LAPORAN PRAKTIKUM KIMIA FISIK VOLUM MOLAL PARSIAL. Nama : Ardian Lubis NIM : Kelompok : 6 Asisten : Yuda Anggi

dokumen-dokumen yang mirip
LAPORAN PRAKTIKUM KIMIA FISIK I ENTALPI PELARUTAN. Nama : Muhammad Ilham Fahruzi NIM : Kelompok : 4/B Asisten : Winda Intan Novialia

Larutan dan Konsentrasi

PERCOBAAN I PEMBUATAN DAN PENENTUAN KONSENTRASI LARUTAN

BAB 5 KONSEP LARUTAN 1. KOMPOSISI LARUTAN 2. SIFAT-SIFAT ZAT TERLARUT 3. KESETIMBANGAN LARUTAN 4. SIFAT KOLIGATIF LARUTAN

Sulistyani M.Si

PERCOBAAN I PENENTUAN BERAT MOLEKUL BERDASARKAN PENGUKURAN MASSA JENIS GAS

SIFAT KOLIGATIF LARUTAN

PERCOBAAN VII PEMBUATAN KALIUM NITRAT

HUKUM RAOULT. campuran

LAPORAN LENGKAP PRAKTIKUM ANORGANIK PERCOBAAN 1 TOPIK : SINTESIS DAN KARAKTERISTIK NATRIUM TIOSULFAT

LAPORAN PRAKTIKUM KIMIA ANORGANIK 1 PEMISAHAN KOMPONEN DARI CAMPURAN 11 NOVEMBER 2014 SEPTIA MARISA ABSTRAK

SIFAT KOLIGATIF LARUTAN

LAPORAN PRAKTIKUM KIMIA DASAR 1

BAB 1 SIFAT KOLIGATIF LARUTAN. STANDART KOMPETENSI Mendeskripsikan sifat-sifat larutan, metode pengukuran serta terapannya.

LAPORAN PRAKTIKUM KIMIA DASAR I

LAPORAN PRAKTIKUM STANDARISASI LARUTAN NaOH

I. Judul : Membandingkan Kenaikan Titik Didih Larutan Elektrolit dan Non-Elektrolit.

BAB 1 PENDAHULUAN 1.1 Latar Belakang

Hubungan koefisien dalam persamaan reaksi dengan hitungan

TITIK DIDIH LARUTAN. Disusun Oleh. Kelompok B-4. Zulmijar

Soal dan Pembahasan. Soal dan Pembahasan Fraksi Mol. 1.Tentukan kemolalan larutan dari 0,01 mol NaOH dalam 200 gram air!

Stoikiometri. Berasal dari kata Stoicheion (partikel) dan metron (pengukuran). Cara perhitungan dan pengukuran zat serta campuran kimia.

BAB II TINJAUAN PUSTAKA

PENENTUAN BERAT MOLEKUL MELALUI METODE PENURUNAN TITIK BEKU (CRYOSCOPIC)

A. Pengertian larutan B. Jenis-jenis larutan C. Sifat larutan

Pilihan Ganda Soal dan Jawaban Sifat Koligatif Larutan 20 butir. 5 uraian Soal dan Jawaban Sifat Koligatif Larutan.

2. Eveline Fauziah. 3. Fadil Hardian. 4. Fajar Nugraha

BAB I PENDAHULUAN A. KENAIKAN TITIK DIDIH DAN PENURUNAN TITIK BEKU

KIMIA FISIKA I. Disusun oleh : Dr. Isana SYL, M.Si

Sifat Koligatif Larutan

LARUTAN. Zat terlarut merupakan komponen yang jumlahnya sedikit, sedangkan pelarut adalah komponen yang terdapat dalam jumlah banyak.

Sifat-sifat Fisis Larutan

STOIKIOMETRI LARUTAN. Andian Ari Anggraeni, M.Sc

I Sifat Koligatif Larutan

MODUL I Pembuatan Larutan

LAPORAN LENGKAP PRAKTIKUM KIMIA ANORGANIK PERCOBAAN 3 PENENTUAN BILANGAN KOORDINAI KOMPLEKS TEMBAGA (II)

HASIL KALI KELARUTAN (Ksp)

30 Soal Pilihan Berganda Olimpiade Kimia Tingkat Kabupaten/Kota 2011 Alternatif jawaban berwarna merah adalah kunci jawabannya.

LAPORAN PENENTUAN BERAT MOLEKUL SENYAWA BERDASARKAN PENGUKURAN MASSA JENIS GAS

REAKSI SAPONIFIKASI PADA LEMAK

Sifat Dasar Larutan Kelarutan Pengaruh Jenis Zat pada Kelarutan

LAPORAN PRAKTIKUM KIMIA DASAR I STOIKIOMETRI REAKSI

Jason Mandela's Lab Report

LAPORAN PRAKTIKUM KIMIA FISIKA KELARUTAN SEBAGAI FUNGSI SUHU

Laporan Praktikum Kimia

Metodologi Penelitian

Stoikhiometri : dan metron = mengukur. Membahas tentang : senyawa) senyawa (stoikhiometri. (stoikhiometri. reaksi)

Bab VIII Reaksi Penetralan dan Titrasi Asam-Basa

LAPORAN PRAKTIKUM SINTESIS KIMIA ORGANIK

Rima Puspa Aryani : A1C311010

BAB III HASIL PENELITIAN

PERCOBAAN VII PENENTUAN DAYA HANTAR SUATU SENYAWA

LAPORAN PRAKTIKUM KIMIA FISIKA II ENERGI KESETIMBANGAN FASA Sabtu, 19 April 2014

JURNAL PRAKTIKUM KIMIA DASAR II TERMOKIMIA. Rabu, 2-April-2014 DISUSUN OLEH: KELOMPOK 1:

LAPORAN PRAKTIKUM KIMIA FISIKA II PERCOBAAN I KESETIMBANGAN KIMIA DI DALAM LARUTAN PROGRAM STUDI S-1 KIMIA

PRAKTIKUM KIMIA DASAR I

Kumpulan Laporan Praktikum Kimia Fisika PERCOBAAN VI

KIMIA TERAPAN LARUTAN

Titik Leleh dan Titik Didih

KELARUTAN SEBAGAI FUNGSI TEMPERATUR

LAPORAN PRAKTIKUM KIMIA FISIKA PENENTUAN BERAT MOLEKUL BERDASARKAN PENGUKURAN MASSA JENIS GAS

SIFAT KOLIGATIF LARUTAN

Laporan Praktikum Kimia Laju Reaksi

LAPORAN PRAKTIKUM KIMIA MENENTUKAN PERUBAHAN ENTALPI DENGAN KALORIMETER

Fraksi mol adalah perbandingan antara jumiah mol suatu komponen dengan jumlah mol seluruh komponen yang terdapat dalam larutan.

Percobaan 6 Penentuan kadar Nikel (II) klorida dengan metoda gravimetri dan volumetri

LAPORAN PRAKTIKUM KIMIA FISIK I PERCOBAAN IX ENTALPI DAN ENTROPI PELEBURAN

STOIKIOMETRI. Oleh. Sitti Rahmawati S.Pd.

LAPORAN PRAKTIKUM KIMIA DASAR II PERCOBAAN II REAKSI ASAM BASA : OSU OHEOPUTRA. H STAMBUK : A1C : PENDIDIKAN MIPA

STOIKIOMETRI. Massa molekul relatif suatu zat sama dengan jumlah massa atom relatif atomatom penyusun molekul zat tersebut.

LAPORAN PRAKTIKUM KIMIA FISIK PERCOBAAN H-3 SOL LIOFIL

Laporan Praktikum Kimia Fisika. PENENTUAN PERUBAHAN ENTALPI ( Hc) DENGAN MENGGUNAKAN KALORIMETER BOM

PERCOBAAN POTENSIOMETRI (PENGUKURAN ph)

Tetapan Ionisasi Asam 03 Desember 2014 Wiji Dwi Utami Abstrak

LAPORAN LENGKAP PRAKTIKUM KIMIA ANORGANIK PERCOBAAN 2 SINTESIS DAN KARAKTERISASI CIS DAN TRANS KALIUM DIOKSALATODIAKUOKROMAT ( III )

LAPORAN PRAKTIKUM KIMIA FISIKA PENENTUAN BERAT MOLEKUL BERDASARKAN PENGUKURAN MASSA JENIS GAS

Sistem tiga komponen

PENENTUAN KADAR KARBONAT DAN HIDROGEN KARBONAT MELALUI TITRASI ASAM BASA

Bab VI Larutan Elektrolit dan Nonelektrolit

Kelarutan & Gejala Distribusi

PERCOBAAN I PENENTUAN KADAR KARBONAT DAN HIDROGEN KARBONAT MELALUI TITRASI ASAM BASA

1.3 Tujuan Percobaan Tujuan pada percobaan ini adalah mengetahui proses pembuatan amil asetat dari reaksi antara alkohol primer dan asam karboksilat

Soal ini terdiri dari 10 soal Essay (153 poin)

LEMBARAN SOAL 5. Pilih satu jawaban yang benar!

LOGO. Stoikiometri. Tim Dosen Pengampu MK. Kimia Dasar

KIMIA DASAR JOKO SEDYONO TEKNIK MESIN UMS 2015

LAPORAN PRAKTIKUM KIMIA FISIK

Metodologi Penelitian

LAPORAN PRAKTIKUM SATUAN PROSES 1 PEMBUATAN GAS HIDROGEN (H 2 ) DENGAN BAHAN DASAR AIR SECARA ELEKTROLISIS

LAPORAN PRAKTIKUM KIMIA ANALITIK 2 PENENTUAN KADAR KLORIDA. Senin, 21 April Disusun Oleh: MA WAH SHOFWAH KELOMPOK 1

Hasil Penelitian dan Pembahasan

ANION TIOSULFAT (S 2 O 3

PEMBUANTAN NIKEL DMG KIMIA ANORGANIK II KAMIS, 10 APRIL 2014

Revisi BAB I PENDAHULUAN

C. ( Rata-rata titik lelehnya lebih rendah 5 o C dan range temperaturnya berubah menjadi 4 o C dari 0,3 o C )

Bab IV Hasil dan Pembahasan

LAPORAN PRAKTIKUM KIMIA FISIKA PENENTUAN BERAT MOLEKUL BERDASARKAN PENGUKURAN MASSA JENIS GAS. Oleh:

LAPORAN PRAKTIKUM KIMIA ANORGANIK PERCOBAAN III (PEMURNIAN BAHAN MELALUI REKRISTALISASI)

TITRASI KOMPLEKSOMETRI


Transkripsi:

LAPORAN PRAKTIKUM KIMIA FISIK VOLUM MOLAL PARSIAL Nama : Ardian Lubis NIM : 121810301028 Kelompok : 6 Asisten : Yuda Anggi LABORATORIUM KIMIA FISIK JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS JEMBER 2014

BAB 1. PENDAHULUAN 1.1 Latar Belakang Molal atau molalitas didefinisikan sebagai jumlah mol zat terlarut per kg pelarut, berarti merupakan perbandingan antara jumlah mol zat terlarut dengan massa pelarut dalam kilogram sementara. Volum molar parsial adalah kontribusi pada volum, dari satu komponen dalam sampel terhadap volum total. Volum molar parsial komponen suatu campuran berubah-ubah tergantung pada komposisi, karena lingkungan setiap jenis molekul berubah jika komposisinya berubah dari A murni ke B murni. Perubahan lingkungan molekuler dan perubahan gaya-gaya yang bekerja antara molekul inilah yang menghasilkan variasi sifat termodinamika campuran jika komposisinya berubah (Dogra, 1990). Volume molal parsial suatu larutan adalah penambahan volume yang terjadi bila satu mol komponen I ditambahkan pada larutan. Percobaan volume molal parsial bertujuan untuk menentukan volume molal parsial larutan NaCl dalam berbagai konsentrasi yang dilakukan dengan cara mengukur berat jenis larutan NaCl menggunakan piknometer (Brady, 1990). Berdasarkan teori di atas, untuk mengetahui metode-metode penentuan volume molal parsial yang merupakan sifat dari termodinamika molal parsial utama maka percobaan ini dilakukan untuk mempermudah pemahaman teori yang ada serta menganalisis sekiranya tidak terdapat korelasi antara hasil yang diperoleh di laboratorium dengan apa yang ada dalam teori (Prahayu, 2013). 1.2 Tujuan larutan. Tujuan dari percobaan ini adalah menentukan volume molal parsial komponen dalam

BAB 2. TINJAUAN PUSTAKA 2.1 Material Safety Data Sheet 2.1.1 Natrium Klorida Natrium klorida merupakan suatu senyawa kimia dengan rumus kimia NaCl. Sifat fisik dan kimia yang dimiliki oleh NaCl yaitu berbentuk bubuk kristal padat yang sedikit berbau, berasa garam, dengan warna putih. Bahan ini memiliki berat molekul 58,44 g/mol, titik didihnya 1413 C dan titik lelehnya 801 C. NaCl ini mudah larut dalam air dingin, air panas. Larut dalam gliserol, dan amonia. Sangat sedikit larut dalam alkohol dan tidak larut dalam asam klorida. Kasus kontak dengan NaCl, segera basuh kulit dengan banyak air sedikitnya selama 15 menit dengan mengeluarkan pakaian yang terkontaminasi dan sepatu. Tutupi kulit yang teriritasi dengan yg sesuatu melunakkan. Air dingin mungkin dapat digunakan dan pakaian dicuci sebelum digunakan kembali benar-benar bersih sepatu sebelum digunakan kembali. Dapatkan perawatan medis dengan segera jika terjadi kontak yang serius (Sciencelab, 2014). 2.1.2 Aquades Aquades disebut juga Aqua Purificata (air murni) H 2 O dengan. Air murni adalah air yang dimurnikan dari destilasi. Satu molekul air memiliki dua hidrogen atom kovalen terikat untuk satu oksigen. Aquades merupakan cairan yang jernih, tidak berwarna dan tidak berbau. Aquades juga memiliki berat molekul sebesar 18,0 g/mol dan PH antara 5-7. Rumus kimia dari aquades yaitu H 2 O. Aquades ini memiliki allotrop berupa es dan uap. Senyawa ini tidak berwarna, tidak berbau dan tidak meiliki rasa. Aquades merupakan elektrolit lemah. Air dihasilkan dari pengoksidasian hidrogen dan banyak digunakan sebagai bahan pelarut bagi kebanyakan senyawa (Sarjoni, 2003). 2.2 Volume Molal Parsial Volum molar parsial adalah kontribusi pada volum, dari satu komponen dalam sampe terhadap volum total. Volum molar parsial komponen suatu campuran berubah-ubah tergantung pada komposisi, karena lingkungan setiap jenis molekul berubah jika komposisinya berubah dari a murni ke b murni. Perubahan lingkungan molekuler dan perubahan gaya-gaya yang bekerja antara molekul inilah yang menghsilkan variasi sifat termodinamika campuran jika komposisinya berubah (Atkins, 1994). Molal atau molalitas didefinisikan sebagai jumlah mol zat terlarut per kg pelarut. Berarti merupakan perbandingan antara jumlah mol zat terlarut dengan massa pelarut dalam kilogram. Jadi, jika ada larutan 1,00 molal maka larutan tersebut mengandung 1,00 mol zat telarut dalam 1,00 kg pelarut. Secara matematik, volume molal parsial didefinisikan sebagai

Dimana adalah volume molal parsial dari komponen ke-i. Secara fisik berarti kenaikan dalam besaran termodinamik V yang diamati bila satu mol senyawa i ditambahkan ke suatu sistem yang besar, sehingga komposisinya tetap konstan. Pada temperatur dan tekanan konstan, persamaan di atas dapat ditulis sebagai dan dapat diintegrasikan menjadi. Arti fisik dari integrasi ini adalah bahwa ke suatu larutan yang komposisinya tetap, suatu komponen n 1, n 2,..., n i ditambah lebih lanjut, sehingga komposisi relatif dari tiap-tiap jenis tetap konstan. Karenanya besaran molal ini tetap sama dan integrasi diambil pada banyaknya mol (Dogra.1990). Ada tiga sifat termodinamik molal parsial utama, yakni: (i) Volume molal parsial dari komponen-komponen dalam larutan (juga disebut sebagai panas differensial larutan) (ii) Entalpi molal parsial (iii) Energi bebas molal parsial (potensial kimia). Sifat-sifat ini dapat ditentukan dengan bantuan metode grafik, menggunakan hubungan analitik yang menunjukkan V dan n i, dan menggunakan suatu fungsi yang disebut besaran molal nyata yang ditentukan sebagai: atau Dimana adalah volume molal untuk komponen murni (Basuki, 2003). Apabila suatu volume yang besar dari air murni ditambahkan 1 mol H 2 O, maka volumenya bertambah 18 cm 3 dan kita dapat mengatakan bahwa 18 cm 3 mol -1 adalah volume molar air murni. Walaupun mengatakan demikian, jika kita menambahkan 1 mol H 2 O ke dalam etanol murni yang volumenya besar, maka pertambahan volume hanya 14 cm 3. alasan dari perbedaan kenaikan volume ini adalah volume yang ditempati oleh sejumlah tertentu molekul air bergantung pada molekul-molekul yang mengelilinginya. Begitu banyak etanol yang ada sehingga setiap molekul H 2 O dikelilingi oleh etanol murni, kumpulan molekul-molekul itu menyebabkan etanol hanya menempati ruang sebesar 14 cm 3. kuantitas 14 cm 3 mol -1 adalah volume molar parsial air dalam etanol murni, yaitu volume campuran yang dapat dianggap berasal dari suatu komponen (Atkins, 1994). Massa jenis suatu zat dapat ditentukan dengan berbagai alat salah satunya adalah dengan menggunakan piknometer. Piknometer adalah suatu alat yang terbuat dari kaca, bentuknya menyerupai botol parfum atau sejenisnya. Piknometer merupakan alat yang digunakan untuk mengukur nilai massa jenis atau densitas fluida. Terdapat beberapa macam ukuran dari piknometer, tetapi biasanya volume piknometer yang banyak digunakan adalah 10 ml dan 25 ml, dimana nilai volume ini valid pada temperatur yang tertera pada piknometer tersebut. Volume

molal pelarut murni yang dapat dihitung dari berat molekul (18,016 untuk air) dibagi dengan berat jenis, pada keadaan yang diamati.untuk larutan tersebut dipenuhi V = (1000 + mm 2 ) / d dan n 1 V o 1 = 1000/d o Dengan d, d o berturut-turut adalah berat jenis larutan, berat jenis air murni, sedangkan M 2 adalah berat molekul zarut. Dan nantinya akan didapatkan persamaan seperti berikut ǿ = (M 2 (1000/m) (d d o / d o ) /d = { M 2 (M 2 1000/m)[ (W W o ) / ( W o We)]}/d Persamaan ini digunakan jika untuk menghitung digunakan piknometer, disini W, W o, W e berturut-turut adalah berat piknometer yang dipenuhi larutan, dipenuhi air dan piknometer kosong ( Tim Kimia Fisika, 2014).

BAB 3. METODOLOGI PERCOBAAN 3.1 Alat dan Bahan 3.1.1 Alat Piknometer Labu ukur 200 ml Erlenmeyer 250 ml Gelas piala 250 ml dan 100 ml Pipet 100 ml Pengaduk 3.1.2 Bahan Padatan NaCl Aquades 3.1.2 Skema Kerja a. Pembuatan Larutan NaCl Larutan NaCl - Ditimbang NaCl untuk membuat larutan NaCl 3,0 M dengan volume 200 ml - Dilarutkan dalam 200 ml dengan menggunakan labu ukur 200 ml - Dilakukan pengenceran untuk mendapatkan larutan NaCl dengan konsentrasi 0,1875; 0,375; 0,75; 1,5 M Hasil b. Pengukuran dengan Piknometer Piknometer - Ditimbang - Ditimbang piknometer yang terisi penuh dengan aquades - Ditimbang piknometer yang terisi penuh dengan larutan NaCl - Dicatat beratnya - Dicatat temperatur dalam piknometer Hasil

BAB 4. HASIL DAN PEMBAHASAN 4.1 Hasil Konsen trasi (M) massa ratarata (g) d (g/ml) m (molal) ø (ml/mol) V 1 (ml/ mol) V 2 (ml/ mol) 0,1875 41,152 0,933 0,203-247,4-164,9 0,167 0,375 41,530 0,972 0,395-1,763 113,4 343,6 0,75 42,002 0,716 89,87 244,9 555,0 1,5 42,285 1,048 1,562 88,84 317,9 775,9 4.2 Pembahasan Volume molal parsial adalah volume perbandingan antara pelarut dengan zat terlarut. Volume molal parsial ditentukan oleh banyaknya mol zat terlarut yang terkandung dalam 1000 gram pelarut. Bahan yang digunakan pada percobaan kali ini adalah NaCl penggunaan NaCl adalah sebagai zat terlarut dan aquades (H 2 O) sebagai pelarutnya. Percobaan kali ini menggunakan variasi konsentrasi dari larutan NaCl. NaCl digunakan sebagai bahan zat terlarut dikarenakan NaCl merupakan eletrolit kuat yang dapat teruarai menjadi ion Na + dan Cl - di dalam air dan mampu menyerap air tanpa adanya penambahan volume suatu larutan, sehingga disebut dengan volume molal parsial semu. Reaksi yang terjadi pada langkah ini adalah: : NaCl(aq) Na + (aq) + Cl - (aq) Variasi konsentrasi yang digunakan adalah 0,1875 M; 0,375 M; 0,75 M dan 1,5 M. Variasi konsentrasi ini dapat diperoleh dengan cara mengencerkan larutan NaCl 3,0 M. Pengenceran dapat didapatkan dengan persamaan berikut: Penentuan volum molal larutan NaCl dapat diketahui dengan mengukur berat jenis dari larutan NaCl. Pengukuran masa jenis ini bertujuan untuk mengetahui hubungan antara konsentrasi dengan volum molal parsial. Pada percobaan ini, temperatur dari setiap larutan NaCl diukur. Hal ini dilakukan untuk mengetahui d 0 (berat jenis air pada berbagai temperatur). Pada setiap temperatur yang berbeda maka nilai dari d 0 berbeda. Berdasarkan data yang telah diperoleh diketahui bahwa semakin besar konsentrasi NaCl dalam larutan maka densitas dari larutan tersebut juga semakin besar. Perolehan data tersebut sesuai dengan literatur yang menyebutkan bahwa semakin besar konsentrasi maka masa jenisnya juga akan semakin besar. Hal tersebut dikarenakan masa jenis NaCl lebih besar dibandingkan air (masa jenis NaCl = 58,5 g/dm 3, masa

jenis air = 1,00 g/dm 3 ) sehingga apabila komponen NaCl dalam larutan semakin banyak, masa jenis dari larutan tersebut juga akan semakin banyak pula. Langkah berikutnya yang dilakukan adalah mengukur berat jenis larutan NaCl untuk masing-masing variasi konsentrasi. Pengukuran berat jenis larutan ini menggunakan piknometer. Persamaan yang digunakan untuk menghitung berat jenis larutan ini adalah: d adalah berat jenis larutan, W adalah berat piknometer dipenuhi larutan, W e merupakan berat piknometer kosong, d 0 merupakan berat jenis pada temperatur tertentu sesuai literatur dan W 0 merupakan piknometer yang diisi air. Volum larutan merupakan fungsi temperatur, tekanan dan jumlah mol komponen. Artinya volum larutan dipengaruhi oleh temperatur, tekanan dan jumlah mol komponen. Berat jenis larutan yang diperoleh dari hasil percobaan untuk masing-masing konsentrasi antara lain, 0,933; 0,972; 1,091; dan 1,048 g/ml. Hasil ini menujukkan bahwa semakin tinggi konsentrasi larutan maka densitasnya juga semakin besar. Hal ini disebabkan karena semakin tinggi konsentrasi suatu larutan, menunjukkan jumlah partikel dalam larutan tersebut semakin banyak. Namun pada konsentrasi 0,75 dan 1,5 terjadi kesalahan. Hal ini ditunjukkan dengan lebih besarnya densitas pada konsentrasi 0,75 dari pada konsentrasi 1,5. Hal ini bisa terjadi akibat kesalahan praktikan pada saat melakukan percobaan. Hasil perlakuan ini dapat digunakan untuk menghitung molalitas larutan NaCl yang digunakan. Hal ini sesuai dengan hasil praktikum, pada temperatur yang berbeda diperoleh volum molal yang berbeda dan pada jumlah mol komponen yang berbeda, juga diperoleh volum molal yang berbeda. Untuk menghitung molalitas larutan ini, dapat menggunakan persamaan sebagai berikut: Molalitas larutan yang diperoleh untuk masing-masing konsentrasi antara lain, 0,203; 0,395; 0,716; dan 1,562 molal. Hasil ini menunjukkan bahwa molalitas (m) sebanding dengan konsentrasi (M) dimana semakin besar konsentrasi (M) maka semakin besar pula molalitas (m) larutannya. Perlakuan selanjutnya yaitu menghitung volume molal semu (ø). Volume molal semu dapat diperoleh dengan menggunakan persamaan sebagai berikut Hasil perhitungan volume molal semu ini diperoleh untuk masing-masing konsentrasi yaitu sebagai berikut, -247,4; 1,763; 89,87; dan 88,84 ml/mol. Hasil ini menunjukkan bahwa volume molal semu berbanding terbalik dengan konsentrasi. Hal ini disebabkan karena zat terlarutnya semakin banyak sehingga volume yang diperlukan untuk membentuk konsentrasi tertentu semakin kecil sehingga didapatkan nilai volume molal semu yang kecil.

Volume molal semu zat terlarut dengan akar molalitas dapat diplotkan ke dalam grafik. Grafik yang diperoleh berdasarkan data di atas adalah: Gambar 2. Grafik antara volume molal semu Ø dengan m 1/2 Berdasarkan grafik tersebut, dapat dikatakan bahwa volume molal semu zat terlarut besar pada saat akar molalitasnya rendah dan sebaliknya. Grafik tersebut memiliki gradien atau kemiringan sebesar 366,47. Nilai ini dapat digunakan untuk menghitung volume molar komponen larutan. Volume molal parsial larutan tidak dapat ditentukan secara langsung tetapi hampir setara dengan volume molar parsial larutan, karena volume molar lebih mudah ditentukan sehingga yang dihitung adalah volume molar larutannya. Volume molar pelarut ini dihitung dengan persamaan: Sedangkan untuk volume molar zat terlarut dihitung dengan menggunakan persamaan berikut ini: Berdasarkan kedua persamaan tersebut, volume molar komponen larutan dihitung sehingga volume molal komponen larutan secara tidak langsung juga dapat diketahui. Hasil perhitungan V 1 untuk masing-masing konsentrasi dari konsentrasi terendah ke konsentrasi tinggi adalah -164,9; 113,4; 244,9; dan 317,9 ml/mol. Sedangkan untuk perhitungan V 2 untuk masing-masing konsentrasi dari konsentrasi terendah ke konsentrasi tinggi adalah 0,167; 343,6; 555,0; dan 775,9 ml/mol. Hasil ini menunjukkan bahwa konsentrasi berbanding terbalik dengan volume molar parsial. Hal in disebabkan oleh komponen dari volume molal parsial itu sendiri, yang didefinisikan sebagai : Vi = (dv/dn) T,P,nj=i Konsentrasi berhubungan dengan n (jumlah mol). Sehingga, pertambahan konsentrasi akan memperkecil volume molal parsial Grafik yang diperoleh dengan mengeplotkan volume molar pelarut dengan molalitas akan disajikan berikut ini:

Gambar 2. Grafik antara volume molar pelarut (V 1 ) dengan molalitas Sedangkan untuk grafik volume molar zat terlarut akan disajikan di bawah ini: Gambar 2. Grafik antara volume molar zat terlarut (V 2 ) dengan molalitas

BAB 5. PENUTUP 6.1 Kesimpulan Kesimpulan yang dapat diambil dari percobaan ini adalah volume molal parsial berbanding terbalik dengan konsentrasi, berat jenis larutan dan molalitasnya, semakin besar konsentrasi larutan, berat jenis larutan dan molalitasnya maka akan semakin kecil pula volume molal parsialnya dan sebaliknya. 6.2 Saran Saran untuk percobaan kali ini adalah praktikan harus lebih memahami prosedur kerja, teliti dan cekatan dalam melakukan percobaan ini agar didapatkan hasil yang maksimal.

DAFTAR PUSTAKA Atkins, 1994. Kimia Fisik. Jakarta : Erlangga Basuki, Atastrina Sri. 2003. Buku Panduan Praktikum Kimia Fisika. Depok : Laboratorium Dasar Proses Kimia Departemen Teknik Gas dan Petrokimia Fakultas Teknik Universitas Indonesia. Brady, James E. 1990. Kimia Universitas Asas dan Struktur Jilid 1. Jakarta : Binarupa Aksara. Prahayu, Kiki. 2013. Volume Molal Parsial [serial online]. http://kikiprahayu.blogspot.com/2013/12/volume-molal-parsial.html [diakses pada 19 Oktober 2014]. Sciencelab. 2014. MSDS NaCl. [serial online]. www.sciencelab.com [diakses pada 19 Oktober 2014] Tim Kimia Fisika. 2014. Penuntun Praktikum Kimia Fisik 2. Jember : Universitas Jember.

LAMPIRAN a). Pengenceran Pengenceran M 1. V 1 = M 2. V 2 M 1 = molaritas NaCl 3,0 M M 2 = Molaritas NaCl yang telah ditentukan V 2 = volume labu saat pengenceran (50 ml) NaCl konsentrasi 1/16 dari NaCl 3,0 M M 1. V 1 = M 2. V 2 3,0 M x V 1 = (1/16 x 3,0 M). 50 ml V 1 = 9,375 ml/3,0 = 3,125 ml NaCl konsentrasi 1/8 dari NaCl 3,0 M M 1. V 1 = M 2. V 2 3,0 M x V 1 = (1/8 x 3,0 M). 50 ml V 1 = 18,75 ml/3,0 = 6,25 ml NaCl konsentrasi 1/4 dari NaCl 3,0 M M 1. V 1 = M 2. V 2 3,0 M x V 1 = (1/4 x 3,0 M). 50 ml V 1 = 37,5 ml/3,0 = 12,5 ml NaCl konsentrasi 1/2 dari NaCl 3,0 M M 1. V 1 = M 2. V 2 3,0 M x V 1 = (1/2 x 3,0 M). 50 ml V 1 = 75 ml/3,0 = 25 ml b). Berat Jenis Larutan W = berat pikonometer penuh larutan NaCl We = berat piknometer kosong Wo = berat pikonmeter penuh dengan aquades do = massa jenis air pada temperatur Bahan Ulang Suhu ( o C) Massa (g) Bahan Ulang Suhu ( o C) Massa (g) Pikno +air - 29 41,771 Pikno+ 1 29,8 40,753 NaCl 2 29,7 40,923 1/16 3 29,7 41,780 Rata - rata 29,7 41,152

Bahan Pikno+ NaCl 1/8 Suhu Massa Suhu Massa Ulang Bahan Ulang ( o C) (g) ( o C) (g) 1 29,8 40,796 Pikno+ 1 29,7 42,005 2 29 41,893 NaCl 1/4 2 29,7 42,002 3 29 41,903 3 29,5 42,000 Rata - rata 29,3 41,530 Rata - rata 29,6 42,002 Bahan Ulang Suhu ( o C) Massa (g) Pikno +NaCl 1/2 1 31 42,267 2 30,2 42,306 3 30,3 42,283 Rata - rata 30,5 42,285 1). Konsentrasi NaCl 1/16 dari 3.0 M 2). Konsentrasi NaCl 1/8 dari 3.0 M 0,933 g/ml 3). Konsentrasi NaCl 1/4 dari 3.0 M 0,972 g/ml 4). Konsentrasi NaCl 1/2 dari 3.0 M /ml 1,048 g/ml b). Molalitas Larutan molalitas larutan dapat diperoleh dri molaritas larutan yaitu sebagai berikut : Dimana m = molalitas M 2 = berat molekul NaCl M = konsentrasi NaCl

d = massa jenis NaCl 1). Konsentrasi NaCl 1/16 dari 3.0 M 2). Konsentrasi NaCl 1/8 dari 3.0 M = 0,203 molal 3). Konsentrasi NaCl 1/4 dari 3.0 M = 0,395 molal 4). Konsentrasi NaCl 1/2 dari 3.0 M = 0,716 molal = 1,562 molal c). Penentuan Volume Molal semu 1). Konsentrasi NaCl 1/16 dari 3.0 M = -247,4 ml/mol 2). Konsentrasi NaCl 1/8 dari 3.0 M = -1,763 ml/mol 3). Konsentrasi NaCl 1/4 dari 3.0 M = 89,87 ml/mol 4). Konsentrasi NaCl 1/2 dari 3.0 M

= 88,84 ml/mol d). Penentuan Volume Molal Parsial Dimana sebesar 366,47 yang didapat dari grafik dimana y = 366,47x 308,49 dan R 2 = 0,6295 1). Konsentrasi NaCl 1/16 dari 3.0 M = -164,9 ml/mol = 0,167 ml/mol 2). Konsentrasi NaCl 1/8 dari 3.0 M = 113,4 ml/mol = 343,6 ml/mol 3). Konsentrasi NaCl 1/4 dari 3.0 M

= 244,9 ml/mol = 555,0 ml/mol 4). Konsentrasi NaCl 1/2 dari 3.0 M = 317,9 ml/mol = 775,9 ml/mol