Pemodelan Matematika dan Metode Numerik

dokumen-dokumen yang mirip
Bab 4. Analisis Hasil Simulasi

BAB III HASIL DAN PEMBAHASAN. analitik dengan metode variabel terpisah. Selanjutnya penyelesaian analitik dari

[1] Beggs, H. Dale: Gas Production Operations, Oil and Gas Consultants International, Inc., Tulsa, Oklahoma, 1993.

Perpindahan Panas. Perpindahan Panas Secara Konduksi MODUL PERKULIAHAN. Fakultas Program Studi Tatap Muka Kode MK Disusun Oleh 02

BAB II LANDASAN TEORI

PERPINDAHAN PANAS DAN MASSA

PDP linear orde 2 Agus Yodi Gunawan

steady/tunak ( 0 ) tidak dipengaruhi waktu unsteady/tidak tunak ( 0) dipengaruhi waktu

Fluida atau zat alir adalah zat yang dapat mengalir. Zat cair dan gas adalah fluida. Karena jarak antara dua partikel di dalam fluida tidaklah tetap.

Aliran Fluida. Konsep Dasar

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

1. BAB I PENDAHULUAN Latar Belakang

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

Termodinamika. Energi dan Hukum 1 Termodinamika

TRANSPORT MOLEKULAR TRANSFER MOMENTUM, ENERGI DAN MASSA RYN. Hukum Newton - Viskositas RYN

K 1. h = 0,75 H. y x. O d K 2

II LANDASAN TEORI. dengan, 1,2,3,, menyatakan koefisien deret pangkat dan menyatakan titik pusatnya.

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

BAB 4 ANALISIS DAN BAHASAN

BAB II TINJAUAN PUSTAKA

BAB III PERSAMAAN DIFUSI, PERSAMAAN KONVEKSI DIFUSI, DAN METODE PEMISAHAN VARIABEL

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

BAB II PERSAMAAN DIFERENSIAL BIASA

PERPINDAHAN KALOR J.P. HOLMAN. BAB I PENDAHULUAN Perpindahan kalor merupakan ilmu yang berguna untuk memprediksi laju perpindahan

BAB III PEMODELAN DENGAN METODE VOLUME HINGGA

Metode Elemen Batas (MEB) untuk Model Konduksi-Konveksi dalam Media Anisotropik

Model Transien Aliran Gas pada Pipa

Lampiran 1. Perhitungan kebutuhan panas

BAB II DASAR TEORI. 2.1 Persamaan Kontinuitas dan Persamaan Gerak

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

BAB 2 TINJAUAN PUSTAKA

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB IV ANALISA DAN PERHITUNGAN

Gambar 2.1.(a) Geometri elektroda commit to Gambar user 2.1.(b) Model Elemen Hingga ( Sumber : Yeung dan Thornton, 1999 )

BAB II TINJAUAN PUSTAKA

FLUIDA BERGERAK. Di dalam geraknya pada dasarnya dibedakan dalam 2 macam, yaitu : Aliran laminar / stasioner / streamline.

PERSAMAAN SCHRÖDINGER TAK BERGANTUNG WAKTU DAN APLIKASINYA PADA SISTEM POTENSIAL 1 D

TINJAUAN PUSTAKA. diketahui) dengan dua atau lebih peubah bebas dinamakan persamaan. Persamaan diferensial parsial memegang peranan penting di dalam

BAB II TINJAUAN PUSTAKA

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

BAB II DASAR TEORI Pendahuluan. 2.2 Turbin [6,7,]

BAB IV PRINSIP-PRINSIP KONVEKSI

Perpindahan Panas Konveksi. Perpindahan panas konveksi bebas pada plat tegak, datar, dimiringkan,silinder dan bola

BAB II TINJAUAN PUSTAKA

Konduksi Mantap 2-D. Shinta Rosalia Dewi

Fisika Panas 2 SKS. Adhi Harmoko S

Bab 2 TEORI DASAR. 2.1 Model Aliran Panas

METODE BEDA HINGGA DALAM PENENTUAN DISTRIBUSI TEKANAN, ENTALPI DAN TEMPERATUR RESERVOIR PANAS BUMI FASA TUNGGAL

SOAL TRY OUT FISIKA 2

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS

FISIKA 2015 TIPE C. gambar. Ukuran setiap skala menyatakan 10 newton. horisontal dan y: arah vertikal) karena pengaruh gravitasi bumi (g = 10 m/s 2 )

Teori Kinetik Zat. 1. Gas mudah berubah bentuk dan volumenya. 2. Gas dapat digolongkan sebagai fluida, hanya kerapatannya jauh lebih kecil.

BAB IV KAJIAN CFD PADA PROSES ALIRAN FLUIDA

II. TINJAUAN PUSTAKA

IV. HASIL DAN PEMBAHASAN

C21 FISIKA SMA/MA IPA. 1. Seorang siswa mengukur panjang dan lebar suatu plat logam menggunakan mistar dan jangka sorong sebagai berikut.

Pemodelan Distribusi Suhu pada Tanur Carbolite STF 15/180/301 dengan Metode Elemen Hingga

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

TRANSFER MOMENTUM FLUIDA DINAMIK

BAB 3 METODOLOGI PENELITIAN

BAB III PEMODELAN PERSAMAAN INTEGRAL PADA ALIRAN FLUIDA

TEORI KINETIK GAS (II) Dr. Ifa Puspasari

MODUL 4 IMPULS DAN MOMENTUM

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

BAB IV ANALISA DAN PERHITUNGAN

BAB I PENDAHULUAN I.1.

Metode Elemen Batas (MEB) untuk Model Konduksi Panas

SIMULASI NUMERIK UJI EKSPERIMENTAL PROFIL ALIRAN SALURAN MULTI BELOKAN DENGAN VARIASI SUDU PENGARAH

BAB 2 ENERGI DAN HUKUM TERMODINAMIKA I

Studi Analitik dan Numerik Perpindahan Panas pada Fin Trapesium (Studi Kasus pada Finned Tube Heat Exchanger)

FENOMENA PERPINDAHAN. LUQMAN BUCHORI, ST, MT JURUSAN TEKNIK KIMIA FAKULTAS TEKNIK UNDIP

1.1 Latar Belakang dan Identifikasi Masalah

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG

11/25/2013. Teori Kinetika Gas. Teori Kinetika Gas. Teori Kinetika Gas. Tekanan. Tekanan. KINETIKA KIMIA Teori Kinetika Gas

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

BAB II TINJAUAN PUSTAKA

HIDROLIKA SALURAN TERTUTUP -PUKULAN AIR (WATER HAMMER)- SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN

BAB II TINJAUAN PUSTAKA Tinjauan tentang aplikasi sistem pengabutan air di iklim kering

FENOMENA PERPINDAHAN LANJUT

Transmisi Bunyi di Dalam Pipa

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

Konduksi Mantap Satu Dimensi (lanjutan) Shinta Rosalia Dewi

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

Bab VIII Teori Kinetik Gas

P I N D A H P A N A S PENDAHULUAN

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

FIsika FLUIDA DINAMIK

BAB II LANDASAN TEORI

( v 2 0.(sin α) 2. g ) 10 ) ) 10

BAB I BESARAN DAN SISTEM SATUAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

PENGARUH KECEPATAN UDARA TERHADAP TEMPERATUR BOLA BASAH, TEMPERATUR BOLA KERING PADA MENARA PENDINGIN

JURNAL TEKNIK POMITS Vol. 3, No. 2, (2014) ISSN: ( Print) B-192

Transkripsi:

Bab 3 Pemodelan Matematika dan Metode Numerik 3.1 Model Keadaan Tunak Model keadaan tunak hanya tergantung pada jarak saja. Oleh karena itu, distribusi temperatur gas sepanjang pipa sebagai fungsi dari jarak dapat dihitung dengan menggunakan hukum kekekalan energi yang menyatakan laju perubahan energi suatu sistem sama dengan jumlah panas dikurangi jumlah kerja pada sistem tersebut, dengan mengasumsikan proses perpindahan panas yang terjadi bersifat tunak dan tidak ada kerja yang dilakukan oleh sistem, sehingga diperoleh persamaan sebagai berikut : q = de dt. 3.1) Perhitungan laju perubahan energi dalam kasus ini dijelaskan dengan menggunakan konsep fluks. Akan diperhatikan proses aliran energi dalam suatu segmen x sampai dengan x + x pada kontrol volum Gambar 3.1), untuk mendapatkan laju 29

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 3 perubahan energi dengan konsep fluks. Misalkan energi yang masuk melalui titik x adalah f x) sedangkan energi yang masuk melalui titik x + x adalah f x + x). Jika f bernilai positif, maka energi mengalir masuk ke dalam segmen melalui sebelah kiri titik ujung x, sedangkan penulisan tanda minus untuk f x + x) dibutuhkan karena f x + x) > menunjukkan energi mengalir ke sebelah kanan titik ujung x + x. Sehingga laju perubahan energi adalah : f x) f x + x). 3.2) Berdasarkan aproksimasi Taylor, Persamaan 3.2) merupakan turunan pertama f x), yaitu : f x. 3.3) Dengan mengabaikan energi potensial dan kinetik, dan mengasumsikan tidak ada efek nuklir, listrik, dan magnetik, maka dengan menguraikan energi yang terjadi pada sistem yaitu hanya energi panas MC v T) dan energi yang menyebabkan kehilangan tekanan M p ρ ), dengan M sebagai mass flow, yaitu aliran massa yang melewati luas penampang A, M = ρva, maka f adalah : MC v T + p ρ ). 3.4) Gambar 3.1: Segmen x sampai dengan x + x pada Kontrol Volum.

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 31 Dengan mensubstitusikan f yang berbentuk Persamaan 3.4) ke dalam Persamaan 3.3) dan menotasikan V sebagai volume sehingga V = 1/ρ, maka laju perubahan energi menjadi, M dc vt + pv) dx. 3.5) dx Dengan mengasumsikan gas yang dialirkan bersifat ideal, sehingga pv = RT dan C p = C v + R, maka Persamaan 3.5) menjadi, MC p dt. 3.6) Dengan mensubstitusikan Persamaan 3.6) ke dalam Persamaan 3.1), maka diperoleh, q = MC p dt. 3.7) Mengenai panas q) yang terjadi di sistem, dengan sistem pada kasus ini adalah sebuah pipa Gambar 3.2), akan dibahas sebagai berikut. Terjadi aliran gas sepanjang pipa dari ujung pipa di kiri x sampai dengan ujung pipa di kanan x+ x, dengan temperatur gas T) yang lebih besar dibandingkan dengan temperatur lingkungan ). Hal ini yang mengakibatkan terjadinya perpindahan panas sepanjang dx dari gas ke lingkungan sekitarnya secara konveksi, sehingga temperatur gas terus berkurang sampai mendekati temperatur sekitarnya. Konveksi adalah perpindahan panas yang terjadi antara permukaan dan media bergerak fluida) yang mempunyai temperatur berbeda melalui proses difusi ataupun dengan cara mengalirnya fluida tersebut dari molekul dengan temperatur yang lebih tinggi ke molekul dengan temperatur yang lebih rendah. Dengan demikian, panas yang terjadi akibat proses konveksi menurut Newton s law of cooling, dapat dituliskan ke dalam bentuk persamaan seperti, q = k L T )dx, 3.8)

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 32 dengan k L adalah koefisien perpindahan panas secara konveksi yang bergantung pada kondisi batas yang dipengaruhi oleh geometri permukaannya dan gerakan fluida. Gambar 3.2: Perpindahan Panas secara Konveksi di dalam Pipa. Dengan mensubstitusikan Persamaan 3.8) ke dalam Persamaan 3.7), maka diperoleh persamaan, MC p dt = k L T )dx. 3.9) Dengan membentuk Persamaan 3.9) seperti berikut, dt T ) = k L MC p dx. akan diperoleh persamaan untuk menghitung distribusi temperatur gas sepanjang pipa sebagai fungsi dari jarak, yaitu dengan cara mengintegralkan kedua suku per-

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 33 samaan tersebut. Langkah - langkahnya adalah sebagai berikut : Tx) T) dt T ) = k L MC p x dx. Hasil pengintegralannya adalah sebagai berikut, lnt ) Tx) T) = k L MC p x x. Dengan mensubstitusi batas integralnya akan menghasilkan persamaan, ln ) Tx) Tamb ) = k L x. T) ) MC p Dengan memberikan eksponen di kedua ruas persamaan di atas, maka akan diperoleh persamaan untuk menghitung distribusi temperatur gas sepanjang pipa sebagai fungsi dari jarak, yaitu: Tx) = + T) )exp αx, 3.1) dengan α = k L /MC p Sedangkan untuk mendapatkan persamaan yang dapat menghitung distribusi tekanan sepanjang pipa sebagai fungsi dari jarak, dapat diperoleh dengan cara berikut : Dari persamaan untuk mendapatkan mass flow, bisa diperoleh v = M/ρA, persamaan ini akan di substitusikan ke dalam persamaan penurunan tekanan aki-

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 34 bat gaya gesek, Persamaan 2.37) dp dx = 2 f gρv 2 D ), sehingga akan diperoleh, dp dx = 2 f gm 2 ρa 2 D. 3.11) Persamaan mencari rapat massa, Persamaan 2.15) ρ g = pm g ZRT ), akan disubstitusikan ke dalam Persamaan 3.11), sehingga diperoleh, dp dx = 2 f gm 2 ZRT pm g A 2 D. 3.12) Dengan menggunakan turunan parsial, dp 2 dx yang dapat dituliskan menjadi bentuk 2p dp dx, sehingga dengan mensubstitusi Persamaan 3.12) ke dalam bentuk turunan parsial tersebut, akan diperoleh, dp 2 dx = 4 f gm 2 ZRT M g A 2 D. 3.13) Dengan mensubstitusi persamaan untuk menghitung distribusi temperatur gas sepanjang pipa sebagai fungsi dari jarak, Persamaan3.1) ke dalam Persamaan 3.13), maka akan diperoleh, dp 2 = 4 f gm 2 ZR dx + T) )exp αx dx) M g A 2 D. 3.14) Dengan mengintegralkan Persamaan 3.14), suku kiri terhadap p 2 dengan batas p dari p) sampai dengan px) dan suku kiri terhadap x dengan batas x dari sampai dengan x, maka akan diperoleh, p 2 px) p) = ZR [ 4 f A 2 x x M g D T) ) [ exp αx ) ] ) ] x M 2 α. 3.15)

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 35 Dengan memasukkan nilai batas integralnya, maka akan diperoleh persamaan akhir untuk menghitung distribusi tekanan yang hanya bergantung pada jarak saja, yaitu : dengan px) = p) 2 KM 2, 3.16) K = ZR A 2 M g [ 4 f x + T) T )] amb )1 exp αx ) D α. 3.2 Model Keadaan Transien Berbeda dengan keadaan tunak, keadaan transien merupakan keadaan yang bergantung pada jarak dan waktu. Pada Persamaan energi 2.48), akan dijabarkan panas per unit massa per unit satuan luas qρa) yang terjadi pada sistem dengan kondisi transien. Dengan mengasumsikan perpindahan panas yang terjadi hanya proses konduksi yang melewati dinding pipa dan konveksi yang terjadi antara partikel fluida di dalam pipa, yang dapat mengakibatkan perpindahan panas dari gas ke lingkungan sekitar Gambar 3.3). Dengan menggunakan konsep fluks pada proses konduksi dan asumsi seperti yang telah disebutkan di atas, maka didapatkan persamaan, qρadx = q konduksi x q konduksi x+dx q konveksi. 3.17) Konduksi adalah perpindahan panas melalui media diam yang diakibatkan oleh aktivitas partikel dan energi yang berpindah dari partikel dengan temperatur yang lebih tinggi ke partikel dengan temperatur yang lebih rendah. Dengan demikian, panas yang terjadi akibat proses konduksi menurut Fourier s law of cooling, dapat

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 36 Gambar 3.3: Perpindahan Panas Konveksi dan Konduksi di dalam Pipa. dituliskan ke dalam bentuk persamaan, q = λ T, 3.18) dengan λ adalah konduktivitas bahan yang dilalui panas. Lalu, Persamaan 3.18) dan 3.8) akan disubstitusikan ke dalam Persaman 3.17), sehingga menjadi, qρadx = λ T + λ T + ) λ T ) k L T )dx, dengan T λ ) sebagai perubahan panas akibat konduksi sepanjang dx. Dengan menyederhanakan persamaan tersebut, akan diperoleh persamaan akhir yaitu : qρadx = λ T ) k LT )dx. 3.19) Dengan mengkombinasikan antara Persamaan 2.48) dan 3.19), akan diperoleh

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 37 persamaan, ρvac vtdx) } {{ } 1 + k L T ) dx } {{ } 4 + ρvap dx ) ρ } {{ } 2 + t ρac vtdx) } {{ } 5 λa T ) dx } {{ } 3 =. 3.2) Akan diintegralkan tiap suku Persamaan 3.2) terhadap x, dengan x dari x = sampai x = L. Lalu dengan memasukkan data yang dibutuhkan pada hasil pengintegralan, akan dilakukan analisis dimensi untuk mendapatkan model yang lebih sederhana. Data masukan yang dibutuhkan adalah, Besaran Keterangan Nilai Satuan γ g Specific Gravity gas,6538 P Tekanan di inlet 1146,17 psia T Temperatur di inlet 36,48 K T L Temperatur di outlet 285,7 K Temperatur lingkungan 284,7 K R Konstanta gas universal 518,8 J/kg K C v Specific Heat 1,759x1 3 J/kg K C p Specific Heat 2,278x1 3 J/kg K k L Koef. perpindahan panas konveksi 25 W/m K L Panjang pipa 369 m D Diameter pipa,67945 m ɛ Koef. kekasaran pipa, 1968 λ Konduktivitas bahan 3,4x1 2 W/m K Q Laju alir 858791,67 m 3 /h Tabel 3.1: Data Masukan. Dari data masukan di atas, dapat dicari rapat massa, faktor deviasi, kecepatan suara, dan faktor gesekan dengan korelasi pada bab 2, yaitu :

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 38 Besaran Keterangan Nilai Satuan ρ Rapat massa 69,51853 kg/m 3 Z Faktor deviasi,8445 c Kecepatan suara 337,188 m/s f g Faktor gesekan,8 Tabel 3.2: Hasil Perhitungan ρ,z, c dan f g. Proses pengintegralan Persamaan 3.2) dan proses memberikan data yang ada di Tabel 3.1 dan 3.2 pada hasil pengintegralan adalah sebagai berikut : 1. L ρvac vt)dx ρqc v T x=l T x= ) 69,5 858791,67 1,759x1 3 2,78 36 6x1 9. 2. L ρvap ρ ) dx ρqzrt x=l T x= ) 69,5 858791,67,8445 518,8 2,78 36 1,5x1 9.

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 39 3. L λa T ) dx λa T x=l T x= ) x 3,4x1 2 π 4,679452,56 23,93) 4,36x1 5, 4. Dengan T x= dan T x=l diperoleh dari selisih nilai temperatur pada keadaan tunak di titik x = dan x = L. L k L T )dx k L LT ) 25 369 36,48 284,7) 2x1 8. 5. L t ρac vt)dx ρac v L T t 69,5 π 4,679452 1759 369 5 36 2,2x1 7, Dengan memisalkan penambahan temperatur yang terjadi adalah 5 K dalam waktu 1 jam. Dengan melihat hasil pengintegralan di atas, akan dilakukan analisis dimensi, yaitu dengan mengabaikan suku yang nilainya sangat kecil dibandingkan

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 4 dengan nilai yang lainnya, dalam arti nilai tersebut sangat kecil pengaruhnya. Dengan demikian, suku ke empat akan diabaikan, karena nilainya terlalu kecil dibandingkan dengan nilai suku lainnya, sehingga akan didapatkan penyederhanaan dari Persamaan energi 3.2) menjadi, [ ρadxcv T) ] + [ ρvadx C v T + p )] = k L T )dx. 3.21) t ρ Dengan mensubstitusikan p = c 2 ρ dan mx,t) = ρx,t)vx,t) ke dalam Persamaan 3.21), maka model aliran transien dengan pipa horizontal dapat direpresentasikan oleh persamaaan berikut : ρ t + m) =, ) m t + m 2 ρ +c2 ρ = f gm m 2Dρ, t [ ρacv T ] + [ ma Cv T + c 2)] = k L T ). 3.22) 3.3 Metode Numerik Pada subbab ini akan dibahas skema numerik yang akan digunakan pada Persamaan 3.22) untuk mengetahui distribusi aliran yang bersifat transien sepanjang pipa. Sebelumnya akan dibahas terlebih dahulu mengenai analisis dimensi, syarat awal dan syarat batas. 3.3.1 Analisis Dimensi Analisis dimensi yang dilakukan disini adalah mengubah besaran menjadi besaran tidak berdimensi dengan tujuan menyederhanakan model yang akan diselesaikan secara numerik. Akan dilakukan analisis dimensi pada Persamaan 3.22),

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 41 dengan memilih beberapa besaran sebagai acuan. Untuk besaran panjang, dipilih panjang pipa L) sebagai acuan, lalu untuk rapat massa dipilih rapat massa di inlet ρ ) sebagai acuan, sedangkan untuk temperatur dipilih temperatur lingkungan ) sebagai acuan dan untuk kecepatan dipilih kecepatan suara c) sebagai acuan. Selain itu, ada besaran yang dibuat tak berdimensi terhadap besaran acuan yang telah ditentukan di atas, seperti fluks massa, besaran ini akan dibuat tak berdimensi terhadap fluks massa di inlet m ) dengan m = ρ c. Selain itu, besaran waktu, besaran ini akan dibuat tak berdimensi terhadap t dengan t = L/c. Apabila ruas kanan t = L/c dikalikan dengan ρ ρ, maka t = Lρ m. Secara umum, analisis dimensi dapat diringkas sebagai berikut : x = x L, ρ = ρ ρ, T = T, m = m, t = t. m t Dengan mensubstitusi besaran yang telah dibuat tak berdimensi pada Persamaan 3.22) yang pertama, diperoleh ρ t + m x =. 3.23) Sedangkan dengan mensubstitusikan besaran yang telah dibuat tak berdimensi untuk Persamaan 3.22) yang kedua, diperoleh m t + m 2 ρ + ρ) = L f g m m. 3.24) x 2D ρ Dan yang terakhir, akan disubstitusikan besaran yang telah dibuat tak berdimensi untuk Persamaan 3.22) yang ketiga, dengan sebelumnya membuat persamaan tersebut menjadi lebih sederhana, yaitu dengan membagi persamaan tersebut dengan

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 42 AC v, sehingga menjadi, [ )] [ ] ρt + m T + c2 = k L T ). t C v AC v Akan dibuat pemisalan, yaitu λ 1 = c2 C v dan λ 2 = k L AC v. Dengan mensubstitusikan λ 1, λ 2, dan besaran yang telah dibuat tak berdimensi, maka akan diperoleh ρ T t + m T + λ ) 1 = λ 2t T 1 ). 3.25) x ρ Persamaan 3.23), 3.24) dan 3.25) memuat semua variabel yang sudah tidak berdimensi lagi. Ketiga persamaan tersebut yang akan digunakan dalam skema numerik. Namun, untuk kemudahan notasi, tanda. akan dihilangkan, sehingga penulisannya menjadi, ρ t + m ) m t + m 2 ρ +ρ ρt t + m =, = L f gm m 2Dρ, ) T+ λ 1 = λ 2t ρ T 1). 3.26) 3.3.2 Syarat Awal Dalam melakukan proses numerik, dibutuhkan syarat awal. Pada kasus ini, proses aliran bersifat tunak pada kondisi awalnya. Oleh karena itu, keadaan tunak digunakan sebagai syarat awal. Proses aliran bersifat tunak dalam arti sifat fluidanya tidak mengalami perubahan terhadap waktu. Apabila direpresentasikan ke dalam bentuk persamaan, maka menjadi ρ t =, m t =, ρt) t =. 3.27)

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 43 Akan disubstitusikan Persamaan 3.27) ke dalam Persamaan 3.26), yaitu menjadi =, m 2 m ) ρ +ρ m = L f gm m 2Dρ, ) T+ λ 1 = λ 2t ρ T 1). 3.28) Dari Persamaan 3.28) yang pertama, m = memberi arti bahwa fluks massa bernilai konstan sepanjang pipa, karena yang diketahui adalah nilai fluks massa di inlet yaitu m, maka untuk keadaan tunak nilai fluks massa sepanjang pipa konstan sebesar nilai fluks massa di inlet yaitu m. Dengan hubungan antara fluks massa dan laju alir, akan diperoleh distribusi laju alir sepanjang pipa untuk keadaan tunak. Distribusi laju alir untuk keadaan tunak bersifat konstan sepanjang pipa, sama seperti nilai fluks massa untuk keadaan tunak. ) Sedangkan untuk Persamaan 3.28) kedua, m 2 ρ +ρ dengan mengganti m dengan m diperoleh m 2 lnρ + 1 2 ρ2 = L f gm 2 x 2D = L f gm m 2Dρ +C. 3.29) Dengan mensubstitusi ρ = 1, maka akan diperoleh C = 1/2, sehingga apabila disubstitusikan ke dalam Persamaan3.29) diperoleh persamaan akhir, yaitu : f ρ) = 2Dlnρ L f g D L f g m 2 ρ 2 1 ) x =. 3.3) Masalah di atas sama dengan mencari akar fungsi terhadap ρ. Dalam tugas akhir ini, digunakan metode Newton Raphson untuk mencari akar fungsi terhadap ρ, dengan x yang merupakan panjang pipa akan dibagi menjadi beberapa segmen, misal-

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 44 kan J segmen, dengan tiap segmen mempunyai panjang x. Dengan proses tersebut dan hubungan antara rapat massa dan tekanan yang direpresentasikan melalui persamaan keadaan, maka akan diperoleh distribusi tekanan sepanjang pipa untuk keadaan tunak Gambar 3.4). Distribusi tekanan untuk keadaan tunak bersifat menurun sepanjang pipa. Gambar 3.4: Tekanan pada Keadaan Tunak. ) Dan terakhir untuk persamaan 3.28) ketiga, m T+ λ 1 = λ 2t ρ T 1) dengan mengganti m dengan m, diperoleh m lnt 1) = λ 2t ρ x +C. 3.31) Dengan mensubstitusikan temperatur di inlet yang telah dibuat tak berdimensi yaitu T = T, maka diperoleh C = m ln T 1 ), sehingga apabila disubstitusikan ke dalam Persamaan 3.31) dan membentuk kedalam fungsi temperatur T terhadap x,

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 45 diperoleh persamaan akhir, yaitu : ) Tx) = 1 + exp λ 2 t ρ m x T 1. 3.32) Dengan Persamaan 3.32) akan diperoleh distribusi temperatur sepanjang pipa pada keadaan tunak Gambar 3.5). Distribusi temperatur bersifat menurun menuju temperatur lingkungan, setelah mencapai temperatur lingkungan, nilai temperatur tidak dapat turun lagi. Gambar 3.5: Temperatur pada Keadaan Tunak. 3.3.3 Syarat Batas Pada dasarnya syarat batas diperoleh dari masalah di lapangan. Dalam tugas akhir ini, syarat batas yang diketahui adalah nilai laju alir di inlet dan di outlet Gambar 3.6) dan Gambar 3.7), yang akan dikonversikan ke dalam fluks massa.

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 46 Gambar 3.6: Laju Alir di Inlet Waktu Simulasi 7 jam. Data diberikan pada Tabel 3.3. Selain itu, diketahui juga syarat batas untuk temperatur di inlet yaitu bernilai konstan. Waktu Laju Alir di Inlet Laju ALir di Outlet Satuan 1 jam 24.211 191.42 MMS CF/D 1 2 jam 24.78 175.192 MMS CF/D 2 3 jam Turun secara linear 166.53 MMS CF/D 3 4 jam 176.556 MMS CF/D 4 5 jam 163.224 MMS CF/D 5 6 jam Naik secara linear 166.564 MMS CF/D 6 7 jam 285.62 16.842 MMS CF/D Tabel 3.3: Syarat Batas. Untuk nilai yang tidak diketahui pada batasnya, dalam kasus ini adalah rapat massa ρ) dan ρt) di outlet, dapat diperoleh dengan cara diskritisasi Persamaan 3.26) untuk persamaan yang pertama dan ketiga. Sebelumnya L yang merupakan panjang pipa akan dibagi menjadi beberapa segmen, misalkan J segmen, dengan

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 47 tiap segmen mempunyai panjang x dan t yang merupakan waktu proses terjadinya transien akan dibagi menjadi beberapa segmen, misalkan N segmen, dengan tiap segmen mempunyai panjang t. Maka notasi ρ n dan ρn J yang berturut - turut adalah rapat massa gas di inlet dan outlet pada waktu ke-n. Proses diskritisasi persamaan 3.26) untuk persamaan yang pertama dan ketiga, yaitu : 1. Diskritisasi untuk rapat massa ρ) di inlet : ρ n+1 = ρ n + t ) m n x m n 1. 3.33) 2. Diskritisasi untuk rapat massa ρ) di outlet : ρ n+1 J = ρ n J + t ) m n x J 1 m n J. 3.34) 3. Diskritisasi untuk ρt) di outlet : ρ n+1 J T n+1 J = ρ n J T n J t x [ m n J T n J + λ 1 ) m n J 1 T n J 1 + λ 1 ) ] λ 2t ρ T n J 1 ) t. 3.35) 3.3.4 Skema Lax-Wendroff Pada sub bab ini, akan dijelaskan mengenai skema numerik yang digunakan dalam penyelesaian. Sebelumnya perhatikan Persamaan 3.26). Persamaan tersebut dapat ditulis ke dalam bentuk vektor seperti, U t + F U) = r U), 3.36)

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 48 Gambar 3.7: Laju Alir di Outlet Waktu Simulasi 7 jam. dengan U = ρ m ρ T, F U) = m 2 ρ m + ρ m T + λ ) 1, r U) = L f g m m 2ρD λ 2 t ρ T 1). Skema numerik yang akan digunakan merupakan skema Lax-Wendroff dua langkah, dengan stencil Gambar 3.8). Adapun skema Lax-Wendroff dua langkah yaitu : U n+1 = 1 U n j+ 2 1 2 j+1 + ) U n t j F U n 2 x j+1 ) F U n j + r U n j ) t, 3.37) U n+1 j = U n j t F x U n+1 j+ 1 2 F U n+1 j 1 2 ) + r U n j ) t, 3.38)

BAB 3. PEMODELAN MATEMATIKA DAN METODE NUMERIK 49 dengan j = 1,2,..., J 1, dan U n j = ρ n j m n j ρ n j T n j, F n j U n j ) = m n j m n j m n 2 j ρ n j + ρ n j T n j + λ ) 1, r U) = L f g m n j m n j 2ρ n j D λ 2 t ρ T n j 1 ). Gambar 3.8: Stencil Skema Lax-Wendroff Dua Langkah. Notasi U n j ke- j pada step waktu ke-n. menyatakan rapat massa ρ), fluks massa m) dan ρt) di segmen