Lecture Notes Teori Bahasa dan Automata
|
|
|
- Hendri Hermawan
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Ekuivalensi State (Ed. 1) 1/5 Lecture Notes Teori Bahasa dan Automata Uji Ekuivalensi State Deterministic Finite Automata Thompson Susabda Ngoen Beberapa deterministic finite automaton (DFA) yang berbeda mungkin menyatakan sebuah language yang sama. Sebagai contoh ketiga DFA berikut menyatakan language L = {1 n : n mod 3 = 0} namun jumlah state pada ketiga DFA ini berbeda. Jika kita mengimplementasikan mesin abstrak ini menjadi program tentu yang versi tiga state adalah yang paling efisien. Gambar 1. DFA yang Menerima String dengan jumlah simbol 1 Kelipatan Tiga A. Uji Ekuivalensi State-State Dengan String 1. Definisi State p dan state q adalah ekuivalen jika untuk semua string w, δ^(p,w) adalah accepting state jika dan hanya jika δ^(q,w) juga accepting state. Maksudnya misalkan δ^(p,w) = p a, δ^(q,w) = q a, p a dan q a adalah accepting state; atau δ^(p,w) = f, δ^(q,w) = f, dan f adalah accepting state. Hubungan dua state disebut distinguishable jika minimum terdapat sebuah string w yang menyebabkan δ^(p,w) berbeda jenis dengan δ^(q,w), maksudnya salah satunya berada di accepting state sedangkan yang lain bukan. Jika p adalah accepting state sedangkan q bukan, atau sebaliknya, maka pasangan state p dan q adalah distinguishable. 2. Table Filling Kita akan melakukan ujian ekuivalensi terhadap DFA yang paling kanan pada Gambar 1, yang mengandung tiga accepting state. State A, D, dan G adalah final state. Berdasarkan definisi ketiga state ini berbeda dengan state-state lainnya. Pada tabel berikut simpul x digunakan untuk menyatakan distinguishable.
2 Ekuivalensi State (Ed. 1) 2/5 Apakah A, D, dan G ekuivalen? a. Uji dengan string 111 δ(a,111) = D δ(d,111) = G δ(g,111) = G semuanya berada di final state b. Uji dengan string 11 δ(a,11) = C δ(d,11) = F δ(g,11) = F semuanya berada di non final state state A, D, G adalah ekuivalen G v X X V X X Uji ekuivalensi state B B C E F 11 D E G E δ^(b,11) = D sedangkan D ekuivalen dengan G maka perlu dilakukan pengujian terhadap pasangan state (B,E). Uji dengan string 111. δ^(b,111) = E δ^(e,111) = E Keduanya berada di non-final state B ekuivalen dengan E E X V X X Uji ekuivalensi state C C E F 1 D F G δ^(c,1) = D sedangkan D ekuivalen dengan G maka perlu dilakukan pengujian terhadap pasangan state (C,F). Uji dengan string 111. δ^(c,111) = F δ^(f,111) = F Keduanya berada di non-final state C ekuivalen dengan F V X Uji ekuivalensi state E E F 11 G E E distinguishable dengan F
3 Ekuivalensi State (Ed. 1) 3/5 State yang ekuivalen: (A,D,G), (B,E), (C,F) Dengan menyatukan state-state yang ekuivalen State baru yang mengandung label start state lama menjadi start state baru State-state baru yang mengandung label final state lama menjadi final state baru maka terbentuk DFA B. Uji Ekuivalensi State-State Dengan Input Alphabet 1. Definisi Eliminasi semua state yang tidak bisa dijangkau dari start state. Terhadap pasangan state (p,q), jika p F dan q F atau sebaliknya, maka tandai pasangan state (p,q) sebagai distinguishable. Untuk semua pasangan state (p,q) dan semua a Σ: 1. Hitung δ(p, a) = p a dan δ(q, a) = q a 2. Jika pasangan state (p a, q a ) telah ditandai sebagai distinguishable maka tandai (p, q) sebagai distinguishable 2. Mark and Reduce State A, D, dan G adalah final state. Berdasarkan definisi kedua maka state-state ini distinguishable dengan state-state lain yang non-final state. (A,D) belum diketahui hubungannya. (A,G) belum diketahui hubungannya. δ(b, 1) = C dan δ(c, 1) = D (C,D) sudah di-mark sebagai distinguishable (B,C) adalah distinguishable
4 Ekuivalensi State (Ed. 1) 4/5 (C,F) belum ada relasi sehingga (B,E) belum diketahui hubungannya. δ(b, 1) = C dan δ(f, 1) = G (C,G) sudah di-mark sebagai distinguishable (B,F) adalah distinguishable X δ(c, 1) = D dan δ(e, 1) = F (D,F) sudah di-mark sebagai distinguishable (C,E) adalah distinguishable X X δ(c, 1) = D dan δ(f, 1) = G (D,G) belum ada relasi sehingga (C,F) belum diketahui hubungannya. δ(d, 1) = E dan δ(g, 1) = E Keduanya berada pada state yang sama (D,G) adalah ekuivalen X X δ(e, 1) = F dan δ(f, 1) = G (F,G) sudah di-mark (E,F) adalah distinguishable (A,D) belum diketahui hubungannya. X X X (A,G) belum diketahui hubungannya. (C,F) belum ada relasi sehingga (B,E) belum diketahui hubungannya. δ(c, 1) = D dan δ(f, 1) = G (D,G) adalah ekuivalen maka (C,F) adalah ekuivalen X
5 Ekuivalensi State (Ed. 1) 5/5 (C,F) adalah ekuivalen maka (B,E) adalah ekuivalen (B,E) adalah ekuivalen maka (A,D) adalah ekuivalen (B,E) adalah ekuivalen maka (A,G) adalah ekuivalen Pasangan state yang ekuivalen: (D,G), (C,F), (B,E), (A,D), (A,G) Karena D ekuivalen dengan G, G ekuivalen dengan A maka A,D,G ekuivalen State-state baru: ADG, BE, CF Start state: ADG Final state: ADG Referensi Hopcroft, E. John, Rajeev Motwani, Jeffrey D. Ullman, (2001), Introduction to Automata Theory, Languages, and Computation, 2 nd edition, Addison-Wesley Linz, P,(1990), An Introduction to Formal Languages and Automata, Heath
Lecture Notes Teori Bahasa dan Automata
Pumping Lemma RL (edisi 2) 1/5 Lecture Notes Teori Bahasa dan Automata Pumping Lemma Untuk Regular Language Thompson Susabda Ngoen Revisi 1 Hopcroft mengatakan regular language dapat dideskripsikan dengan
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 2 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Finite Automata Notasi Finite Automata Deterministic Finite
NonDeterministic Finite Automata. B.Very Christioko, S.Kom
NonDeterministic Finite Automata Perbedaan DFA dan NFA DFA (Deterministic Finite Automata) FA di dalam menerima input mempunyai tepat satu busur keluar. NFA (Non Deterministic Finite Automata) FA di dalam
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 3 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA MENDESAIN DFA Jika di definisikan = {0, 1}, bangunlah sebuah DFA yang
Lecture Notes Teori Bahasa dan Automata
Penyederhanaan CFG (edisi 1) 1/8 Lecture Notes Teori Bahasa dan Automata Penyederhanaan Context Free Grammar Thompson Susabda Ngoen Pendahuluan Context Free Grammar (CFG) terdiri atas sejumlah production
Reduksi DFA [Deterministic Finite Automata]
Reduksi DFA [Deterministic Finite Automata] Untuk suatu bahasa regular kemungkinan ada sejumlah DFA yang dapat menerimanya Perbedaannya umumnya adalah pada jumlah state yang dimiliki oleh otomata-otomata
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 5 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA REVIEW Apa perbedaan antara NFA dan ϵ-nfa? Apa yang dimaksud dengan
Aplikasi Simulator Mesin Turing Pita Tunggal
Aplikasi Simulator Mesin Turing Pita Tunggal Nuludin Saepudin / NIM 23515063 Program Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
FINITE STATE MACHINE / AUTOMATA
FINITE STATE MACHINE / AUTOMATA BAHASA FORMAL Dapat dipandang sebagai entitas abstrak, yaitu sekumpulan string yang berisi simbol-simbol alphabet Dapat juga dipandang sebagai entitasentitas abstrak yang
PERTEMUAN II. Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA)
PERTEMUAN II Finite State Automata (FSA) Deterministic Finite Automata (DFA) Non Deterministic Finite Automata (NFA) dadang mulyana 1 INGA.INGAT MULAI MINGGU DEPAN KULIAH TBO DIMULAI JAM 13.00 MAAF UNTUK
Teori Bahasa dan Automata. Finite State Automata & Non Finite State Automata
Teori Bahasa dan Automata Finite State Automata & Non Finite State Automata Finite State Automata Model matematika suatu sistem yang menerima input dan output diskrit Mesin automata dari bahasa Regular
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 11 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Konversi antar 2 Jenis PDA Ekivalensi PDA dan CFG HUBUNGAN
TEORI BAHASA DAN AUTOMATA
MODUL III TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami Finite State Automata (FSA) dan dapat menyederhanakan sebuah FSA. Materi : Useless state State distinguishable dan state indistinguishable
BAHASA BEBAS KONTEKS UNTUK KOMPLEMEN DARI STRING BERULANG CONTEXT FREE LANGUAGE FOR COMPLEMENT OF REPEATED STRING
BAHASA BEBAS KONTEKS UNTUK KOMPLEMEN DARI STRING BERULANG Suharni S., Armin Lawi dan Loeky Haryanto Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin (UNHAS) Jl. Perintis
Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN
Versi : Revisi : Tanggal Revisi : Tanggal : SATUAN ACARA PERKULIAHAN Fakultas/ Jurusan/ Program Studi : Teknologi Industri/ Teknik Informatika/ Teknik Informatika Kode Matakuliah : 52302031 Nama Matakuliah
Ekspresi Reguler. Pertemuan Ke-8. Sri Handayaningsih, S.T., M.T. Teknik Informatika
Ekspresi Reguler Pertemuan Ke-8 Sri Handayaningsih, S.T., M.T. Email : [email protected] Teknik Informatika TIU dan TIK 1. memahami konsep ekspresi reguler dan ekivalensinya dengan bahasa reguler. 2.
Teori Matematika Terkait dengan TBO
Teori Matematika Terkait dengan TBO Pertemuan Ke-1 Sri Handayaningsih, S.T., M.T. Email : [email protected] Teknik Informatika 1 TIU dan TIK 1. Mengingatkan kembali teori matematika yang terkait dengan
UNIVERSITAS GADJAH MADA FMIPA/DIKE/ILMU KOMPUTER Gedung SIC Lantai 1, Sekip, Bulaksumur, 55281, Yogyakarta
UNIVERSITAS GADJAH MADA FMIPA/DIKE/ILMU KOMPUTER Gedung SIC Lantai 1, Sekip, Bulaksumur, 55281, Yogyakarta Rencana Program Kegiatan Pembelajaran Semester (RPKPS) Bahasa Otomata ( KLAS B ) Ganjil /3 sks/mii-2205
Mesin Turing. Pertemuan Ke-14. Sri Handayaningsih, S.T., M.T. Teknik Informatika
Mesin Turing Pertemuan Ke-14 Sri Handayaningsih, S.T., M.T. Email : [email protected] Teknik Informatika 1 TIU & TIK Memahami konsep : 1. Definisi Mesin Turing 2. Contoh aplikasi Mesin Turing 3. Mesin
TEORI BAHASA DAN AUTOMATA
MODUL VI TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa dapat malakukan operasi gabungan/konkatenasi, dan membangun FSA optimal Materi : Operasi Gabungan Operasi Konkatenasi Alur Pengembangan FSA Contoh-contoh
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 12 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Penghilangan ε-production Penghilangan Unit Production
Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013
Sumarni Adi TEKNIK INFORMATIKA STMIK AMIKOM YOGYAKARTA 2013 KONTRAK KULIAH 1. Presensi 15 menit diawal perkuliahan dan dilakukan sendiri (tidak Boleh Titip Presensi), setelahnya sistem akan ditutup 2.
PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA
PEMODELAN PERANGKAT LUNAK UNTUK PENGERTIAN DETERMINISTIC FINITE AUTOMATA DAN NON-DETERMINISTIC FINITE AUTOMATA Santa Meilisa; Ngarap Im Manik; Djunaidy Santoso Universitas Bina Nusantara, Jl. Mawar Bukit
TEORI BAHASA DAN AUTOMATA
MODUL VIII TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami ekspresi reguler dan dapat menerapkannya dalam berbagai penyelesaian persoalan. Materi : Hubungan antara DFA, NFA, dan ekspresi regular
Teori Bahasa Formal dan Automata
Teori Bahasa Formal dan Automata Pertemuan 9 Semester Genap T.A. 2017/2018 Rahman Indra Kesuma, S.Kom., M.Cs. T. Informatika - ITERA POKOK BAHASAN Grammar Grammar secara Formal Context Free Grammar Terminologi
PERTEMUAN 9 TEORI BAHASA DAN OTOMATA [TBO]
PERTEMUAN 9 TEORI BAHASA DAN OTOMATA [TBO] Reduksi DFA Untuk suatu bahasa regular kemungkinan ada sejumlah DFA yang dapat menerimanya Perbedaannya umumnya adalah pada jumlah state yang dimiliki oleh otomata-otomata
FINITE STATE AUTOMATA
Otomata & Teori Bahasa FINITE STATE AUTOMATA www.themegallery.com Contents 2 3 4 Finite State Automata Implementasi FSA Deterministic Finite Automata (DFA) Non-deterministic Finite Automata (NFA) Finite
MODUL 3: Finite Automata
MODUL 3: Finite Automata Slide dari 38 DEFINISI FA mesin yang dapat mengenai bahasa regular tanpa menggunakan storage/memory. Sejumlah status dapat didefinisikan pada mesin untuk mengingat beberapa hal
SATUAN ACARA PERKULIAHAN (SAP) TEORI BAHASA DAN OTOMATA
1 SATUAN ACARA PERKULIAHAN (SAP) TEORI BAHASA DAN OTOMATA (IK ) Oleh: Heri Sutarno JURUSAN PENDIDIKAN ILMU KOMPUTER FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA
TEORI BAHASA DAN AUTOMATA
MODUL II TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami Finite State Automata (FSA) dan dapat mengeksekusi suatu mesin otomata Materi : FSA dan Implemetasi FSA Deterministic Finite Automata (DFA)
TEORI BAHASA DAN AUTOMATA
MODUL IV TEORI BAHASA DAN AUTOMATA Tujuan : Mahasiswa memahami teknik translasi NFA ke DFA dan daat menerakannya. Materi : Pengertian ekivalensi Langkah-langkah engubahan EKIVALENSI NON-DETERMINISTIC FINITE
Deterministic Finite Automata
CSG3D3 Teori Komputasi Deterministic Finite Automata Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,
2. MesinTuring (Bagian2)
IF5110 Teori Komputasi 2. MesinTuring (Bagian2) Oleh: Rinaldi Munir Program Studi Magister Informatika STEI-ITB 1 PerananMesinTuring Bahasa yang diterima oleh mesin Turing dinamakan recursively enumerable
BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM. dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan agar sistem
BAB 4 IMPLEMENTASI DAN EVALUASI PROGRAM 4.1 Kebutuhan Sistem Kebutuhan untuk menjalankan sistem aplikasi yang telah dibuat sangat berkaitan dengan perangkat yang digunakan. Beberapa kriteria standar ditentukan
Teori Bahasa dan Otomata 1
Teori Bahasa dan Otomata 1 KATA PENGANTAR Teori Bahasa dam Otomata merupakan matakuliah wajib yang harus diambil oleh seluruh mahasiswa jurusan Teknik Indonesia di lingkungan Sekolah Tinggi Teknologi Indonesia.
BAB 1 PENDAHULUAN. sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan
BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam hierarki kelas-kelas bahasa menurut Chomsky, kelas bahasa yang paling sederhana adalah kelas bahasa reguler (regular languages). Bahasa reguler dapat dengan tepat
INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA
INTELLIGENT DECISION SUPPORT SYSTEM DALAM MENDETEKSI BEHAVIOUR SIRKUIT LOGIKA Wiwin Suwarningsih Pusat Penelitian Informatika LIPI Jl. Sangkuriang No.21/154D ( komplek LIPI) Cisitu Bandung 40135, Indonesia
Teori Bahasa & Otomata
Teori Bahasa & Otomata Heri Sutarno - 131410892 Pendilkom/Ilkom Universitas Pendidikan Indonesia Bandung, 2008 08/06/2010 TBO/heri/ilkom 1 Buku Bacaan - Aho, Alfred V., Ravi Sethi and Jeffrey D Ulman,
Minimum DFA. CSG3D3 Teori Komputasi
CSG3D3 Teori Komputasi Minimum DFA Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing, and Multimedia Bahasan
BAB 3 ANALISIS DAN PERANCANGAN PROGRAM. dirancang dan selanjutnya dapat diketahui gambaran dan kemampuan sistem secara
BAB 3 ANALISIS DAN PERANCANGAN PROGRAM 3.1 Analisis Kebutuhan Sistem Analisis kebutuhan sistem merepresentasikan daftar kebutuhan sistem yang akan dirancang dan selanjutnya dapat diketahui gambaran dan
DFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah
DFA Teori Bahasa dan Automata 1 DFA DFA: Deterministic Finite Automata Atau Automata Hingga Deterministik (AHD) Merupakan salah satu entuk dari Finite Automata Finite Automata merupakan salah satu dari
Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine yang tidak mengeluarkan output ini dikenal
FINITE STATE AUTOMATA (FSA) DAN FINITE STATE MACHINE (FSM) MATERI MINGGU KE-3 Finite State Automata (FSA) Finite State Machine dapat berupa suatu mesin yang tidak memiliki output. Finite State Machine
Teori Komputasi 11/2/2016. Bab 5: Otomata (Automata) Hingga. Otomata (Automata) Hingga. Otomata (Automata) Hingga
Teori Komputasi Fakultas Teknologi dan Desain Program Studi Teknik 1-1 Informatika Bab 5: Agenda. Deterministic Finite Automata DFA (Otomata Hingga Deterministik) Equivalen 2 DFA Finite State Machine FSA
LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB)
Nama Siswa Kelas LEMBAR AKTIVITAS SISWA DIMENSI TIGA (WAJIB) 5. Diagonal Ruang adalah Ruas garis yang menghubungkan dua titik : sudut yang saling berhadapan dalam satu ruang. : Kompetensi Dasar (KURIKULUM
BAB I PENDAHULUAN 1-1
BAB I PENDAHULUAN 1.1 Pendahuluan Ilmu komputer memiliki dua komponen utama: pertama, model dan gagasan mendasar mengenai komputasi, kedua, teknik rekayasa untuk perancangan sistem komputasi, meliputi
Non-Deterministic Finite Automata
CSG3D3 Teori Komputasi Non-Deterministic Finite Automata Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,
PENDAHULUAN. Terdapat tiga topik utama di teori otomata yaitu:
PENDAHULUAN Pengertian Komputer mengikuti sejumlah prosedur sistematis, atau algoritme, yang dapat diaplikasikan untuk serangkaian input (string) yang menyatakan integer dan menghasilkan jawaban setelah
Assocation Rule. Data Mining
Assocation Rule Data Mining Association Rule Analisis asosiasi atau association rule mining adalah teknik data mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Aturan yang menyatakan
Pendahuluan [6] FINITE STATE AUTOMATA. Hubungan RE & FSA [5] Finite State Diagram [6] 4/27/2011 IF-UTAMA 1
FINITE STATE AUTOMATA Pertemuan 9 & 10 Dosen Pembina : Danang Junaedi 1 Pendahuluan [6] Bahasa formal dapat dipandang sebagai entitas abstrak, yaitu sekumpulan string yang berisi simbol-simbol alphabet
Non-deterministic Finite Automata Dengan -Move
Non-deterministic Finite Automata Dengan -Move Terdapat jenis otomata baru yang disebut NFA dengan -move ( disini bisa dianggap sebagai empty). Pada NFA dengan -move (transisi ), diperbolehkan merubah
FTIK / PRODI TEKNIK INFORMATIKA
Halaman : 1dari 12 LEMBAR PENGESAHAN DIBUAT OLEH MENYETUJUI Tim SOP dan JUKNIS Prodi IF Mira Kania Sabariah, S.T., M.T Ka Prodi TeknikInformatika Halaman : 2dari 12 DAFTAR ISI Lembar Pengesahan... 1 Daftar
Turing and State Machines. Mesin Turing. Turing Machine. Turing Machines 4/14/2011 IF_UTAMA 1
4/4/2 Turing and State Machines Mesin Turing Dosen Pembina : Danang Junaedi State Machines Called non-writing machines Have no control on their external input Cannot write or change their inputs Turing
GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)
Mata Kuliah : Teori Bahasa dan Automa Bobot Mata Kuliah : 3 Sks GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Deskripsi Mata Kuliah : Micro processing dan Memory, Memory Addressing; Register, Struktur Program,
Tata Bahasa Kelas Tata Bahasa. Konsep Bahasa (1)
Tata Bahasa Kelas Tata Bahasa Risnawaty 2350376 Jurusan Teknik Informatika Institut Teknologi Bandung Page 1 Konsep Bahasa (1) String(kata) adalah suatu deretan berhingga dari simbol-simbol. Panjang string
Translasi Context-Free Grammar Menjadi Parsing Tree Berbasis Algoritma Cocke-Younger-Kasami
Translasi Context-Free Grammar Menjadi Parsing Tree Berbasis Algoritma Cocke-Younger-Kasami PUTRA ADHI ANGGARA Program Studi Teknik Informatika S1, Fakultas Ilmu Komputer, Universitas Dian Nuswantoro Jl.
DAFTAR PUSTAKA. (Diakses pada
90 DAFTAR PUSTAKA 1. Abay. (2011). Eclipse. http://bayduaenam.blogspot.com/2011/06/eclipse.html (Diakses pada 19 February 2. Anderson. P. (2008). Implementation of Algorithms for State Minimisation and
Penggunaan Mesin Turing Multitrack untuk Operasi Bilangan Biner
Penggunaan Mesin Turing Multitrack untuk Operasi Bilangan Biner Hairil Anwar / 23514034 Program Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung
SATUAN ACARA PERKULIAHAN (SAP)
SATUAN ACARA PERKULIAHAN (SAP) Pertemuan / Minggu Nama Mata Kuliah : Teori Bahasa dan Automata Kode Mata Kuliah : TI 04 Bobot Kredit : 3 SKS Semester Penempatan : III Kedudukan Mata Kuliah : Mata Kuliah
Contents.
Contents FINITE TATE AUTOMATA (Otomata Hingga)... 2 Deterministic/Non Deterministic Finite Automate... 2 Ekwivalensi DFA dan NFA... 4 Contex Free Grammer(CFG)... 8 Penyederhanaan CFG... 9 Bentuk Normal
TEORI BAHASA DAN OTOMATA PENGANTAR
TEORI BAHASA DAN OTOMATA PENGANTAR PERKULIAHAN Jumlah pertemuan minimal 13 kali dan maksimal 15 kali sudah termasuk dengan ujian tengah semester (UTS) PENILAIAN ABSEN 10% (Minimal kehadiran 80% dari jumlah
MODUL 5: Nondeterministic Finite Automata dengan
MODUL 5: Nondeterministic Finite Automata dengan Transisi-L (NFA-L) Slide dari 4 Dengan konsep nondeterministisme dari suatu ekspresi regular suatu NFA yang dapat menerima bahasa ybs dapat langsung dilakukan.
Overview. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan. Pendahuluan
Overview Pertemuan : I Dosen Pembina : Danang Junaedi Deskripsi Tujuan Instruksional Kaitan Materi Penilaian Grade Referensi Jurusan Teknik Informatika Universitas Widyatama Deskripsi Mata kuliah ini mempelajari
SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54401/ Teori dan Bahasa Otomata 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4.
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) CSG3D3 TEORI KOMPUTASI Disusun oleh: Mahmud Dwi Sulistiyo, S.T., M.T. S1 TEKNIK INFORMATIKA FAKULTAS INFORMATIKA UNIVERSITAS TELKOM LEMBAR PENGESAHAN Rencana Pembelajaran
TEORI BAHASA DAN OTOMATA [TBO]
TEORI BAHASA DAN OTOMATA [TBO] PENGGABUNGAN 2 FSA Pada 2 mesin FSA dapat dilakukan penggabungan, disebut union serta konkatenasi. Misalkan terdapat dua mesin NFA, M1 dan M2 Gambar 5: M1 Gambar 6: M2 OPERASI
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER (RPS) KBKF43102 TEORI BAHASA DAN AUTOMATA S1 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UPI YPTK PADANG LEMBAR PENGESAHAN Rencana Pembelajaran Semester (RPS) ini telah disahkan
FIRDAUS SOLIHIN FAKULTAS TEKNIK UNIVERSITAS TRUNOJOYO
BAHASA FORMAL AUTOMATA FIRDAUS SOLIHIN FAKULTAS TEKNIK UNIVERSITAS TRUNOJOYO MATERI PENGANTAR AUTOMATA REGULAR EXSPRESSION (RE) FINITE AUTOMATA (FA) TRANSITION GRAPH (TG) THEOREMA KLEENE CONTEXT FREE GRAMMAR
Operasi FA dan Regular Expression
CSG3D3 Teori Komputasi Operasi FA dan Regular Expression Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing,
TEORI BAHASA DAN OTOMATA [TBO]
TEORI BAHASA DAN OTOMATA [TBO] NFA DENGAN -MOVE Terdapat jenis otomata baru yang disebut NFA dengan -move ( disini bisa dianggap sebagai empty). Pada NFA dengan -move (transisi ), diperbolehkan merubah
Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal
Penerapan Graf Transisi dalam Mendefinisikan Bahasa Formal Abdurrahman Dihya R./13509060 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Pengaruh Paralelisme Terhadap Mesin Turing Sebagai Konsep Komputasi
Pengaruh Paralelisme Terhadap Mesin Turing Sebagai Konsep Komputasi Fitrandi Ramadhan and 23515050 Program MagisterInformatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
Penerapan Finite State Automata Pada Proses Peminjaman Buku di Perpustakaan Universitas Kristen Satya Wacana Artikel Ilmiah
Penerapan Finite State Automata Pada Proses Peminjaman Buku di Perpustakaan Universitas Kristen Satya Wacana Artikel Ilmiah Peneliti : Raymond Elias Mauboy (672013158) Prof. Ir. Danny Manongga, MS.c.,
Deterministic Finite Automata (DFA) Non-Deterministic Automata (NFA)
Deterministic Finite Automt (DFA) Non-Deterministic Automt (NFA) Pertemun Ke-4 Sri Hndyningsih, S.T., M.T. Emil : [email protected] Teknik Informtik 1 TIU dn TIK 1. Mengethui perbedn ntr DFA dn NFA 2.
Aturan assosiatif biasanya dinyatakan dalam bentuk : {roti, mentega} {susu} (support = 40%, confidence = 50%)
ASSOCIATION RULE (ALGORITMA A PRIORI) Algoritma A Priori termasuk jenis aturan asosiasi pada data mining. Selain a priori, yang termasuk pada golongan ini adalah metode generalized rule induction dan algoritma
2. MesinTuring (Bagian1)
IF5110 Teori Komputasi 2. MesinTuring (Bagian1) Oleh: Rinaldi Munir Program Studi Magister Informatika STEI-ITB 1 SejarahMesinTuring (1) Diusulkan pada tahun 1936 oleh Alan Turing, seorang matematikawan
4. Undecidabality(Bagian3)
IF5110 Teori Komputasi 4. Undecidabality(Bagian3) Oleh: Rinaldi Munir Program Studi Magister Informatika STEI-ITB 1 Reduksi Sebuahpersoalandapatdireduksimenjadipersoalanlain namun menghasilkan jawaban
Pendahuluan. Push Down Atomata. Perbedaan FA dan PDA [7] 4/25/2012 IF-UTAMA 1. Grammar-machine equivalence [3] Latar belakang munculnya konsep PDA
Push Down Automata Pendahuluan Latar belakang munculnya konsep PDA [1 & 3] Terdapat context-free languages yang tidak regular, contoh {0 n 1 n 0=
SENTENCE ANALYSIS WITH ARTIFICIAL INTELLIGENCE MACHINE LEARNING USING FINITE STATE AUTOMATA
SENTENCE ANALYSIS WITH ARTIFICIAL INTELLIGENCE MACHINE LEARNING USING FINITE STATE AUTOMATA Yos Merry Raditya Putra Program Studi Teknik Informatika, Unika Soegijapranata Semarang [email protected]
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER F-0653 Issue/Revisi : A0 Tanggal Berlaku : 1 Juli 2015 Untuk Tahun Akademik : 2015/2016 Masa Berlaku : 4 (empat) tahun Jml Halaman : 28 halaman Mata Kuliah : Teori Komputasi
Cynthia Banowaty Pembimbing : Lely Prananingrum, S.Kom., MMSi
DATA MINING UNTUK PERANCANGAN PENGAMBILAN KEPUTUSAN PRODUK KERAJINAN MENGGUNAKAN ALGORITMA APRIORI BERBASIS WEBSITE Cynthia Banowaty 11111695 Pembimbing : Lely Prananingrum, S.Kom., MMSi Latar Belakang
DESAIN FAKTORIAL FRAKSIONAL 2 k-p SERTA ANALISISNYA BERBASIS WEB. Candra Aji dan Dadan Dasari 1 Universitas Pendidikan Indonesia ABSTRAK
DESAIN FAKTORIAL FRAKSIONAL k-p SERTA ANALISISNYA BERBASIS WEB Candra Aji dan Dadan Dasari Universitas Pendidikan Indonesia ABSTRAK Dalam eksperimen faktorial k, yakni eksperimen yang melibatkan k buah
TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I
TEORI BAHASA & OTOMATA (KONSEP & NOTASI BAHASA) PERTEMUAN IX Y A N I S U G I Y A N I Konsep dan Notasi bahasa Thn 56-59 Noam chomsky melakukan penggolongan tingkatan dalam bahasa, yaitu menjadi 4 class
Grammar dan Tingkat Bahasa
CSG3D3 Teori Komputasi Grammar dan Tingkat Bahasa Agung Toto Wibowo Ahmad Suryan Yanti Rusmawati Mahmud Dwi Sulistiyo Kurniawan Nur Ramadhani Said Al Faraby Dede Rohidin KK Intelligence, Computing, and
IF-UTAMA 1. Definisi. Grammar. Definisi
Definisi Grammar Bahasa adalah himpunan kata-kata atau kalimat yang telah disepakati, contoh : {makan, tidur, bermain, belajar} Bahasa Indonesia {shit, sheet, damn, kiss, smell} Bahasa Inggris {konichiwa,
Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state
EKSPRESI REGULAR Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state automata bisa dinyatakan secara sederhana
BAB V CONTEXT FREE GRAMMAR DAN PUSH DOWN AUTOMATA
Bab V Context Free Grammar dan Push Down Automata 26 BAB V CONTEXT FREE GRAMMAR DAN PUSH DOWN AUTOMATA TUJUAN PRAKTIKUM 1. Memahami CFG dan PDA 2. Memahami Context Free Grammar 3. Memahami Push Down Automata
Penggunaan Induksi Matematika untuk Mengubah Deterministic Finite Automata Menjadi Ekspresi Reguler
Penggunaan Indusi Matematia untu Mengubah Deterministic Finite Automata Menjadi Espresi Reguler Husni Munaya - 353022 Program Studi Teni Informatia Seolah Teni Eletro dan Informatia Institut Tenologi Bandung,
BAB 10. DESAIN RANGKAIAN BERURUT
BAB 10. DESAIN RANGKAIAN BERURUT 2 DESAIN PENCACAH NILAI SPESIFIKASI : X=1 cacahan naik 2, z= 1 jika cacahan > 5 X=0 cacahan turun 1, z= 1 jika cacahan < 0 mesin Mealy 3 0 DESAIN PENCACAH NILAI 1/1 1/0
MODUL 4: Nondeterministic Finite Automata
MODUL 4: Nondeterministic Finite Automata Slide dari 2 FA DENGAN NONDETERMINISME Disamping ini merupakan FA dari suatu bahasa regular dalam {,} * dengan ekspresi regular (+) *. p, q s, u r t Slide 2 dari
SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!
SELEKSI OLIMPIADE MATEMATIKA INDONESIA 007 TINGKAT PROVINSI TAHUN 006 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Solusi Olimpiade Matematika Tk Provinsi
Teori Bahasa dan Otomata
Teori Bahasa dan Otomata Disajikan oleh: Bernardus Budi Hartono Web : http://pakhartono.wordpress.com/ E-mail : pakhartono at gmail dot com budihartono at acm dot org Teknik Informatika [Gasal 2009 2010]
LEMBAR PENGESAHAN PROSEDUR PELAKSANAAN KULIAH
Halaman : 1 dari 18 LEMBAR PENGESAHAN DIBUAT OLEH MENYETUJUI Tim SOP Prodi IF Mira Kania Sabariah, S.T., M.T Ka Prodi Teknik Informatika 1 Halaman : 2 dari 18 DAFTAR ISI Lembar Pengesahan... 1 Daftar Isi...
dipecahkan dengan ditemukannya model tersebut oleh G.H Meally (1955) dan secara terpisah oleh E.F Moore (1956). Tujuan inti dari penemuan ini adalah u
AUTOMATA dan BAHASA FORMAL Praktika Finite Automata Dengan Output Aris Eka Subiyanto [email protected] Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan
XV. RAN AN KAIAN KAIAN SEKUEN EKU EN IAL ASINKR A. PENDAHULUAN R n a gk g aia i n sekuen e sia si l a in i kron
XV. RANGKAIAN SEKUENSIAL ASINKRON A. PENDAHULUAN Rangkaian tergantung untuk pada melakukan sekuensial signal input pengubahan ditentukan oleh variabel state. Setiap signal tidak asinkron eksternal disinkronkan
TEKNIK KOMPILASI Konsep & Notasi Bahasa
TEKNIK KOMPILASI Konsep & Notasi Bahasa Sekolah Manajemen Informatika dan Komputer (STMIK) Palangkaraya 2012 Konsep dan Notasi bahasa Teknik Kompilasi merupakan kelanjutan dari konsepkonsep yang telah
TEORI BAHASA & AUTOMATA
TEORI BAHASA & AUTOMATA Dosen: Dadang mulyana Alamat email untuk tugas: [email protected] 1 Cara pengiriman tugas: Dalam subjek email tuliskan: Instansi_kelas_nama_matakuliah_jenistugas Contoh: Ahmad
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54401/ Teori dan Bahasa Otomata Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Februari 2014 Jml Jam kuliah dalam
Teori Bahasa & Otomata
Teori Bahasa & Otomata Pendilkom/Ilkom Universitas Pendidikan Indonesia 1 Daftar Isi Bab 1 Pendahuluan Bab 2 Matematika Dasar Bab 3 Dasar-Dasar Teori Bahasa Bab 4 Representasi Bahasa Bab 5 Klasifikasi
TEORI BAHASA DAN OTOMATA [TBO]
TEORI BAHASA DAN OTOMATA [TBO] Ekspresi Regular (1) Sebuah bahasa dinyatakan regular jika terdapat finite state automata yang dapat menerimanya. Bahasa-bahasa yang diterima oleh suatu finite state automata
TEKNIK KOMPILASI Bahasa Regular
TEKNIK KOMPILASI Bahasa Regular Sekolah Manajemen Informatika dan Komputer (STMIK) Palangkaraya 2012 Tata bahasa reguler Sebuah bahasa dinyatakan regular jika terdapat Finite State Automata (FSA) yang
