3 LIMIT DAN KEKONTINUAN

dokumen-dokumen yang mirip
3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN

LIMIT DAN KEKONTINUAN

BAB VI LIMIT FUNGSI. 6.1 Definisi. A R. Titik c R adalah titik limit dari A, jika untuk setiap persekitaran-δ dari c,

BAB III FUNGSI TERUKUR LEBESGUE. Setelah dibahas mengenai ukuran Lebesgue dan beberapa sifatnya pada

2 BARISAN BILANGAN REAL

MA3231 Analisis Real

2 BARISAN BILANGAN REAL

MA3231 Analisis Real

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. September 12, Dosen FMIPA - ITB

DASAR-DASAR ANALISIS MATEMATIKA

4 DIFERENSIAL. 4.1 Pengertian derivatif

II. LANDASAN TEORI ( ) =

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

MA3231 Analisis Real

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Deret Tak Terhingga. Ayundyah. Barisan Tak Hingga. Deret Tak Terhingga

DASAR-DASAR ANALISIS MATEMATIKA

MA3231 Analisis Real

BAB II TEOREMA NILAI RATA-RATA (TNR)

DASAR-DASAR ANALISIS MATEMATIKA

UJI KONVERGENSI. Januari Tim Dosen Kalkulus 2 TPB ITK

BARISAN BILANGAN REAL

BAB III INTEGRAL LEBESGUE. Pada bab sebelumnya telah disebutkan bahwa ruang dibangun oleh

DERET TAK HINGGA. Contoh deret tak hingga :,,, atau. Barisan jumlah parsial, dengan. Definisi Deret tak hingga,

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 10, Dosen FMIPA - ITB

BAB II KAJIAN TEORI. memahami sifat-sifat dari barisan fungsi. Pada bab ini akan diuraikan materimateri

Pengantar : Induksi Matematika

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. October 3, Dosen FMIPA - ITB

4 DIFERENSIAL. 4.1 Pengertian derivatif

FUNGSI DAN LIMIT FUNGSI

MA3231. Pengantar Analisis Real. Hendra Gunawan, Ph.D. Semester II, Tahun

Daftar Isi 3. BARISAN ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB

BAGIAN KEDUA. Fungsi, Limit dan Kekontinuan, Turunan

ANALISIS REAL 2 SUMANANG MUHTAR GOZALI KBK ANALISIS

SISTEM BILANGAN REAL

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

BAB III KEKONVERGENAN LEMAH

Disampaikan pada Diklat Instruktur/Pengembang Matematika SMA Jenjang Dasar Tanggal 6 s.d. 19 Agustus 2004 di PPPG Matematika

BAB I LIMIT-LIMIT Limit-limit Fungsi

ANALISIS REAL 1 SUMANANG MUHTAR GOZALI KBK ANALISIS

Ayundyah Kesumawati. April 29, Prodi Statistika FMIPA-UII. Uji Deret Positif. Ayundyah. Uji Integral. Uji Komparasi. Uji Rasio.

-LIMIT- -KONTINUITAS- -BARISAN- Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

) dengan. atau sub barisan (subsequences) dari X ,,,..., kemudian dipilih hasil index barisan Contoh, jika X =

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

Fungsi Analitik (Bagian Pertama)

Fungsi Analitik (Bagian Kedua)

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB I TEOREMA TEOREMA LIMIT BARISAN

LIMIT DAN KEKONTINUAN

16. BARISAN FUNGSI Barisan Fungsi dan Kekonvergenan Titik Demi Titik

BAB III SUB BARISAN DAN TEOREMA BOLZANO-WEIERSTRASS

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

Daftar Isi 5. DERET ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. Dosen FMIPA - ITB September 26, 2011

1 SISTEM BILANGAN REAL

HUBUNGAN LIMIT FUNGSI DAN LIMIT BARISAN PADA TOPOLOGI REAL

G a a = e = a a. b. Berdasarkan Contoh 1.2 bagian b diperoleh himpunan semua bilangan bulat Z. merupakan grup terhadap penjumlahan bilangan.

KUANTOR KHUSUS (Minggu ke-8)

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

CATATAN KULIAH ANALISIS REAL LANJUT

URAIAN POKOK-POKOK PERKULIAHAN

FUNGSI KONTINU. sedemikian sehingga jika x adalah titik dari A (c), maka f (x) berada pada Vg (f (c)). (Lihat Gambar 5.1.1).

Bab 2 Fungsi Analitik

Muhafzan FUNGSI KONTINU. Muhafzan, Ph.D

BAB I PENDAHULUAN. : k N} dan A(m) menyatakan banyaknya m suku pertama (x n ) yang menjadi suku (x nk ), maka A(m)

Definisi 4.1 Fungsi f dikatakan kontinu di titik a (continuous at a) jika dan hanya jika ketiga syarat berikut dipenuhi: (1) f(a) ada,

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).

BAB V KEKONVERGENAN BARISAN PADA DAN KETERKAITAN DENGAN. Pada subbab 4.1 telah dibahas beberapa sifat dasar yang berlaku pada koleksi

KONSISTENSI ESTIMATOR

PENGANTAR ANALISIS REAL

Kuliah 2: FUNGSI MULTIVARIABEL. Indah Yanti

ANALISIS REAL 1. Perkuliahan ini dimaksudkan memberikan

F. RANCANGAN KEGIATAN BELAJAR MENGAJAR

2 BILANGAN PRIMA. 2.1 Teorema Fundamental Aritmatika

Definisi 1 Deret Tak Hingga adalah suatu ekspresi yang dapat dinyatakan dalam bentuk:

KALKULUS BAB II FUNGSI, LIMIT, DAN KEKONTINUAN. DEPARTEMEN TEKNIK KIMIA Universitas Indonesia

asimtot.wordpress.com BAB I PENDAHULUAN

MA3231 Analisis Real

Matematika I : Limit. Dadang Amir Hamzah. Dadang Amir Hamzah Matematika I Semester I / 79

TINJAUAN PUSTAKA. Ruang metrik merupakan ruang abstrak, yaitu ruang yang dibangun oleh

Nilai mutlak pada definisi tersebut di interpretasikan untuk mengukur jarak dua

Ringkasan Kalkulus 2, Untuk dipakai di ITB 1

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan

1 SISTEM BILANGAN REAL

ANALISIS REAL. (Semester I Tahun ) Hendra Gunawan. August 18, Dosen FMIPA - ITB

MA5031 Analisis Real Lanjut Semester I, Tahun 2015/2016. Hendra Gunawan

MA3231 Analisis Real

Deret Binomial. Ayundyah Kesumawati. June 25, Prodi Statistika FMIPA-UII. Ayundyah (UII) Deret Binomial June 25, / 14

MATEMATIKA SMK TEKNIK LIMIT FUNGSI : Limit Fungsi Limit Fungsi Aljabar Limit Fungsi Trigonometri

BAB III OPERATOR LINEAR TERBATAS PADA RUANG HILBERT. Operator merupakan salah satu materi yang akan dibahas dalam fungsi

BAB I PENDAHULUAN. Kata topologi berasal dari bahasa yunani yaitu topos yang artinya tempat

Dwi Lestari, M.Sc: Konvergensi Deret 1. KONVERGENSI DERET

Fungsi dan Limit Fungsi 23. Contoh 5. lim. Buktikan, jika c 0, maka

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah

1 SISTEM BILANGAN REAL

TITIK TETAP NADLR FUNGSI MULTI NILAI KONTRAKTIF PADA RUANG METRIK ( ) Rinurwati Jurusan Matematika FMIPA-ITS Jl. Arif Rahman Hakim Surabaya 60111

Transkripsi:

Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan barisan bilangan real. Sebagaimana telah diketahui bahwa barisan merupakan bentuk khusus fungsi, yaitu fungsi bernilai real dengan domain bilangan asli. Pada bab ini kita memperluas konsep limit kepada bentuk fungsi bernilai real secara umum. Karena konsep kekontinuan terkait erat dengan konsep limit maka kedua topik ini dibahas secara simultan pada bab ini. 3.1 Pengertian Limit Fungsi dan Fungsi Kontinu Biasanya, notasi lim f(x) = L x c dipahami secara intuitif dengan berbagai pernyataan berikut 1. Jika x mendekati c maka f(x) mendekati L, semakin dekat x kepada c semakin dekat pula f(x) kepada L. 2. Nilai-nilai f(x) adalah dekat dengan L untuk x dekat dengan c. Pada pernyataan pertama, dekatnya f(x) terhadap L disebabkan oleh dekatnya x kepada c. Pernyataan ini banyak diambil sebagai denisi limit khususnya bagi mereka yang belum belajar analisis. Padahal sesungguhnya pernyataan kedua lebih sesuai untuk denisi limit. Pada pernyataan ini ada dua kriteria atau ukuran dekat. Kriteria dekatnya f(x) terhadap L memberikan kriteria dekatnya x kepada c. Kemudian, setiap x yang dekat dengan c dalam kriteria ini mengakibatkan nilai f(x) dekat dengan L. Sebelum masuk ke denisi formal limit fungsi, diberikan terlebih dahulu pegertian titik limit (cluster point) suatu himpunan. Denisi 3.1. [Titik Limit] Misalkan A R. Sebuah titik c R dikatakan titik limit A jika setiap persekitaran V δ (c) := (c δ, c + δ) memuat paling sedikit satu anggota A selain c, atau (c δ, c + δ) A \ {c}, δ > 0. Catatan 1. Titik limit A boleh jadi anggota A atau bukan anggota A. Sebaliknya, suatu anggota A dapat menjadi titik limit atau bukan titik limit A. Sebelum diberikan contoh diperhatikan teorema yang menjamin adanya barisan di dalam A yang konvergen ke titik limit A yang dapat dijadikan kriteria titik limit. Teorema 3.1. Sebuah bilangan c A titik limit A bila hanya bila terdapat barisan (a n ) dalam A dengan a n c untuk setiap n N sehingga lim(a n ) = c. Bukti. Misalkan c titik limit. Untuk setiap n N, bentuk persekitaran radius δ := 1 n, yaitu V 1 (c) = (c 1 n n, c+ 1 n ). Selalu ada a n A V 1 dengan a n c. Karena berlaku n a n c < 1 n maka disimpulkan lim(a n) = c. Sebaliknya, diketahui terdapat barisan 1

(a n ) dalam A, a n c dan lim(a n ) = c, dibuktikan c seperti ini adalah titik limit A. Karena diketahui lim(a n ) = c maka untuk sebarang δ > 0 terdapat bilangan asli K sehingga a n c < δ untuk setiap n K. Ini berarti, khususnya a K A, a K c dan a K V δ yaitu A V δ \ {c}. Terbukti c titik limit A. Contoh 3.1. Diberikan himpunan A yang didenisikan sebagai Tentukan himpunan semua titik limit A. A = { 1} {x R : 0 x < 1} {2}. Penyelesaian. Diperhatikan bahwa setiap x [0, 1] dan setiap δ > 0 maka berlaku (x δ, x + δ) A \ {x}. Jadi setiap x [0, 1] merupakan titik imit A. Diperhatikan x = 1 A. Kita dapat memilih δ 1 > 0 sehingga ( 1 δ 1, 1 + δ 1 ) A = { 1} sehingga ( 1 δ 1, 1 + δ 1 ) A \ { 1} =, jadi x = 1 bukan titik limit A. Argumen yang sama diterapkan untuk x = 2. Diperoleh himpunan titik lmit A adalah [0, 1]. Gambar 3.1: Ilustrasi titik limit pada garis bilangan Diperhatikan pada contoh ini, 1 / A tetapi 1 titik limit A. Sebaliknya 2 A tetapi 2 bukan titik limit A. Bilangan di dalam interval [0, 1) kesemuanya anggota A dan sekaligus titik limit A. Berikut diberikan beberapa fakta sederhana tentang titik limit: Himpunan yang banyak anggotanya berhingga tidak mempunyai titik limit. Himpunan bilangan asli N tidak mempunyai titik limit. Himpunan bilangan rasional Q mempunyai titik limit semua bilangan real. Hal ini disebabkan sifat kepadatan bilangan rasional di dalam R. Himpunan A = { 1 n : n N} hanya mempunyai titik limit 0. Dalam kasus ini tidak satupun anggota A menjadi titik limitnya. Selanjutnya denisi limit fungsi diberikan sebagai berikut. Denisi 3.2. [Limit Fungsi] Misalkan A R dan f : A R, c titik limit A. Bilangan L dikatakan limit fungsi f di c, ditulis L = lim x c f(x) (3.1) adalah bilamana diberikan ɛ > 0 terdapat δ > 0 sehingga berlaku 0 < x c < δ f(x) L < ɛ. (3.2) Pada denisi ini, nilai δ biasanya bergantung pada nilai ɛ yang diberikan sehingga kadangkadang ditulis sebagai δ(ɛ) untuk menunjukkan ketergantungan δ pada ɛ yang diberikan. Bila limit L ini ada maka fungsi f dikatakan juga konvergen ke L di c. Secara praktis, dapat dikatakan f(x) mendekati L bilamana x mendekati c. Ukuran dekat f(x) terhadap L diberikan oleh ɛ, dan kedekatan x dengan c diukur oleh δ. Pada ekspresi 2

diberikan V (L) L- L f(x)-l < L- terdapat V (c) c+ c c+ Gambar 3.2: Ilustrasi denisi limit fungsi (3.3) kita dapat membuat f(x) sedekat mungkin dengan L dengan memilih x yang dekat dengan c. Ilustrasi denisi limit fungsi diberikan pada Gambar 3.2. Pernyataan 0 < x c < δ pada (3.3) menunjukkan bahwa untuk berlakunya f(x) L < ɛ tidak memperhitungkan x yang sama dengan c. Artinya pada denisi limit, nilai f(c) tidak perlu ada. Ingat, titik limit himpunan domain A tidak harus di dalam A. Oleh karena itulah, ilustrasi grak denisi limit menggunakan dot di titik x = c. Pengertian yang hampir sama untuk fungsi kontinu di x = c, seperti diungkapkan berikut ini. Denisi 3.3. [Fungsi Kontinu] Misalkan A R dan f : A R, c A. Fungsi f dikatakan kontinu di c, adalah bilamana diberikan ɛ > 0 terdapat δ > 0 sehingga berlaku x c < δ f(x) f(c) < ɛ. (3.3) Kontinu pada himpunan A berarti kontinu di setiap c A. Dalam kasus c A dan c titik limit A maka kedua pengertian limit dan kekontinuan sangat terkait seperti diungkapkan pada teorema berikut. Teorema 3.2. Misalkan A R dan f : A R, c A. Bila c titik limit A maka kedua pernyataan berikut ekuivalen. (i) f kontinu di c (ii) lim x c f(x) = f(c) Bukti. Untuk mudahnya kita bentuk dua himpunan berikut E 1 := {x A : 0 < x c < δ}, E 2 := {x A : x c < δ}. Jadi E 2 E 1. Diketahui f kontinu di c berarti x E 2 f(x) f(c) < ɛ. Misalkan x E 1 maka x E 2 atau x = c. Bila x E 2 maka (3.2) berlaku dengan L = f(c). Untuk kemungkinan x = c berlaku f(x) f(c) = f(c) f(c) = 0 < ɛ sehingga (3.2) juga dipenuhi. Terbukti lim x c f(x) = f(c). Sebaliknya, diketahui lim x c f(x) = f(c) yaitu x E 1 f(x) f(c) < ɛ. Karena E 2 E 1 maka berlaku x E 2 f(x) f(c) < ɛ, yaitu f kontinu di c. 3

Contoh 3.2. Misalkan f fungsi konstan pada R, katakan f(x) = b untuk setiap x R. Buktikan untuk sebarang c R, berlaku lim x c b = b. Kemudian simpulkan bahwa f kontinu di c. Penyelesaian. Diberikan ɛ > 0 sebarang, ambil δ := 1 maka diperoleh 0 < x c < δ f(x) L = b b = 0 < ɛ. Jadi terbukti lim x c f(x) = f(c). Karena c R merupakan titik limit maka dengan teorema 3.2 maka disimpulkan f kontinu di c. Catatan 2. Pengambilan δ pada pembuktian di atas dapat selain 1, bahkan berapapun boleh. Pembuktian ini menggunakan pola p q dimana q sudah dipastikan benar. Contoh 3.3. Buktikan untuk sebarang c R, lim x c x = c. bahwa f(x) := x kontinu di c. Kemudian simpulkan Penyelesaian. Untuk setiap ɛ > 0 yang diberikan, ambil δ := ɛ. Diperoleh 0 < x c < δ f(x) L = x c < δ = ɛ. Karena itu terbukti lim x c x = c. Karena berlaku lim x c f(x) = f(c) dan c titik limit maka disimpulkan f kontinu di c. Contoh 3.4. Misalkan f(x) = x 2, x R. Buktikan f kontinu pada R. Bukti. Misalkan c R. Kita perhatikan dulu penjabaran berikut f(x) f(c) = x 2 c 2 = x + c x c. Karena sudah ada suku x c maka kita perlu melakukan estimasi pada suku x + c. Untuk itu diasumsikan dulu x c < 1, maka berlaku x c x c < 1 1 < x c 1 x c + 1. }{{} Untuk asumsi ini diperoleh estimasi pada x + c, yaitu Secara keseluruhan diperoleh estimasi x + c x + c 2 c + 1. f(x) f(c) = x + c x c < (2 c + 1) x c. ( ) Agar kuantitas terakhir ini kurang dari ɛ maka haruslah x c < ɛ 2 c + 1. ( ) Karena sudah diasumsikan x c < 1 maka agar x c < maka diambil { } δ = δ(ɛ) := min 1,. ɛ 2 c + 1 ɛ 2 c +1 juga dipenuhi Jadi jika 0 < x c < δ maka (*) dan (**) berlaku sehingga disimpulkan f(x) f(c) < ɛ. Jadi, lim x c f(x) = f(c), dan terbukti f kontinu di c. Ada kalanya sebuah fungsi tidak kontinu di suatu titik c dikarenakan ia tidak terdenisi di c, yaitu f(c) tidak ada. Tetapi, asalkan limitnya di c ada maka fungsi tersebut dapat diperluas menjadi fungsi kontinu. 4

Contoh 3.5. Diberikan fungsi f(x) = x2 1 x 1, x 0 tidak kontinu di 1 karena f(1) tidak ada. Namun, berlaku x 2 1 lim f(x) = lim x 1 x 1 x 1 = lim (x + 1) = 2. x 1 Jadi fungsi ini dapat diperluas menjadi fungsi kontinu pada R sebagai berikut { x 2 1 f(x) = x 1 untukx 0 2 untukx = 0. 3.2 Kriteria Barisan untuk Limit dan Kekontinuan Untuk mengetahui limit dan kekontiunuan fungsi di suatu titik dapat dideteksi melalui limit barisan yang sudah dipelajari pada bab sebelumnya. Teorema 3.3. Misalkan f : A R dan c titik limit A. Maka kedua pernyataan berikut ekuivalen. (i) lim x c f(x) = L (ii) Untuk setiap barisan (x n ) di dalam A yang konvergen ke c, x n c untuk setiap n N, maka barisan (f(x n )) konvergen ke L. Bukti. (i) (ii). Diberikan ɛ > 0 sebarang. Karena diketahui lim x c f(x) = L, maka terdapat δ > 0 sehingga jika 0 < x c < δ berlaku f(x) L < ɛ. Misalkan lim(x n ) = c, x n c. Berdasarkan denisi limit barisan, untuk δ > 0 sebelumnya terdapat K N sehingga x n c < δ untuk setiap n K. Karena x n c maka dapat ditulis 0 < x n c < δ, sehingga berlaku f(x n ) L < ɛ untuk setiap n K. Ini menunjukkan bahwa barisan (f(x n )) konvergen ke L. (ii) (i). Dibuktikan melalui kontraposisinya. Diketahui lim x c f(x) L, berarti ada ɛ 0 > 0 sehingga setiap δ > 0 terdapat x δ A, 0 < x x δ < δ tetapi f(x) x δ ɛ 0. Bila diambil para δ > 0 tersebut sebagai δ := 1 n > 0 untuk setiap n N maka terbentuk barisan (x n ) dengan sifat 0 < x n c < 1 n, x n A tetapi f(x n ) L ɛ 0 untuk setiap n N. Ini berarti barisan (f(x n )) tidak mungkin konvergen ke L. Jadi ada barisan (x n ) dalam A, x n c tetapi (f(x n )) tidak konvergen ke L. Pernyataan (ii) salah. Bukti teorema selesai. Dengan demikian diperoleh kriteria divergen sebagai berikut: (a) lim x c f(x) L bila hanya bila ada barisan (x n ) dalam A dengan x n c, (x n ) konvergen ke c tetapi barisan lim (f(x n )) L. (b) lim x c f(x) tidak ada bila hanya bila ada barisan (x n ) dalam A dengan x n c, (x n ) konvergen ke c tetapi barisan f(x n ) tidak konvergen. (c) lim x c f(x) tidak ada bila hanya bila ada dua barisan (x n ), (y n ) dalam A dengan x n, y n c, (x n ) dan (y n ) konvergen ke c tetapi lim (f(x n )) lim (f(y n )). Contoh 3.6. Buktikan lim x 0 1 x tidak ada. Bukti. Di sini kita mempunyai f(x) = 1 x. Ambil barisan (x n) dengan x n := 1 n. Jelas barisan ) ini konvergen ke 0, x n 0. Sekarang perhatikan barisan (f(x n )) = ( 1 1/n = (n) = (1, 2, 3, ) tidak konvergen. Berdasarkan kriteria (b) maka terbukti limitnya tidak ada. 5

Contoh 3.7. Diberikan fungsi signum yang didenisikan sebagai berikut +1 untuk x > 0, sgn(x) : = 0 untuk x = 0, 1 untuk x < 0. Buktikan lim x 0 sgn(x) tidak ada. Bukti. Ambil dua barisan (x n ) dan (y n ) dengan x n := 1 n dan y n := 1 n. Jelas kedua barisan ini konvergen ke 0 dan setiap sukunya tidak ada yang sama dengan 0. Diperhatikan barisan (sgn(x n )) = ( sgn ( 1 n)) = (1) = (1, 1, ) konvergen ke 1, tetapi (sgn(y n )) = ( sgn( 1 n )) = ( 1) = ( 1, 1, ) konvergen ke 1. Berdasarkan kriteria (c) maka terbukti limitnya tidak ada. Cara lain dapat menggunakan sifat bahwa sgn(x) = x x untuk x 0. Dengan mengambil x n := ( 1)n n maka barisan (x n ) konvergen ke 0, x n 0. Tetapi ( ( )) (sgn(x n )) = ( 1) n sgn n = ( 1) n = ( 1, +1, 1, ) divergen. Teorema 3.4. Misalkan f : A R dan c A. ekuivalen. Maka kedua pernyataan berikut (i) f kontinu di c (ii) Untuk setiap barisan (x n ) di dalam A yang konvergen ke c, maka barisan (f(x n )) konvergen ke f(c). Bukti. Gunakan fakta f kontinu di c bila hanya bila lim x c f(x) = f(c) dan ambil L := f(c). Selanjutnya gunakan teorema kriteria barisan untuk limit. to be continued... 6