UNNES Journal of Mathematics

dokumen-dokumen yang mirip
MODEL PERPINDAHAN KALOR PADA MESIN PENGERING PADI

Unnes Journal of Mathematics SOLUSI SISTEM OSILASI DUA DERAJAT KEBEBASAN PADA RANGKAIAN PEGAS GANDENG DENGAN PEREDAM DAN GAYA LUAR

UJM 2 (1) (2013) UNNES Journal of Mathematics.

SOLUSI ANALITIK MASALAH KONDUKSI PANAS PADA TABUNG

Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua dimensi

SOLUSI ANALITIK DAN SOLUSI NUMERIK KONDUKSI PANAS PADA ARAH RADIAL DARI PEMBANGKIT ENERGI BERBENTUK SILINDER

UNNES Journal of Mathematics

Solusi Problem Dirichlet pada Daerah Persegi dengan Metode Pemisahan Variabel

SIMULASI ALIRAN PANAS PADA SILINDER YANG BERGERAK. Rico D.P. Siahaan, Santo, Vito A. Putra, M. F. Yusuf, Irwan A Dharmawan

Simulasi Konduktivitas Panas pada Balok dengan Metode Beda Hingga The Simulation of Thermal Conductivity on Shaped Beam with Finite Difference Method

BAB 2 TINJAUAN PUSTAKA

1. BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN. Kompetensi

Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson

BAB I PENDAHULUAN. Kompetensi

Jurnal MIPA 37 (2) (2014): Jurnal MIPA.

UNNES Journal of Mathematics

Solusi Penyelesaian Persamaan Laplace dengan Menggunakan Metode Random Walk Gapar 1), Yudha Arman 1), Apriansyah 2)

BAB I PENDAHULUAN. pedoman untuk menyelesaikan permasalahan sehari-hari dan juga untuk

STUDI PERPINDAHAN PANAS DENGAN MENGGUNAKAN SISTEM KOORDINAT SEGITIGA

PERCOBAAN PENENTUAN KONDUKTIVITAS TERMAL BERBAGAI LOGAM DENGAN METODE GANDENGAN

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

Departemen Ilmu dan Teknologi Pangan Universitas Brawijaya

Unnes Physics Education Journal

MODEL POLA LAJU ALIRAN FLUIDA DENGAN LUAS PENAMPANG YANG BERBEDA MENGGUNAKAN METODE BEDA HINGGA

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger)

PENYELESAIAN MODEL DISTRIBUSI SUHU BUMI DI SEKITAR SUMUR PANAS BUMI DENGAN METODE KOEFISIEN TAK TENTU. Jl. Prof. H. Soedarto, S.H.

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA

ANALISA NUMERIK DISTRIBUSI PANAS TAK TUNAK PADA HEATSINK MENGGUNAKAN METODA FINITE DIFFERENT

Sidang Tugas Akhir - Juli 2013

Momentum, Vol. 9, No. 1, April 2013, Hal ISSN ANALISA KONDUKTIVITAS TERMAL BAJA ST-37 DAN KUNINGAN

Pengaruh Karakteristik Logam Dalam Elemen Pemanas Terhadap Waktu Pengeringan Kayu

KONSEP DASAR PERSAMAAN DIFERENSIAL

KONSTRUKSI ESTIMATOR FUNGSI LINIER PIECEWISEUNTUK DATA RUNTUN WAKTU

PENYELESAIAN MASALAH NILAI AWAL PERSAMAAN DIFERENSIAL BIASA ORDE DUA MENGGUNAKAN MODIFIKASI METODE DEKOMPOSISI ADOMIAN

DINAMIKA PROSES PENGUKURAN TEMPERATUR (Siti Diyar Kholisoh)

PENYELESAIAN SISTEM PERSAMAAN INTEGRAL VOLTERRA DENGAN METODA DEKOMPOSISI ADOMIAN

UJM 3 (2) (2014) UNNES Journal of Mathematics.

TINJAUAN KASUS PERSAMAAN GELOMBANG DIMENSI SATU DENGAN BERBAGAI NILAI AWAL DAN SYARAT BATAS

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

Contoh klasik dari persamaan hiperbolik adalah persamaan gelombang yang dinyatakan oleh

BAB II KAJIAN TEORI. pada penulisan bab III. Materi yang diuraikan berisi tentang definisi, teorema, dan

UNNES Journal of Mathematics

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI

MENGEFISIENSIKAN PENGGUNAAN ENERGI LISTRIK : STUDI KASUS PADA MODEL ALIRAN PANAS PADA WATER COOKER (PEMANAS AIR ELEKTRIK)

Solusi Persamaan Laplace Menggunakan Metode Crank-Nicholson. (The Solution of Laplace Equation Using Crank-Nicholson Method)

PEMBUATAN DAN PENGUJIAN ALAT UNTUK MENENTUKAN KONDUKTIVITAS PLAT SENG, MULTIROOF DAN ASBES

LABORATORIUM TERMODINAMIKA DAN PINDAH PANAS PROGRAM STUDI KETEKNIKAN PERTANIAN FAKULTAS PERTANIAN UNIVERSITAS SUMATERA UTARA 2012

METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN NILAI BATAS PADA PERSAMAAN DIFERENSIAL PARSIAL NONLINEAR ABSTRACT

BAB II PERSAMAAN DIFERENSIAL BIASA

KARAKTERISTIK ALIRAN PANAS DALAM LOGAM PENGHANTAR LISTRIK THE CHARACTERISTICS OF HEAT FLOW IN AN ELECTRICAL METAL CONDUCTOR

SISTEM PEMANFAATAN ENERGI SURYA UNTUK PEMANAS AIR DENGAN MENGGUNAKAN KOLEKTOR PALUNGAN. Fatmawati, Maksi Ginting, Walfred Tambunan

10/3/2011. panas. massa, kecepatan alir volumetrik dan sifat-sifat fluida lokal.

MODEL MATEMATIKA DENGAN SYARAT BATAS DAN ANALISA ALIRAN FLUIDA KONVEKSI BEBAS PADA PELAT HORIZONTAL. Leli Deswita 1)

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger)

SOLUSI POLINOMIAL TAYLOR PERSAMAAN DIFERENSIAL-BEDA LINEAR DENGAN KOEFISIEN VARIABEL ABSTRACT

PENGANTAR MATEMATIKA TEKNIK 1. By : Suthami A

BAB II LANDASAN TEORI

PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA TAK LINEAR DENGAN METODE TRANSFORMASI DIFERENSIAL

MASALAH SYARAT BATAS (MSB)

BAB 3 METODOLOGI PENELITIAN

Abstrak. Info Artikel. Abstract Universitas Negeri Semarang ISSN

perubahan baik fisik maupun kimiawi yang dikehendaki ataupun yang tidak dikehendaki. Di samping itu, setelah melalui proses pengolahan, makanan tadi

TERMODINAMIKA I. DESKRIPSI

Solusi Numerik Persamaan Logistik dengan Menggunakan Metode Dekomposisi Adomian Dan Metode Milne

UJM 3 (1) (2014) UNNES Journal of Mathematics.

PENGGUNAAN METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERMASALAHAN PADA KALKULUS VARIASI ABSTRACT

PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

FISIKA TERMAL Bagian I

PERPINDAHAN PANAS DAN MASSA

PENGENDALI TEMPERATUR FLUIDA PADA HEAT EXCHANGER DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN PREDIKTIF

STUDI MODEL NUMERIK KONDUKSI PANAS LEMPENG BAJA SILINDRIS YANG BERINTERAKSI DENGAN LASER NOVAN TOVANI G

MODIFIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN MASALAH NILAI AWAL SINGULAR PADA PERSAMAAN DIFERENSIAL BIASA ORDE DUA ABSTRACT

Model Transien Aliran Gas pada Pipa

WATER TO WATER HEAT EXCHANGER BENCH BAB I PENDAHULUAN. 1.1 Tujuan Pengujian

SOLUSI PENYEBARAN PANAS PADA BATANG KONDUKTOR MENGGUNAKAN METODE CRANK-NICHOLSON

KOMPUTASI NUMERIK GERAK PROYEKTIL DUA DIMENSI MEMPERHITUNGKAN GAYA HAMBATAN UDARA DENGAN METODE RUNGE-KUTTA4 DAN DIVISUALISASIKAN DI GUI MATLAB

METODE TRANSFORMASI ELZAKI DALAM MENYELESAIKAN PERSAMAAN DIFERENSIAL BIASA LINEAR ORDE DUA DENGAN KOEFISIEN VARIABEL ABSTRACT

TINJAUAN KASUS PERSAMAAN PANAS DIMENSI SATU SECARA ANALITIK

PENYELESAIAN PERSAMAAN POISSON 2D DENGAN MENGGUNAKAN METODE GAUSS-SEIDEL DAN CONJUGATE GRADIENT

PEMODELAN MATEMATIKA ALIRAN FLUIDA PADA RADIATOR MOBIL TIPE SR (SINGLE ROW)

HUKUM I TERMODINAMIKA

BAB I PENDAHULUAN 1.1 Latar Belakang

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan

Penyelesaian Persamaan Poisson 2D dengan Menggunakan Metode Gauss-Seidel dan Conjugate Gradient

MENGGAMBAR GRAFIK DENGAN MICROSOFT MATHEMATICS 4.0 1

Unnes Journal of Mathematics

STUDI PERPINDAHAN PANAS KONVEKSI PADA SUSUNAN SILINDER VERTIKAL DALAM REAKTOR NUKLIR ATAU PENUKAR PANAS MENGGUNAKAN PROGAM CFD

BAB I PENDAHULUAN. Perpindahan kalor atau heat transfer adalah ilmu untuk meramalkan

BAB I PENDAHULUAN Latar Belakang Masalah

APLIKASI METODE CELLULAR AUTOMATA UNTUK MENENTUKAN DISTRIBUSI TEMPERATUR KONDISI TUNAK

ESTIMASI MENGGUNAKAN PENDEKATAN DERET FOURIER PADA NILAI RETURN SAHAM

KOMPUTASI DISTRIBUSI SUHU DALAM KEADAAN MANTAP (STEADY STATE) PADA LOGAM DALAM BERBAGAI DIMENSI

SIMULASI DISPENSER HOT AND COOL UNIT

Konduksi Mantap Satu Dimensi (lanjutan) Shinta Rosalia Dewi

BAB III KONDUKSI ALIRAN STEDI - DIMENSI BANYAK

Transkripsi:

UJM 1 (1) (2012) UNNES Journal of Mathematics http://journal.unnes.ac.id/sju/index.php/ujm MODEL PERPINDAHAN KALOR PADA MESIN PENGERING PADI Ninik Rahayu, St. Budi Waluya, dan Wuryanto Jurusan Matematika, FMIPA, Universitas Negeri Semarang, Indonesia Gedung D7 lantai 1 Kampus Sekaran, Gunungpati, Semarang, 50229 Info Artikel Sejarah Artikel: Diterima Januari 2012 Disetujui Februari 2012 Dipublikasikan Mei 2012 Kata kunci Persamaan Kalor Metode Pemisahan Variabel Keadaan Steady Unsteady. Abstrak Matematika merupakan salah satu sarana untuk menyelesaikan suatu permasalahan. Salah satu kajian matematika yang konsep-konsepnya banyak diterapkan dalam bidang lain adalah persamaan diferensial. Persamaan diferensial muncul dalam berbagai bidang sains dan teknologi, bilamana hubungan deterministik yang melibatkan besaran yang berubah secara kontinu (dimodelkan oleh fungsi matematika) dan laju perubahannya (dinyatakan sebagai turunan) diketahui atau dipostulatkan. Ini terlihat misalnya pada masalah perpindahan kalor. Dalam artikel ini akan dikaji permodelan persamaan kalor dan solusi model persamaan kalor. Perpindahan kalor (Heat Transfer) adalah transisi energi termal dari suhu panas ke suhu yang lebih dingin. Ketika sebuah objek mempunyai suhu yang berbeda dibandingkan lingkungan atau objek lain, transfer energi panas, juga dikenal sebagai aliran panas, atau pertukaran panas, terjadi sedemikian rupa sehingga tubuh dan sekitarnya mencapai kesetimbangan termal. Langkah-langkah yang dilakukan adalah menentukan masalah, merumuskan masalah, studi pustaka, analisis pemecahan masalah, dan penarikan simpulan. Pembahasan dilakukan untuk menemukan model persamaan kalor pada mesin pengering padi dan menyelesaikan persamaan kalor metode pemisahan variabel. Pembahasan ini dilakukan dalam dua keadaan, yaitu keadaan steady (waktu konstan) dan unsteady (waktu berubah-ubah). Pada Solusi-solusi tersebut kemudian divisualisasikan menggunakan Maple. Abstract Mathematics is a tool to solve a problem. A field in mathematics that being applied in other fields is a differential equation. Differential equations arise in various fields of science and technology, where the deterministic relationship involving continuously changing quantities (modeled by mathematical functions) and its rate of change (expressed as a derivative) is known or postulated. This is seen for example in heat transfer problems. In this article will be reviewed modeling of the heat equation and the solution model of the heat equation. Heat transfer (Heat Transfer) is the transition temperature of thermal energy from hot to cooler temperatures. When an object has a different temperature than the environment or other objects, heat transfer, also known as heat flow or heat exchange, occurs in such a way that the body and the surroundings reach thermal equilibrium. The Steps of this research are determining the problem, formulating the problem, studying literature, analyzing problem solves, and drawing conclusions. The discussion carried out to find a model of the heat equation on rice dryers and solve the heat equation with variable separation method. The discussion was conducted in two circumstances, namely the steady state (time constant) and unsteady (time varies). Alamat korespondensi: E-mail: ninik_rahayu61@yahoo.com 2012 Universitas Negeri Semarang ISSN 2252-6943

Pendahuluan Persamaan Diferensial (PD) merupakan cabang dari matematika yang sudah berkembang sejak jaman Isaac Newton dan Leibnitz yang hingga saat ini memiliki peran yang besar serta banyak diterapkan pada berbagai bidang ilmu seperti fisika, teknik, biologi, kimia, ekologi, ekonomi dan ilmu-ilmu lainnya. Penggunaan persamaan differensial untuk menyusun suatu model tentang fenomena dari suatu sistem yang ada di dunia nyata merupakan suatu cara yang sering ditempuh guna membantu mencari solusi dari permasalahan yang ada. Pesatnya perkembangan teknologi komputer juga membantu dalam menemukan penyelesaian persamaan differensial secara numeris, terutama bentuk-bentuk persamaan differensial nonlinear dan parsial yang biasanya tidak dapat diselesaikan secara analitis ( Andriani, 2005). Dalam kehidupan sehari-hari banyak fenomena yang dalam menyelesaikannya menggunakan persamaan diferensial order satu. Contoh penerapan persamaan diferensial order satu sering dijumpai dalam masalah pencairan atau pemekata suatu cairan, masalah suku bunga bank, masalah pembelahan dan pertumbuhan sel, masalah mekanika klasik, masalah perubahan suhu, radiative cooling time dan lain sebagainya (Waluya, 2006). Persamaan diferensial muncul dalam berbagai bidang sains dan teknologi, bilamana hubungan deterministik yang melibatkan besaran yang berubah secara kontinu (dimodelkan oleh fungsi matematika) dan laju perubahannya (dinyatakan sebagai turunan) diketahui atau dipostulatkan. Hal ini terlihat pada masalah perpindahan kalor. Perpindahan kalor (Heat Transfer) adalah transisi energi termal dari suhu panas ke suhu yang lebih dingin. Ketika sebuah objek mempunyai suhu yang berbeda dibandingkan lingkungan atau objek lain, transfer energi panas, juga dikenal sebagai aliran panas, atau pertukaran panas, terjadi sedemikian rupa sehingga tubuh dan sekitarnya mencapai kesetimbangan termal; ini berarti bahwa lingkungan berada pada suhu yang sama. Perpindahan panas selalu terjadi dari temperatur yang lebih tinggi ke temperatur yang lebih dingin seperti yang dijelaskan oleh hukum kedua termodinamika atau pernyataan Clausius (Ruwanto, 2004). Dalam hal ini penulis membatasi pembahasan masalah hanya pada perpindahan panas pada mesin pengering padi yang berbentuk tabung di mana mesin dalam keadaan steady (suhu konstan terhadap waktu) dan unsteady (suhu berubah-ubah terhadap waktu). Konsep perpindahan kalor pada sistem pengeringan padi dilakukan pada pipa sebagai ruang pengering. Fenomena semacam ini dapat dimodelkan sebuah persamaan kalor pada sebuah pipa. Persamaaan kalor pada pipa akan lebih tepat apabila menggunakan koordinat tabung (cylindrical coordinates), karena pipa berbentuk tabung. Program untuk membuat simulasi yang digunakan adalah program maple. Bahasa yang digunakan maple adalah bahasa aplikasi sebab pernyataan yang merupakan masukan (input) pada maple merupakan deklarasi pada bahasa program dan perintah (comand) yang sering digunakan pada bahasa aplikasi. (Kartono, 2001). Pemodelan Persamaan Kalor Persamaan kalor pada sebuah pipa menggunakan koordinat tabung karena pipa berbentuk tabung (cylindrical coordinates), sehingga pemodelan dibentuk ke dalam persamaan kalor yang menggunakan koordinat katesius (x,y,z) yang kemudian diubah ke dalam koordinat tabung (r,,z). Pemodelan perpindahan kalor pada benda berdimensi tiga harus diperhatikan kalor yang dihantarkan ke dalam dan keluar benda dalam ketiga arah koordinat. Diberikan penampang balok seperti gambar 1 berikut. Keterangan : : Kalor masuk : Kalor keluar Gambar 1. Aliran konduksi kalor pada balok tiga dimensi 22

Menurut hukum konservasi energi bahwa tingkat perubahan sejumlah kalor dalam badan harus sama tingkat kalor yang mengalir keluar. Hukum tersebut dapat dinyatakan sebagaio berikut. Laju aliran kalor konduksi masuk = Perubahan energi dalam + Laju aliran kalor konduksi keluar. Dalam (Kreith, 1991) disebutkan bahwa Laju konduksi kalor yang keluar dari elemen yang melalui permukaan kanan pada x+dx yaitu qx+dx adalah Dari persamaan (1) sampai (4) diperoleh Kedua ruas dibagi sehingga diperoleh Dalam termodinamika, suatu sistem tormodinamik disebut berada dalam keadaan setimbang (steady state) jika sistem tersebut berada dalm keadaan setimbang mekanis, setimbang termal, dan setimbang secara kimia. Apabila ketiga syarat kesetimbangan tersebut tidak dipenuhi, maka system termodinamik berada dalam keadaan tak setimbang (unsteady state). (Zemansky and Dittman: 1986) Pandang u sebagai fungsi yang memuat variable (x, y, z) pada koordinat kartesius, sehingga untuk memodelkan perpindahan kalor pada mesin pengering padi diperlukan langkah langkah sebagai berikut: Menentukan jumlah kalor persatuan luas persatuan waktu yang masuk ke dalam maupun ke luar elemen balok adalah sebagai berikut : 1. Pada posisi x, jumlah kalor yang masuk maupun ke luar dimodelkan (1) x. y. z, Dari uraian di atas, diperoleh model matematika persamaan kalor pada koordinat kartesius sebagai berikut : (5) yaitu difusivitas termal (thermal divusivity). Persamaan kalor (5) akan diubah ke dalam koordinat tabung karena wadah pada mesin pengering padi berbentuk tabung, sehingga persamaan kalor yang menggunakan koordinat di atas dapat diubah ke dalam koordinat tabung di mana u(r,,z). 2. Pada posisi y, jumlah kalor yang masuk maupun ke luar dimodelkan (2) 3. Pada posisi z, jumlah kalor yang masuk maupun ke luar dimodelkan (3) Gambar 2. Analisis konduksi kalor tiga dimensi dalam koordinat tabung. Jumlah total kalor dalam elemen balok pada waktu t adalah Diketahui x=r cos, y=r sin, z=z, r=, =tan(-1)( ), z=z Dari suatu proses transformasi dipeorleh nilai dari Sehingga perubahan kalor pada elemen balok adalah (4) (6) 23

dan (7) Permasalahan: Mesin pengering padi jari jari = 50 cm, panjang pipa = 200 cm, suhu awal pemanasan = 90 C dan suhu akhir pemanasan = 75 C. Solusi: Didefinisikan solusi pemodelan adalah sebagai berikut: solusi:, dan Kemudian persamaan (6) dan (7) disubstitusikan ke persamaan (5) sehingga diperoleh, v(r,,z) : solusi keadaan mantap / suhu konstan terhadap waktu (steady state), w(r,,z,t): solusi keadaan transien / suhu berubah-ubah terhadap waktu (unsteady state) sehingga diperoleh persamaan: = yaitu difusivitas termal (thermal difusivity). Jadi persamaan kalor pada mesin pengering padi adalah sebagai berikut : III.Solusi Persamaan Kalor Berdasarkan penurunan model pada pembahasan sebelumnya, diperoleh model matematika untuk persamaan kalor pada mesin pengering padi 1. 2. 3. 4. 1. 2. 3. 4. Solusi Keadaan Steady Persamaan (8) batas: permisahan variabel (separation variables), diasumsikan solusinya berbentuk: solusi : kemudian disubstitusikan ke persamaan (8), diperoleh: Masing masing ruas pada persamaan (12) disamakan (konstanta pemisah), sehingga diperoleh: (9) (10) (11) (12) (1 3) 24

sehingga persamaan (13) yang kedua dapat ditulis masing masing ruas pada persamaan (14) disamakan, diperoleh: Dari pemisahan variabel di atas, diperoleh persamaan (13), (14) dan (15), yaitu: Dengan batas: (20) (21) (22) (14) (15) (23) Didefinisikan bahwa keadaan unsteady adalah (16) (17) (18) solusi pada Solusi: (24) Substitusikan persamaan (24) ke persamaan (20), diperoleh: Jadi solusi untuk persamaan kalor pada keadaan mantap/suhu konstan terhadap waktu (steady state) adalah sebagai berikut: (25) Masing masing ruas pada persamaan (25) disamakan -a^2 (konstanta pemisah), sehingga diperoleh: sehingga sehingga persamaan (26) dapat ditulis Untuk menyelesaikan solusi di atas diperlukan nilai awal, misal maka masing masing ruas pada persamaan (27) disamakan -b2, diperoleh: Persamaan (28) dapat ditulis deret fourier diperoleh: Masing masing ruas pada persamaan (29) disamakan -d2, diperoleh: Dari pemisahan variable di atas, diperoleh persamaan (27), (29), (30) yaitu: Sehingga solusinya adalah (26) (27) (28) (29) (30) (31) (32) (33) (34) Jadi solusi untuk T adalah Jadi solusi untuk persamaan kalor pada keadaan transien /suhu berubah ubah terhadap waktu (unsteady state) adalah sebagai berikut: Solusi Keadaan Unsteady persamaan (19) 25

Untuk menyelesaikan solusi di atas, diperlukan nilai awal misal: Diperoleh solusi, Sehingga, Untuk menyelesaikan solusi di atas, diperlukan nilai awal misal: Jadi Solusi untuk unsteady state adalah Fungsi Polinomial Jadi solusi untuk persamaan kalor pada mesin pengering padi adalah dimana, Gambar 4. Plot solusi persamaan kalor pada keadaan unsteady r=100 (persamaan r terhadap ) Berikut merupakan persamaan garis r terhadap. Pada selang (-2,2;0,8) pada gambar diperoleh persamaan sebagai berikut Pilih titik (-2,2;-220) dan (0,8;220), diperoleh IV.Variasi Nilai Awal 4.1.Steady State Fungsi Trigonometri Pada selang (0,8;4) pada gambar diperoleh persamaan sebagai berikut Pilih titik (0,8;220) dan (4;-220), diperoleh 26

penurunan model pada koordinat kartesius ke koordinat tabung adalah Berikut merupakan persamaan garis r terhadap z.. Model keadaan steady dan model keadaan unsteady. Solusi persamaankalor keadaan steady yang diperoleh menggunakan metode pemisahan variabel adalah Solusi untuk persamaan kalor keadaan unsteady yang diperoleh menggunakan metode pemisahan variabel adalah Gambar 5. Plot solusi persamaan kalor pada keadaan unsteady r=100 (persamaan r terhadap z) Pada selang (-100;100) pada gambar diperoleh persamaan sebagai berikut Pilih titik (0;0) dan (100;-50), diperoleh DAFTAR PUSTAKA Andriani, R. 2005. Persamaan Diferensi Linear dan Aplikasinya. Semarang : Skripsi Fakultas Matematika dan Ilmu Pengetahuan Alam, Unnes. (tidak diterbitkan) Kartono. 2001. Maple untuk Persamaan Diferensial (Edisi Pertama).Yogyakarta: J&J Learning Kreith, F. 1991. Prinsip Prinsip Perpindahan Panas. Jakarta : Erlangga. Ruwanto, B. 2004. Asas-Asas Fisika. Jakarta : Yudhistira. Waluya, S.B. 2006. Persamaan Diferensial. Yogyakarta : Graha Ilmu. Zemansky, M.W and Dittman R. H. 1986. Kalor dan Termodinamika. Bandung: ITB. Pada selang (100;300) pada gambar diperoleh persamaan sebagai berikut Pilih titik (200;0) dan (300;50), diperoleh Jadi Sehingga, Jadi Solusi untuk unsteady state adalah 5.Simpulan Simpulan yang dapat diambil dari hasil pembahasan pada Bab IV adalah sebagai berikut: Model persamaan kalor pada mesin pengering padi yang diperoleh 27