokasi ke-i dan ke-j. Serta $ y adalah dugaan dari ada/tidaknya suatu kejadian. Variogram Analisis variogram melakukan penghitungan pada sejumlah lokasi dan melihat hubungan antar observasi pada berbagai lokasi. Variogram menghitung hubungan antara perbedaan pengukuran berpasangan dan jarak dari poin-poin yang bersesuaian satu sama lain. Variogram merupakan keragaman spasial antar lokasi dengan saling ketergantungan satu sama lain dalam ruang berdimensi m. Variogram merupakan fungsi spasial terbaik yang diketahui (Ashraf et al., 1997). Persamaan umum untuk contoh variogram adalah (Matheron 1962, dalam Cressie 1993): 1 2 γ ( h) = ( Z( ) Z( )) 2 ; i, j ( ) i j Nh ( ) x x N h N( h) dengan N(h) adalah banyaknya pasangan lokasi (contoh) yang berjarak h. Variogram akan memenuhi beberapa asumsi. Misalkan terdapat gugusan nilai z(x i ) pada lokasi x i, i=1,2,3,..., n dalam ruang berdimensi m, maka asumsi yang harus terpenuhi adalah (Cressie, 1993): E Z( x+ h) Z( x) = 0 1. ( ) 2. ( ) Var Z( x + h) Z( x) = 2 γ ( h) dengan h adalah jarak antara dua lokasi yang terpisah. Sifat dari variogram, adalah: 1. Monoton tidak turun 2. Bernilai positif Semnas Matematika dan Pendidikan Matematika 2008 1 46

Model Power Hubungan antara variogram dengan jarak untuk model power dibentuk dalam persamaan : γ ( h) = c + p 0 h α, dengan 0 < α < 2 dengan : c 0 = intersep p = kemiringan kurva h = jarak antar pengamatan Correct Classification Rate (CCR) Hosmer dan Lemeshow (1989) menjelaskan bahwa correct classification rate adalah persentasi kebenaran (kesesuaian) nilai pengamatan dengan dugaannya. banyaknya dugaan yang benar CCR = x 100% banyaknya pengamatan BAHAN DAN METODOLOGI Bahan Data yang digunakan dalam penelitian ini sama denga Pratama (2008) menggunakan data Potensi Desa (PODES) tahun 2006. Wilayah yang digunakan hanya sebagian dari Jawa Barat (Tabel 1). Tabel 1. Daftar nama kota dan kabupaten yang digunakan Kode Nama Kabupaten Kabupaten Desa 3201000000 Kab Bogor 415 3202000000 Kab Sukabumi 340 3203000000 Kab Cianjur 344 3204000000 Kab Bandung 436 3213000000 Kab Subang 248 3214000000 Kab Purwakarta 190 3215000000 Kab Karawang 304 3216000000 Kab Bekasi 179 3271000000 Kota Bogor 63 3272000000 Kota Sukabumi 33 3273000000 Kota Bandung 139 3275000000 Kota Bekasi 43 3277000000 Kota Cimahi 15 Total 2749 Baik peubah penjelas maupun peubah respon yang digunakan dalam penelitian ini mengacu kepada peubah yang digunakan oleh Pratama (2008). Peubah-peubah penjelas yang digunakan selengkapnya dapat dilihat pada Tabel 2. Peubah respon yang digunakan adalah status kemiskinan desa. status kemiskinan desa ditentukan berdasarkan presentase keluarga miskin pada masing-masing desa. Apabila persentase keluarga miskin suatu desa lebih besar dari persentase keluarga miskin secara keseluruhan (36%) maka desa tersebut dikategorikan sebagai desa miskin. Sebaliknya dikategorikan sebagai desa tidak miskin. Sedangkan untuk memperoleh informasi hubungan spasial dibutuhkan data mengenai lokasi dari masing-masing desa (lintang dan bujur desa). Tabel 2. Peubah penjelas yang digunakan Peubah Jenis Keterangan Ada/Tidak penduduk desa yang Bekerja Sebagai TKI (X1) Persentase Keluarga Yang menerima kartu sehat (X2) Persentase luas sawah (X3) Persentase Rumah tangga Yang menggunakan listrik (X4) Ada/Tidak puskesmas di Daerah tersebut (X5) Kategorik Kategorik 1 = ada 0 = tidak ada penerima keluarga Luas lahan sawah Luas desa/kelurahan pemakai keluarga 1 = ada 0 = tidak ada Semnas Matematika dan Pendidikan Matematika 2008 1 47

Metodologi Alur penelitian yang dilakukan adalah: 1. Membuat matriks jarak euklid antar desa berdasarkan lintang dan bujur desa. 2. Dari fungsi variogram model power yang dilakukan oleh Pratama (2008) dan matriks jarak dibuat matriks peragam spasial. Pada penelitian jarak yang digunakan pada radius 7.5 km, 10 km, 15 km, 20km, 25 km, 27.5 km, dan 30 km. 3. Membalikan matriks peragam spasial yang akan dijadikan matriks pembobot spasial (Z) 4. Membuat peubah penjelas baru (w) yang telah diberi pengaruh spasial dengan mengalikan Z dan y 5. Melakukan pendugaan dengan menggunakan regresi logistik yang telah ditambahkan peubah penjelasnya. 6. Membandingkan hasil pendugaan regresi logistik menggunakan matriks pembobot berdasarkan simulasi radius jarak variogram yang ditentukan. Penentuan radius jarak variogram terbaik dapat dilihat dari nilai correct classification rate dan c-statistic. Perangkat lunak yang digunakan dalam penelitian ini adalah SAS ver 9.1 dan Microsoft Office Excel 2003. HASIL DAN PEMBAHASAN Dugaan fungsi variogram model power yang dilakukan Pratama (2008) adalah $ 0.3 γ ( h) = 0.1753h + 0.0802. Model tersebut mempunyai koefisien determinasi sebesar 73.21%. Dibandingkan dengan model variogram lainnya model power menghasilkan prediksi yang kurang bagus dibandingkan dengan model variogram lainnya (Gambar 1). Gambar 1. Plot dugaan dari masing-masing model variogram Namun dari segi pemodelan regresi logistik spasial model ini lebih bagus. Maka dalam penelitian ini selanjutnya akan menggunakan model power ini. Faktor-faktor yang mempengaruhi status kemiskinan desa dengan radius jarak lebih besar atau sama dengan 20 km pada taraf alfa 10% adalah ada/tidak penduduk yang bekerja sebagai TKI, jarak dari desa ke ibukota kabupaten/kota, presentase keluarga yang menerima kartu sehat, persentase luas sawah, persentase keluarga yang memakai listrik, ada/tidak puskesmas di desa tersebut, dan hubungan spasial. Sedangkan untuk radius jarak kurang dari 20 km dengan taraf alfa 10%, faktor-faktor yang mempengaruhi status kemiskinan desa adalah jarak dari desa ke ibukota kabupaten/kota, presentase keluarga yang menerima kartu sehat, persentase luas sawah, ada/tidak puskesmas di desa tersebut, dan hubungan spasial. Dari berbagai simulasi jarak yang dilakukan terlihat bahwa nilai correct classification rate dan c-statistic semakin menurun seiring dengan bertambahnya radius jarak yang digunakan (Tabel 3). Hal tersebut menunjukkan bahwa daerah yang berdekatan akan memberikan pengaruh spatial yang cukup signifikan terhadap kebaikan pendugaan model. Semnas Matematika dan Pendidikan Matematika 2008 1 48

Tabel 3. Nilai dugaan koefisien regresi logistik dengan berbagai simulasi jarak Peubah Dugaan koefisien 7.5 km 10 km 15 km 20 km 25 km 27.5 km 30 km Intercept 2.9321 2.846 2.7393 2.6583 2.6988 2.7299 2.6913 Ada/tidak penduduk yang bekerja sebagai TKI -0.1368 * -0.1436 * -0.1391 * -0.1835-0.2186-0.2305-0.2428 Jarak dari desa ke ibukota kabupaten/kota -0.018-0.0179-0.0172-0.0161-0.0154-0.0157-0.0159 Persentase keluarga yang menerima kartu sehat -2.4536-2.4424-2.5127-2.5456-2.6021-2.6364-2.7053 Persentase luas sawah -0.8902-0.9264-1.0475-1.1434-1.2346-1.271-1.3047 Persentase keluarga yang memakai listrik 0.0382 * 0.1306 0.2593 * 0.3806 0.4423 0.4702 0.4819 Ada/tidak puskesmas di desa tersebut 0.2283 0.2438 0.2567 0.2636 0.2563 0.252 0.246 X spasial -4.218-4.1598-4.0465-3.9481-3.9719-4.0039-3.871 C-statistic 80.10% 78.40% 76.50% 75% 74.30% 74.00% 73.60% Correct classification rate 71.73% 70.46% 69.33% 67.44% 67.00% 66.89% 66.42% * menunjukkan peubah tidak bersifat nyata pada alfa 10% KESIMPULAN Pembobot spasial yang digunakan dalam model regresi logistik spasial tergantung terhadap radius jarak yang digunakan. Apabila pembobotan dilakukan dalam radius jarak yang lebih dekat maka akan dihasilkan hasil prediksi yang lebih baik. DAFTAR PUSTAKA Ashraf, M., Jim C. L., K. G. Hubbard. 1997. Application of Geostatistics to Evaluate Partial Weather Station Network. J. Agricultural and Forest Meteorology. 84:255-271. Bohling, Geoff. 2005. Introduction to Geostatistics and Variogram Analysis. Kansas Geological Survey 864-2093. Cressie, NAC. 1993. Statistics for Spatial Data. Canada: John Wiley and Sons, Inc. 11 Frei, Allan. 2005. Notes On Spatial Autoccorelation and Regrresion. Hunter College. Hosmer DW, Lemeshow S. 1989. Applied Logistic Regression. New York: J. Wiley. Pratama, Vinda. 2008. Perbandingan Hasil Akurasi Prediksi Model Regresi Spasial untuk Berbagai Model Variogram. Skripsi. Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor. Searle, S. R. 1971. Linear Models. John Wiley & Sons, Inc: New York, hal 1-7. Xie, Chenglin, Bo Huang, Christophe Claramunt and Magesh Chandramouli. 2005. Spatial Logistic Regression and GIS to Model Rural-Urban Land Conversion. Semnas Matematika dan Pendidikan Matematika 2008 1 49