Teori Bahasa Formal dan Automata
|
|
|
- Liani Wibowo
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Teori Bahasa Formal dan Automata Pertemuan 3 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA
2 MENDESAIN DFA Jika di definisikan = {0, 1}, bangunlah sebuah DFA yang dapat menerima bahasa yang merepresentasikan bilangan biner untuk suatu bilangan desimal kelipatan 3. Contoh: L L L
3 REVIEW DFA memiliki δ(q, a) yang unik, dimana setiap q memiliki satu (dan hanya satu) transisi keluar untuk setiap simbol a. Sifat deterministik mengartikan: Untuk setiap string input tertentu w, eksekusi dan hasilnya dapat dengan jelas diprediksi dan dapat diulangi. Sehingga hasil dari eksekusi yang sama, walaupun dilakukan secara berulang maka akan tetap menghasilkan yang sama.
4 POKOK BAHASAN Non - Deterministic Finite Automata (NFA) NFA secara formal Pohon Trace Eksekusi Extended Transition Function Penerapan NFA Ekivalensi DFA dan NFA
5 Non-Deterministic Finite Automata (NFA) δ(q, a) adalah himpunan state-state: Bisa jadi himpunan kosong, atau Lebih dari satu state Maka, q bisa memiliki beberapa atau tidak sama sekali, transisi keluar untuk a. NFA dapat menebak langkah yang tepat, dikarenakan terdapat beberapa pilihan (Ciri dari Non-Deterministic)
6 CONTOH NFA Ide : L = {w {0, 1}* w berakhir dengan 01} Di suatu state NFA menebak bahwa akhir dari input sudah akan dimulai. Pada permasalahan ini NFA akan menunggu 01, dengan menggunakan non-deterministic.
7 POHON EKSEKUSI Trace eksekusi dari non-deterministic adalah tidak unik. Trace eksekusi dapat membentuk pohon trace eksekusi yang mungkin dapat diproses. Berikut contoh ketika NFA memproses input (dengan desain mesin NFA pada slide sebelumnya)
8 ACCEPTING CONDITION Menerima : Jika terdapat paling sedikit satu path yang berakhir di Final State pada pohon trace eksekusi. Menolak : jika semua path yang mungkin terhenti (Stuck/Halt) atau berakhir di state yang bukan Final State. Interpretasi: NFA selalu mengambil pilihan yang benar untuk memastikan penerimaan (asumsi: path yang berakhir pada Final State memang ada). NFA membuat copy dirinya sendiri untuk menelusuri semua path yang mungkin. NFA menjelajahi semua path secara pararel
9 ACCEPTING CONDITION Meskipun NFA bebas menebak, NFA tetap harus memastikan bahwa salah satu dari tebakannya adalah benar. Hal tersebut dilakukan dengan cara menebak semua tebakan yang mungkin dan mengarah pada Final State.
10 NFA SECARA FORMAL Memiliki definisi formal yang hampir mirip dengan DFA: A = (Q,, δ, q 0, F) Q merupakan sekumpulan state yang terhingga merupakan sejumlah terhingga dari alfabet/simbol/input δ merupakan fungsi transisi dari Q x pada powerset dari Q q 0 Q merupakan start state F Q merupakan final state
11 NFA SECARA FORMAL Contoh NFA secara formal dari desain mesin pada slide sebelumnya ({q 0, q 1, q 2 }, {0, 1}, δ, q 0, {q 2 }) Dimana fungsi transisinya dapat digambarkan sebagai berikut
12 LATIHAN 1 Bangunlah desain diagram transisi jika diberikan NFA secara formal dan tabel transisi sebagai berikut! ({p, q, r, s}, {0, 1}, δ, p, {s}) Lakukanlah trace eksekusi untuk string 01001!
13 Extended Transition Function δ q, w : himpunan state-state yang dapat dicapai dari q pada string input w. Definisi induktif : Basis : δ q, ε = q, Induksi : δ q, xa = δ p i, a p i δ q,x Contoh: dengan menggunakan desain mesin pada slide sebelumnya, buktikan apakah string dapat diterima.
14 Extended Transition Function Contoh: dengan menggunakan desain mesin pada slide sebelumnya, buktikan apakah string dapat diterima. 1. δ q 0, ε = *q δ q 0, 0 = δ p i, 0 p i δ q 0,ε 3. δ q 0, 00 = δ p i, 0 p i δ q 0,0 = δ q 0, 0 = *q 0, q 1 + = δ q 0, 0 δ q 1, 0 = q 0, q 1 = q 0, q 1 4. Lanjutkan
15 LATIHAN 2 Definisikanlah bahasa yang diterima oleh mesin NFA berikut! Buktikan apakah string diterima oleh mesin tersebut!
16 EKIVALENSI DFA DAN NFA Untuk setiap NFA terdapat DFA yang dapat menerima bahasa yang sama. Power(DFA) Power(NFA) Kepentingan terhadap ekivalensi: DFA dapat diimplementasikan dengan mudah menggunakan komputer NFA lebih mudah dibangun, dimengerti dan dibuat spesifikasinya
17 SECARA FORMAL Diberikan : N = (Q N,, δ N, q 0, F N ), Bangun : A = (Q A,, δ A, {q 0 }, F A ), Sedemikian sehingga : Q A = 2 Q N F A = *S Q N S F N + Dan untuk setiap state baru S : δ A S, a = δ N (p i, a) p i S
18 Simulasi Ekivalensi DFA & NFA Semua state yang tidak bisa dicapai dari Start State dapat dihilangkan karena tidak esensial untuk perilaku DFA yang diperoleh.
19 LATIHAN 3 Lakukanlah konversi dari desain NFA pada Latihan 1 ke bentuk desain mesin DFA!
20 PUSTAKA John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction To Automata Theory, Languages, and Computation Dr.-Ing. Reza Pulungan, M.Sc. Bahan Ajar Teori Komputasi. JIKE UGM.
21 Terima Kasih!
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 2 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Finite Automata Notasi Finite Automata Deterministic Finite
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 5 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA REVIEW Apa perbedaan antara NFA dan ϵ-nfa? Apa yang dimaksud dengan
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 11 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Konversi antar 2 Jenis PDA Ekivalensi PDA dan CFG HUBUNGAN
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 12 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Penghilangan ε-production Penghilangan Unit Production
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 9 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Grammar Grammar secara Formal Context Free Grammar Terminologi
Lecture Notes Teori Bahasa dan Automata
Ekuivalensi State (Ed. 1) 1/5 Lecture Notes Teori Bahasa dan Automata Uji Ekuivalensi State Deterministic Finite Automata Thompson Susabda Ngoen Beberapa deterministic finite automaton (DFA) yang berbeda
Lecture Notes Teori Bahasa dan Automata
Pumping Lemma RL (edisi 2) 1/5 Lecture Notes Teori Bahasa dan Automata Pumping Lemma Untuk Regular Language Thompson Susabda Ngoen Revisi 1 Hopcroft mengatakan regular language dapat dideskripsikan dengan
FINITE STATE MACHINE / AUTOMATA
FINITE STATE MACHINE / AUTOMATA BAHASA FORMAL Dapat dipandang sebagai entitas abstrak, yaitu sekumpulan string yang berisi simbol-simbol alphabet Dapat juga dipandang sebagai entitasentitas abstrak yang
NonDeterministic Finite Automata. B.Very Christioko, S.Kom
NonDeterministic Finite Automata Perbedaan DFA dan NFA DFA (Deterministic Finite Automata) FA di dalam menerima input mempunyai tepat satu busur keluar. NFA (Non Deterministic Finite Automata) FA di dalam
BAB 1 PENDAHULUAN. sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam hierarki kelas-kelas bahasa menurut Chomsky, kelas bahasa yang paling sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan tepat
FINITE STATE AUTOMATA
Otomata & Teori Bahasa FINITE STATE AUTOMATA www.themegallery.com Contents 2 3 4 Finite State Automata Implementasi FSA Deterministic Finite Automata (DFA) Non-deterministic Finite Automata (NFA) Finite
Non-Deterministic Finite Automata
CSG3D3 Teori Komputasi Non-Deterministic Finite Automata Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,
Pendahuluan [6] FINITE STATE AUTOMATA. Hubungan RE & FSA [5] Finite State Diagram [6] 4/27/2011 IF-UTAMA 1
FINITE STATE AUTOMATA Pertemuan 9 & 10 Dosen Pembina : Danang Junaedi 1 Pendahuluan [6] Bahasa formal dapat dipandang sebagai entitas abstrak, yaitu sekumpulan string yang berisi simbol-simbol alphabet
BAB I PENDAHULUAN 1-1
BAB I PENDAHULUAN 1.1 Pendahuluan Ilmu komputer memiliki dua komponen utama: pertama, model dan gagasan mendasar mengenai komputasi, kedua, teknik rekayasa untuk perancangan sistem komputasi, meliputi
TEORI BAHASA DAN OTOMATA [TBO]
TEORI BAHASA DAN OTOMATA [TBO] PENGGABUNGAN 2 FSA Pada 2 mesin FSA dapat dilakukan penggabungan, disebut union serta konkatenasi. Misalkan terdapat dua mesin NFA, M1 dan M2 Gambar 5: M1 Gambar 6: M2 OPERASI
Aplikasi Simulator Mesin Turing Pita Tunggal
Aplikasi Simulator Mesin Turing Pita Tunggal Nuludin Saepudin / NIM 23515063 Program Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
Reduksi DFA [Deterministic Finite Automata]
Reduksi DFA [Deterministic Finite Automata] Untuk suatu bahasa regular kemungkinan ada sejumlah DFA yang dapat menerimanya Perbedaannya umumnya adalah pada jumlah state yang dimiliki oleh otomata-otomata
TEORI BAHASA DAN OTOMATA [TBO]
TEORI BAHASA DAN OTOMATA [TBO] NFA DENGAN -MOVE Terdapat jenis otomata baru yang disebut NFA dengan -move ( disini bisa dianggap sebagai empty). Pada NFA dengan -move (transisi ), diperbolehkan merubah
Non-deterministic Finite Automata Dengan -Move
Non-deterministic Finite Automata Dengan -Move Terdapat jenis otomata baru yang disebut NFA dengan -move ( disini bisa dianggap sebagai empty). Pada NFA dengan -move (transisi ), diperbolehkan merubah
Deterministic Finite Automata
CSG3D3 Teori Komputasi Deterministic Finite Automata Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,
TEORI BAHASA DAN AUTOMATA
MODUL IV TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami teknik translasi NFA ke DFA dan daat menerakannya. Materi : Pengertian ekivalensi Langkah-langkah engubahan EKIVALENSI NON-DETERMINISTIC FINITE
TEORI BAHASA DAN AUTOMATA
MODUL II TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami Finite State Automata (FSA) dan dapat mengeksekusi suatu mesin otomata Materi : FSA dan Implemetasi FSA Deterministic Finite Automata (DFA)
PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA
PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA Santa Meilisa; Ngarap Im Manik; Djunaidy Santoso Universitas Bina Nusantara, Jl. Mawar Bukit
TEORI BAHASA DAN AUTOMATA
MODUL VI TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa dapat malakukan operasi gabungan/konkatenasi, dan membangun FSA optimal Materi : Operasi Gabungan Operasi Konkatenasi Alur Pengembangan FSA Contoh-contoh
Ekspresi Reguler. Pertemuan Ke-8. Sri Handayaningsih, S.T., M.T. Teknik Informatika
Ekspresi Reguler Pertemuan Ke-8 Sri Handayaningsih, S.T., M.T. Email : [email protected] Teknik Informatika TIU dan TIK 1. memahami konsep ekspresi reguler dan ekivalensinya dengan bahasa reguler. 2.
BAB 3 ANALISIS DAN PERANCANGAN PROGRAM. dirancang dan selanjutnya dapat diketahui gambaran dan kemampuan sistem secara
BAB 3 ANALISIS DAN PERANCANGAN PROGRAM 3.1 Analisis Kebutuhan Sistem Analisis kebutuhan sistem merepresentasikan daftar kebutuhan sistem yang akan dirancang dan selanjutnya dapat diketahui gambaran dan
TEORI BAHASA DAN AUTOMATA
MODUL VIII TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami ekspresi reguler dan dapat menerapkannya dalam berbagai penyelesaian persoalan. Materi : Hubungan antara DFA, NFA, dan ekspresi regular
PERTEMUAN II. Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA)
PERTEMUAN II Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA) dadang mulyana 1 INGA.INGAT MULAI MINGGU DEPAN KULIAH TBO DIMULAI JAM 13.00 MAAF UNTUK
TEORI BAHASA DAN AUTOMATA
MODUL III TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami Finite State Automata (FSA) dan dapat menyederhanakan sebuah FSA. Materi : Useless state State distinguishable dan state indistinguishable
Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013
Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013 KONTRAK KULIAH 1. Presensi 15 menit diawal perkuliahan dan dilakukan sendiri (tidak Boleh Titip Presensi), setelahnya sistem akan ditutup 2.
Mesin Turing. Pertemuan Ke-14. Sri Handayaningsih, S.T., M.T. Teknik Informatika
Mesin Turing Pertemuan Ke-14 Sri Handayaningsih, S.T., M.T. Email : [email protected] Teknik Informatika 1 TIU & TIK Memahami konsep : 1. Definisi Mesin Turing 2. Contoh aplikasi Mesin Turing 3. Mesin
SATUAN ACARA PERKULIAHAN (SAP) TEORI BAHASA DAN OTOMATA
1 SATUAN ACARA PERKULIAHAN (SAP) TEORI BAHASA DAN OTOMATA (IK ) Oleh: Heri Sutarno JURUSAN PENDIDIKAN ILMU KOMPUTER FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA
TEKNIK KOMPILASI Bahasa Regular
TEKNIK KOMPILASI Bahasa Regular Sekolah Manajemen Informatika dan Komputer (STMIK) Palangkaraya 2012 Tata bahasa reguler Sebuah bahasa dinyatakan regular jika terdapat Finite State Automata (FSA) yang
TEORI BAHASA DAN OTOMATA PENGANTAR
TEORI BAHASA DAN OTOMATA PENGANTAR PERKULIAHAN Jumlah pertemuan minimal 13 kali dan maksimal 15 kali sudah termasuk dengan ujian tengah semester (UTS) PENILAIAN ABSEN 10% (Minimal kehadiran 80% dari jumlah
Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN
Versi : Revisi : Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN Fakultas/ Jurusan/ Program Studi : Teknologi Industri/ Teknik Informatika/ Teknik Informatika Kode Matakuliah : 52302031 Nama Matakuliah
1, 2, 3
Penerapan Algoritma Depth First Search (DFS) Dinamis Untuk Menentukan Apakah Sebuah String Diterima Oleh Bahasa Reguler yang Didefinisikan Nondeterministic Finite Automata (NFA) Muhammad Ihsan, Ilden Abi
BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan agar sistem
BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM 4.1 Kebutuhan Sistem Kebutuhan untuk menjalankan sistem aplikasi yang telah dibuat sangat berkaitan dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan
MODUL 3: Finite Automata
MODUL 3: Finite Automata Slide dari 38 DEFINISI FA mesin yang dapat mengenai bahasa regular tanpa menggunakan storage/memory. Sejumlah status dapat didefinisikan pada mesin untuk mengingat beberapa hal
Teori Himpunan. Matematika Dasar untuk Teori Bahasa Otomata. Operasi pada Himpunan. Himpunan Tanpa Elemen. Notasi. Powerset & Cartesian Product
Teori Himpunan Matematika Dasar untuk Teori Bahasa Otomata Teori Bahasa & Otomata Semester Ganjil 2009/2010 Himpunan adalah sekumpulan entitas tidak memiliki struktur sifatnya hanya keanggotaan Notasi
FTIK / PRODI TEKNIK INFORMATIKA
Halaman : 1dari 12 LEMBAR PENGESAHAN DIBUAT OLEH MENYETUJUI Tim SOP dan JUKNIS Prodi IF Mira Kania Sabariah, S.T., M.T Ka Prodi TeknikInformatika Halaman : 2dari 12 DAFTAR ISI Lembar Pengesahan... 1 Daftar
MODUL 4: Nondeterministic Finite Automata
MODUL 4: Nondeterministic Finite Automata Slide dari 2 FA DENGAN NONDETERMINISME Disamping ini merupakan FA dari suatu bahasa regular dalam {,} * dengan ekspresi regular (+) *. p, q s, u r t Slide 2 dari
2. MesinTuring (Bagian2)
IF5110 Teori Komputasi 2. MesinTuring (Bagian2) Oleh: Rinaldi Munir Program Studi Magister Informatika STEI-ITB 1 PerananMesinTuring Bahasa yang diterima oleh mesin Turing dinamakan recursively enumerable
Contents.
Contents FINITE TATE AUTOMATA (Otomata Hingga)... 2 Deterministic/Non Deterministic Finite Automate... 2 Ekwivalensi DFA dan NFA... 4 Contex Free Grammer(CFG)... 8 Penyederhanaan CFG... 9 Bentuk Normal
DFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah
DFA Teori Bahasa dan Automata 1 DFA DFA: Deterministic Finite Automata Atau Automata Hingga Deterministik (AHD) Merupakan salah satu entuk dari Finite Automata Finite Automata merupakan salah satu dari
Teori Matematika Terkait dengan TBO
Teori Matematika Terkait dengan TBO Pertemuan Ke-1 Sri Handayaningsih, S.T., M.T. Email : [email protected] Teknik Informatika 1 TIU dan TIK 1. Mengingatkan kembali teori matematika yang terkait dengan
Teori Bahasa & Otomata
Teori Bahasa & Otomata Heri Sutarno - 131410892 Pendilkom/Ilkom Universitas Pendidikan Indonesia Bandung, 2008 08/06/2010 TBO/heri/ilkom 1 Buku Bacaan - Aho, Alfred V., Ravi Sethi and Jeffrey D Ulman,
MODUL 5: Nondeterministic Finite Automata dengan
MODUL 5: Nondeterministic Finite Automata dengan Transisi-L (NFA-L) Slide dari 4 Dengan konsep nondeterministisme dari suatu ekspresi regular suatu NFA yang dapat menerima bahasa ybs dapat langsung dilakukan.
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER F-0653 Issue/Revisi : A0 Tanggal Berlaku : 1 Juli 2015 Untuk Tahun Akademik : 2015/2016 Masa Berlaku : 4 (empat) tahun Jml Halaman : 28 halaman Mata Kuliah : Teori Komputasi
Teori Bahasa dan Automata. Finite State Automata & Non Finite State Automata
Teori Bahasa dan Automata Finite State Automata & Non Finite State Automata Finite State Automata Model matematika suatu sistem yang menerima input dan output diskrit Mesin automata dari bahasa Regular
Operasi FA dan Regular Expression
CSG3D3 Teori Komputasi Operasi FA dan Regular Expression Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,
SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54401/ Teori dan Bahasa Otomata 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4.
Overview. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan
Overview Pertemuan : I Dosen Pembina : Danang Junaedi Deskripsi Tujuan Instruksional Kaitan Materi Penilaian Grade Referensi Jurusan Teknik Informatika Universitas Widyatama Deskripsi Mata kuliah ini mempelajari
Teori Komputasi 11/2/2016. Bab 5: Otomata (Automata) Hingga. Otomata (Automata) Hingga. Otomata (Automata) Hingga
Teori Komputasi Fakultas Teknologi dan Desain Program Studi Teknik 1-1 Informatika Bab 5: Agenda. Deterministic Finite Automata DFA (Otomata Hingga Deterministik) Equivalen 2 DFA Finite State Machine FSA
INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA
INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA Wiwin Suwarningsih Pusat Penelitian Informatika LIPI Jl. Sangkuriang No.21/154D ( komplek LIPI) Cisitu Bandung 40135, Indonesia
Penerapan Finite State Automata Pada Proses Peminjaman Buku di Perpustakaan Universitas Kristen Satya Wacana Artikel Ilmiah
Penerapan Finite State Automata Pada Proses Peminjaman Buku di Perpustakaan Universitas Kristen Satya Wacana Artikel Ilmiah Peneliti : Raymond Elias Mauboy (672013158) Prof. Ir. Danny Manongga, MS.c.,
PENDEKATAN TEORI AUTOMATA UNTUK MENYELESAIKAN APLIKASI-APLIKASI DI BIDANG ILMU KECERDASAN BUATAN
PENDEKATAN TEORI AUTOMATA UNTUK MENYELESAIKAN APLIKASI-APLIKASI DI BIDANG ILMU KECERDASAN BUATAN Febri Nova Lenti STMIK AKAKOM Yogyakarta Jl. Raya Janti 143 Yogyakarta 55198 [email protected] ABSTRAK
UNIVERSITAS GADJAH MADA FMIPA/DIKE/ILMU KOMPUTER Gedung SIC Lantai 1, Sekip, Bulaksumur, 55281, Yogyakarta
UNIVERSITAS GADJAH MADA FMIPA/DIKE/ILMU KOMPUTER Gedung SIC Lantai 1, Sekip, Bulaksumur, 55281, Yogyakarta Rencana Program Kegiatan Pembelajaran Semester (RPKPS) Bahasa Otomata ( KLAS B ) Ganjil /3 sks/mii-2205
Teori Bahasa dan Otomata 1
Teori Bahasa dan Otomata 1 KATA PENGANTAR Teori Bahasa dam Otomata merupakan matakuliah wajib yang harus diambil oleh seluruh mahasiswa jurusan Teknik Indonesia di lingkungan Sekolah Tinggi Teknologi Indonesia.
Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine yang tidak mengeluarkan output ini dikenal
FINITE STATE AUTOMATA (FSA) DAN FINITE STATE MACHINE (FSM) MATERI MINGGU KE-3 Finite State Automata (FSA) Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine
Teknik Kompiler 5. oleh: antonius rachmat c, s.kom, m.cs
Teknik Kompiler 5 oleh: antonius rachmat c, s.kom, m.cs TATA BAHASA Tata bahasa / Grammar dalam OTOMATA adalah kumpulan dari himpunan variabel (non-terminal), simbol-simbol awal dan terminal yang dibatasi
TEORI BAHASA DAN AUTOMATA
MODUL V TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami NFA dengan e-move, dapat malakukan ekivalensi ke NFA tanpa e-move dan operasi gaungan/konkatenasi. Materi : NFA dengan e-move Ekivalensi NFA
Pengaruh Paralelisme Terhadap Mesin Turing Sebagai Konsep Komputasi
Pengaruh Paralelisme Terhadap Mesin Turing Sebagai Konsep Komputasi Fitrandi Ramadhan and 23515050 Program MagisterInformatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal
Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal Abdurrahman Dihya R./13509060 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER (RPS) KBKF43102 TEORI BAHASA DAN AUTOMATA S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UPI YPTK PADANG LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) CSG3D3 TEORI KOMPUTASI Disusun oleh: Mahmud Dwi Sulistiyo, S.T., M.T. S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA UNIVERSITAS TELKOM LEMBAR PENGESAHAN Rencana Pembelajaran
GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)
Mata Kuliah : Teori Bahasa dan Automa Bobot Mata Kuliah : 3 Sks GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Deskripsi Mata Kuliah : Micro processing dan Memory, Memory Addressing; Register, Struktur Program,
SATUAN ACARA PERKULIAHAN (SAP)
SATUAN ACARA PERKULIAHAN (SAP) Pertemuan / Minggu Nama Mata Kuliah : Teori Bahasa dan Automata Kode Mata Kuliah : TI 04 Bobot Kredit : 3 SKS Semester Penempatan : III Kedudukan Mata Kuliah : Mata Kuliah
Penggunaan Mesin Turing Multitrack untuk Operasi Bilangan Biner
Penggunaan Mesin Turing Multitrack untuk Operasi Bilangan Biner Hairil Anwar / 23514034 Program Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54401/ Teori dan Bahasa Otomata Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Februari 2014 Jml Jam kuliah dalam
FIRDAUS SOLIHIN FAKULTAS TEKNIK UNIVERSITAS TRUNOJOYO
BAHASA FORMAL AUTOMATA FIRDAUS SOLIHIN FAKULTAS TEKNIK UNIVERSITAS TRUNOJOYO MATERI PENGANTAR AUTOMATA REGULAR EXSPRESSION (RE) FINITE AUTOMATA (FA) TRANSITION GRAPH (TG) THEOREMA KLEENE CONTEXT FREE GRAMMAR
Tata Bahasa Kelas Tata Bahasa. Konsep Bahasa (1)
Tata Bahasa Kelas Tata Bahasa Risnawaty 2350376 Jurusan Teknik Informatika Institut Teknologi Bandung Page 1 Konsep Bahasa (1) String(kata) adalah suatu deretan berhingga dari simbol-simbol. Panjang string
LEMBAR PENGESAHAN PROSEDUR PELAKSANAAN KULIAH
Halaman : 1 dari 18 LEMBAR PENGESAHAN DIBUAT OLEH MENYETUJUI Tim SOP Prodi IF Mira Kania Sabariah, S.T., M.T Ka Prodi Teknik Informatika 1 Halaman : 2 dari 18 DAFTAR ISI Lembar Pengesahan... 1 Daftar Isi...
EKSPRESI REGULAR PADA SUATU DETERMINISTIC FINITE STATE AUTOMATA
Jurnal Matematika Vol.6 No., November 26 [ 63-7 ] EKSPRESI REGULAR PADA SUATU DETERMINISTIC FINITE STATE AUTOMATA Jurusan Matematika, UNISBA, Jalan Tamansari No, Bandung,46, Indonesia [email protected]
Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state
EKSPRESI REGULAR Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state automata bisa dinyatakan secara sederhana
TEORI BAHASA DAN AUTOMATA
MODUL I TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami pengertian dan kedudukan Teori Bahasa dan Otomata (TBO) pada ilmu komputer Definisi dan Pengertian Teori Bahasa dan Otomata Teori bahasa dan
BAHASA BEBAS KONTEKS UNTUK KOMPLEMEN DARI STRING BERULANG CONTEXT FREE LANGUAGE FOR COMPLEMENT OF REPEATED STRING
BAHASA BEBAS KONTEKS UNTUK KOMPLEMEN DARI STRING BERULANG Suharni S., Armin Lawi dan Loeky Haryanto Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin (UNHAS) Jl. Perintis
Teori Bahasa dan Otomata
Teori Bahasa dan Otomata Disajikan oleh: Bernardus Budi Hartono Web : http://pakhartono.wordpress.com/ E-mail : pakhartono at gmail dot com budihartono at acm dot org Teknik Informatika [Gasal 2009 2010]
TUGAS MAKALAH TEORI BAHASA & AUTOMATA
TUGAS MAKALAH TEORI BAHASA & AUTOMATA Anggota Kelompok : 1. Aedy Suciawan (50407040) 2. Afrista Reolny W (50407042) 3. Arnoldus Billy Jansen (50407161) 4. Endah Nurhayati (50407318) 5. Danang Panji P (50407227)
PERTEMUAN 9 TEORI BAHASA DAN OTOMATA [TBO]
PERTEMUAN 9 TEORI BAHASA DAN OTOMATA [TBO] Reduksi DFA Untuk suatu bahasa regular kemungkinan ada sejumlah DFA yang dapat menerimanya Perbedaannya umumnya adalah pada jumlah state yang dimiliki oleh otomata-otomata
TEORI BAHASA DAN OTOMATA [TBO]
TEORI BAHASA DAN OTOMATA [TBO] Ekspresi Regular (1) Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state automata
BAB II MODEL KOMPUTASI FINITE STATE MACHINE. Pada Bab II akan dibahas teori dasar matematika yang digunakan
BAB II MODEL KOMPUTASI FINITE STATE MACHINE Pada Bab II akan dibahas teori dasar matematika yang digunakan dalam pemodelan sistem kontrol elevator ini, yaitu mengenai himpunan, relasi, fungsi, teori graf
PENDAHULUAN. Terdapat tiga topik utama di teori otomata yaitu:
PENDAHULUAN Pengertian Komputer mengikuti sejumlah prosedur sistematis, atau algoritme, yang dapat diaplikasikan untuk serangkaian input (string) yang menyatakan integer dan menghasilkan jawaban setelah
TEKNIK KOMPILASI Konsep & Notasi Bahasa
TEKNIK KOMPILASI Konsep & Notasi Bahasa Sekolah Manajemen Informatika dan Komputer (STMIK) Palangkaraya 2012 Konsep dan Notasi bahasa Teknik Kompilasi merupakan kelanjutan dari konsepkonsep yang telah
Pendahuluan. Push Down Atomata. Perbedaan FA dan PDA [7] 4/25/2012 IF-UTAMA 1. Grammar-machine equivalence [3] Latar belakang munculnya konsep PDA
Push Down Automata Pendahuluan Latar belakang munculnya konsep PDA [1 & 3] Terdapat context-free languages yang tidak regular, contoh {0 n 1 n 0=
PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO]
PERTEMUAN 4 TEORI BAHASA DAN OTOMATA [TBO] Jenis FSA Deterministic Finite Automt (DFA) Dri sutu stte d tept stu stte erikutny untuk setip simol msukn yng diterim Non-deterministic Finite Automt (NFA) Dri
Teori Bahasa & Otomata
Teori Bahasa & Otomata Pendilkom/Ilkom Universitas Pendidikan Indonesia 1 Daftar Isi Bab 1 Pendahuluan Bab 2 Matematika Dasar Bab 3 Dasar-Dasar Teori Bahasa Bab 4 Representasi Bahasa Bab 5 Klasifikasi
Turing and State Machines. Mesin Turing. Turing Machine. Turing Machines 4/14/2011 IF_UTAMA 1
4/4/2 Turing and State Machines Mesin Turing Dosen Pembina : Danang Junaedi State Machines Called non-writing machines Have no control on their external input Cannot write or change their inputs Turing
TEORI BAHASA & AUTOMATA
TEORI BAHASA & AUTOMATA Dosen: Dadang mulyana Alamat email untuk tugas: [email protected] 1 Cara pengiriman tugas: Dalam subjek email tuliskan: Instansi_kelas_nama_matakuliah_jenistugas Contoh: Ahmad
IF-UTAMA 1. Definisi. Grammar. Definisi
Definisi Grammar Bahasa adalah himpunan kata-kata atau kalimat yang telah disepakati, contoh : {makan, tidur, bermain, belajar} Bahasa Indonesia {shit, sheet, damn, kiss, smell} Bahasa Inggris {konichiwa,
dipecahkan dengan ditemukannya model tersebut oleh G.H Meally (1955) dan secara terpisah oleh E.F Moore (1956). Tujuan inti dari penemuan ini adalah u
AUTOMATA dan BAHASA FORMAL Praktika Finite Automata Dengan Output Aris Eka Subiyanto [email protected] Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan
1. Pendahuluan. 2. Tinjauan Pustaka
1. Pendahuluan Ilmu komputer memiliki dua komponen utama yaitu model dan gagasan mendasar mengenai komputasi, serta teknik rekayasa untuk perancangan sistem komputasi. Teori bahasa dan automata merupakan
Penggunaan Induksi Matematika untuk Mengubah Deterministic Finite Automata Menjadi Ekspresi Reguler
Penggunaan Indusi Matematia untu Mengubah Deterministic Finite Automata Menjadi Espresi Reguler Husni Munaya - 353022 Program Studi Teni Informatia Seolah Teni Eletro dan Informatia Institut Tenologi Bandung,
TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I
TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I Konsep dan Notasi bahasa Thn 56-59 Noam chomsky melakukan penggolongan tingkatan dalam bahasa, yaitu menjadi 4 class
Lecture Notes Teori Bahasa dan Automata
Penyederhanaan CFG (edisi 1) 1/8 Lecture Notes Teori Bahasa dan Automata Penyederhanaan Context Free Grammar Thompson Susabda Ngoen Pendahuluan Context Free Grammar (CFG) terdiri atas sejumlah production
DAFTAR PUSTAKA. (Diakses pada
90 DAFTAR PUSTAKA 1. Abay. (2011). Eclipse. http://bayduaenam.blogspot.com/2011/06/eclipse.html (Diakses pada 19 February 2. Anderson. P. (2008). Implementation of Algorithms for State Minimisation and
Penerapan Regular Expression dalam parsing JSON
Penerapan Regular Expression dalam parsing JSON Reinhard Benjamin Linardi, 13515011 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016. Hendra Gunawan
MA2111 PENGANTAR MATEMATIKA Semester I, Tahun 2015/2016 Hendra Gunawan 6 KUANTOR III: INDUKSI (c) Hendra Gunawan (2015) 2 Pernyataan Berkuantor Universal (1) Pada bab sebelumnya kita telah membahas metode
MODUL 11: PUSHDOWN AUTOMATON
MODUL 11: PUSHDOWN AUTOMATON Pengantar Pushdown Automaton Dalam pembahasan bahasa regular telah diperkenalkan pula suatu mesin dengan jumlah status yang terbatas atau dikenal dengan nama mesin FA. Karena
Grammar dan Tingkat Bahasa
CSG3D3 Teori Komputasi Grammar dan Tingkat Bahasa Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing, and
MODUL 17. BAHASA-BAHASA REKURSIF DAN RECURSIVELY ENUMERABLE
MODUL 17. BAHASA-BAHASA REKURSIF DAN RECURSIVELY ENUMERABLE TM T r untuk suatu bahasa rekursif akan menjawab (recognize) atau setelah memproses string masukan. T r Dalam pembahasan sebelumnya kita mendapatkan
