BAB V CATALYTIC REFORMING PROCESS/ PLATFORMING PROCESS

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB V CATALYTIC REFORMING PROCESS/ PLATFORMING PROCESS"

Transkripsi

1 BAB V CATALYTIC REFORMING PROCESS/ PLATFORMING PROCESS I. Pendahuluan Catalytic reforming (atau UOP menyebut Platforming) telah menjadi bagian penting bagi suatu kilang di seluruh dunia selama bertahun-tahun. Fungsi utama proses catalytic reforming adalah meng-upgrade naphtha yang memiliki octane number rendah menjadi komponen blending mogas (motor gasoline) dengan bantuan katalis melalui serangkaian reaksi kimia. Naphtha yang dijadikan umpan catalytic reforming harus di-treating terlebih dahulu di unit naphtha hydrotreater untuk menghilangkan impurities seperti sulfur, nitrogen, oksigen, halide, dan metal yang merupakan racun berbahaya bagi katalis catalytic reformer yang tersusun dari platina. Selain itu, catalytic reforming juga memproduksi by-product berupa hydrogen yang sangat bermanfaat bagi unit hydrotreater maupun hydrogen plant atau jika masih berlebih dapat juga digunakan sebagai fuel gas bahan bakar fired heater. Butane, by-product lainnya, sering digunakan untuk mengatur vapor pressure gasoline pool. II. Teori Catalytic Reforming Feed naphtha ke unit catalytic reforming biasanya mengandung C6 s/d C11, paraffin, naphthene, dan aromatic. Tujuan proses catalytic reforming adalah memproduksi aromatic dari naphthene dan paraffin. Kemudihan reaksi catalytic reforming sangat ditentukan oleh kandungan paraffin, naphthene, dan aromatic yang terkadung dalam naphtha umpan. Aromatic hydrocarbon yang terkandung dalam naphtha tidak berubah oleh proses catalytic reforming. Sebagian besar napthene bereaksi sangat cepat dan efisien berubah menjadi senyawa aromatic (reaksi ini merupakan reaksi dasar catalytic reforming). Paraffin merupakan senyawa paling susah untuk diubah menjadi aromatic. Untuk aplikasi low severity, hanya sebagian kecil paraffin berubah menjadi aromatic. Sedangkan pada aplikasi high severity, konversi paraffin lebih tinggi, tetapi tetap saja berlangsung lambat dan inefisien. Gambar berikut menggambarkan konversi hydrocarbon yang terjadi pada operasi typical catalytic reforming, yaitu untuk lean naphtha (high paraffin, low naphtha content) dan untuk rich naphtha (lower paraffin, higher naphthene content) : Teknologi Proses Kilang Minyak Bumi Halaman 1 dari 14 Kontributor : Adhi Budhiarto

2 Lean Reformate/ Rich Reformate/ Naphtha Platformate Naphtha Platformate P Loss P Loss P P N N A Dari P N A A Dari N A Dari A N Dari P Dari N Dari A Keterangan : P = Paraffin Loss : Karena cracking dan shrinkage N = Naphthene A = Aromatic Gambar 1. Konversi Hydrocarbon pada Proses Catalytic Reformer II.1. Reaksi-reaksi yang Terjadi di Catalytic Reforming Reaksi-reaksi yang terjadi di catalytic reforming adalah sebagai berikut : II.1.1.Dehidrogenasi Naphthene Naphthene merupakan komponen umpan yang sangat diinginkan karena reaksi dehidrogenasi-nya sangat mudah untuk memproduksi aromatic dan by-product hydrogen. Reaksi ini sangat endotermis (memerlukan panas). Reaksi dehidrogenasi naphthene sangat terbantu oleh metal catalyst function dan temperatur reaksi tinggi serta tekanan rendah. R R + 3 H 2 Keterangan : S S : saturated ring (naphthene) : dehydrogenated ring (aromatic) R : radikal atau rantai samping yang terikat pada ring, misal CH 2 CH 3, radikal ethyl Teknologi Proses Kilang Minyak Bumi Halaman 2 dari 14 Kontributor : Adhi Budhiarto

3 II.1.2.Isomerisasi Napthene dan Paraffin Isomerisasi cyclopentane menjadi cyclohexane harus terjadi terlebih dahulu sebelum kemudian diubah menjadi aromatic. Reaksi ini sangat tergantung dari kondisi operasi. R R Contoh reaksi isomerisasi paraffin adalah sebagai berikut : C R - C - C - C - C R - C - C - C II.1.3.Dehydrocyclization Paraffin Dehydrocyclization paraffin merupakan reaksi catalytic reforming yang paling susah. Reaksi dehydrocyclization terjadi pada tekanan rendah dan temperature tinggi. Fungsi metal dan acid dalam katalis diperlukan untuk mendapatkan reaksi ini. R S + H 2 R - C - C - C - C R S + H 2 II.1.4.Hydrocracking Kemungkinan terjadinya reaksi hydrocracking karena reaksi isomerisasi ring dan pembentukan ring yang terjadi pada alkylcyclopentane dan paraffin dank area kandungan acid dalam katalis yang diperlukan untuk reaksi catalytic reforming. Hydrocracking paraffin relative cepat dan terjadi pada tekanan dan temperature tinggi. Penghilangan paraffin melalui reaksi hydrocracking akan meningkatkan konsentrasi aromatic dalam produk sehingga akan meningkatkan octane number. Reaksi hydrocracking ini tentu mengkonsumsi hydrogen dan menghasilkan yield reformate yang lebih rendah. C C R - C - C - C + H 2 RH + C - C - C H Teknologi Proses Kilang Minyak Bumi Halaman 3 dari 14 Kontributor : Adhi Budhiarto

4 II.1.5.Demetalization Reaksi demetalisasi biasanya hanya dapat terjadi pada severity operasi catalytic reforming yang tinggi. Reaksi ini dapat terjadi selama startup unit catalytic reformate semi-regenerasi pasca regenerasi atau penggantian katalis. R - C - C - C - C + H 2 R - C - C CH + CH 4 dan R-C RH + H 2 + CH 4 II.1.6.Dealkylation Aromatic Dealkylation aromatic serupa dengan aromatic demethylation dengan perbedaan pada ukuran fragment yang dihilangkan dari ring. Jika alkyl side chain cukup besar, reaksi ini dapat dianggap sebagai reaksi cracking ion carbonium terhadap rantai samping. Reaksi ini memerlukan temperature dan tekanan tinggi. Reaksi-reaksi yang terjadi pada unit catalytic reforming dapat diringkas sebagai berikut : Tabel I. Reaksi yang Terjadi pada Unit Catalytic Reforming Jenis Reaksi Catalyst Function Temperatur Pressure Naphthene dehydrogenation Metal Tinggi Rendah Naphthene isomerization Acid Rendah - Paraffin isomerization Acid Rendah - Parafin dehydrocyclization Metal/Acid Tinggi Rendah Hydrocracking Acid Tinggi Tinggi Demethylation Metal Tinggi Tinggi Aromatic dealkylation Metal/Acid Tinggi Tinggi II.2. Catalytic Reforming Catalyst Dual Function Balance Seperti terlihat pada tabel 1 (Reaksi yang terjadi pada Unit Catalytic Reforming), sebagian reaksi menggunakan fungsi metal dari katalis dan sebagian reaksi lainnya menggunakan fungsi acid dari katalis. Pada unit catalytic cracking sangat penting untuk memiliki balance yang sesuai antara fungsi metal dan fungsi acid dari katalis, seperti terlihat pada gambar berikut : Teknologi Proses Kilang Minyak Bumi Halaman 4 dari 14 Kontributor : Adhi Budhiarto

5 Desired Metal-Acid Balance Platina (Metal Function) Demethylation Chloride (Acid Function) Cracking Dehydrogenation Dehydrocyclization Isomerization Gambar 2. Desired Metal-Acid Balance Pada proses catalytic reforming, sangat penting untuk meminimumkan reaksi hydrocracking dan memaksimumkan reaksi dehydrogenation dan dehydrocyclization. Balance ini dijaga dengan pengendalian H 2 O/Cl yang tepat selama siklus katalis semiregeneration dan dengan menggunakan teknik regenerasi yang tepat. Fase uap H 2 O dan HCl berada dalam kesetimbangan dengan permukaan chloride dan kelompok hydroxyl. Terlalu banyak H 2 O dalam fase uap akan memaksa chloride dari permukaan katalis keluar dan menyebabkan katalis menjadi underchloride (fungsi acid dalam katalis tidak dapat dijalankan dengan baik), sedangkan terlalu banyak chloride dalam fase uap akan menjadikan katalis overchloride yang juga tidak baik untuk katalis (fungsi metal dalam katalis tidak dapat dijalankan dengan baik). II.3. Catalyst Unloading II.3.1.Catalyst Unloading untuk Fixed Bed Catalytic Reformer Prosedur catalyst unloading untuk fixed bed catalyst reformer serupa dengan prosedur catalyst unloading untuk hydrotreater (silahkan merujuk ke bab hydrotreating process). II.3.1.Catalyst Unloading untuk Catalytic Reformer-Continuous Catalytic Regeneration Prosedur unloading untuk catalytic reformer-ccr lebih susah dibandingkan prosedur unloading untuk fixed bed catalytic reformer. Beberapa hal yang perlu diperhatikan saat melakukan catalyst unloading untuk catalytic reformer-ccr adalah sebagai berikut : Jangan pernah membiarkan udara masuk ke dalam reactor karena akan menyebabkan spontaneous combution. Teknologi Proses Kilang Minyak Bumi Halaman 5 dari 14 Kontributor : Adhi Budhiarto

6 Jangan pernah membuka top dan bottom reaktor secara bersamaan karena akan menciptakan natural chimney draft effect yang akan menarik udara masuk ke dalam reactor. Jangan menggunakan kayu, kanvas, atau material mudah terbakar lainnya. Yakinkan beberapa CO 2 extinguisher tersedia di sekitar lokasi unloading dan siapkan selang water hydrant menjulur ke lokasi unloading. Selama unloading, reaktor harus dijaga dalam kondisi inert dengan menggunakan nitrogen blanketting sehingga katalis tidak berkontak dengan udara. Semua orang yang masuk ke dalam reaktor harus dilengkapi peralatan keselamatan yang sesuai untuk confined space dan kondisi inert (breathing apparatus). Gunakan drum metal sebagai penampung spent catalyst dan setiap drum harus di-purge dengan nitrogen selama proses unloading untuk mencegah kontak katalis dengan udara. Semua orang yang berada di sekitar area unloading harus menggunakan pelindung muka dan mata dan menggunakan baju lengan panjang (jika mungkin yang flame-resistant) karena sewaktu-waktu spark/api dapat saja terjadi dengan kehadiran pyrites. Jika timbul pyrite dalam reaktor selama proses unloading, maka naikkan supply nitrogen semaksimal mungkin, jangan pernah menggunakan air untuk memadamkannya, karena dapat merusak struktur katalis dan internal reaktor. Setelah drum berisi spent catalyst hasil unloading mengalami pendinginan alami dan pendinginan dengan supply nitrogen ke dalam drum, maka drum dapat ditutup dengan penutup yang sesuai untuk menghindari masuknya moisture ke dalam drum. II.4. Catalyst Loading II.4.1.Catalyst Loading untuk Fixed Bed Catalytic Reformer Prosedur catalyst loading untuk fixed bed catalyst reformer serupa dengan prosedur catalyst loading untuk hydrotreater (silahkan merujuk ke bab hydrotreating process). II.4.1.Catalyst Loading untuk Catalytic Reformer-Continuous Catalytic Regeneration Terdapat 3 metode catalyst loading untuk catalytic reformer-ccr, yaitu: Reactor by reactor loading procedure Entire Reactor Stack Loading Procedure Pneumatic Catalyst Loading Procedure Teknologi Proses Kilang Minyak Bumi Halaman 6 dari 14 Kontributor : Adhi Budhiarto

7 Karena prosedur ketiga metode catalyst loading di atas sangat rumit dan sangat technical, maka ketiga metode catalyst loading tersebut tidak akan diuraikan disini. II.5. Catalyst Poison Beberapa racun katalis catalytic reforming adalah sebagai berikut : Sulfur Konsentrasi sulfur maksimum yang diijinkan dalam umpan naphtha adalah 0,5 wt-ppm. Biasanya diusahakan kandungan sulfur dalam umpan naphtha sebesar 0,1-0,2 wt-ppm untuk menjamin stabilitas dan selektivitas katalis yang maksimum. Beberapa sumber yang membuat kandungan sulfur dalam umpan naphta tinggi adalah : proses hydrotreating yang tidak baik (temperature reactor kurang tinggi atau katalis sudah harus diganti), recombination sulfur dari naphtha hydrotreater (dan terbentuknya sedikit olefin) akibat temperature hydrotreater yang tinggi dan tekanan hydrotreater yang rendah, hydrotreater stripper upset, memproses feed yang memiliki end point tinggi. Nitrogen Konsentrasi nitrogen maksimum yang diijinkan dalam umpan naphtha adalah 0,5 wt-ppm. Kandungan nitrogen dalam umpan naphtha akan menyebabkan terbentuknya deposit ammonium chloride pada permukaan katalis. Beberapa sumber yang membuat kandungan nitrogen dalam umpan naphtha tinggi adalah : proses hydrotreating yang tidak baik (temperature reactor kurang tinggi atau katalis sudah harus diganti), penggunaan filming atau neutralizing amine sebagai corrosion inhibitor di seluruh area yang tidak tepat guna. Water Kandungan air dalam recycle gas sebesar 30 mol-ppm sudah menunjukkan excessive water, dissolved oxygen, atau combined oxygen di unit catalytic reforming. Tingkat moisture di atas level ini dapat menyebabkan reaksi hydrocracking yang excessive dan juga dapat menyebabkan coke laydown. Lebih lanjut lagi, kondisi ini akan menyebabkan chloride ter-strip dari katalis, sehingga mengganggu kesetimbangan H 2 O/Cl dan menyebabkan reaksi menjadi terganggu. Beberapa sumber yang membuat kandungan air dalam system tinggi adalah : proses hydrotreating yang tidak sesuai, kebocoran heat exchanger yang menggunakan pemanas/ Teknologi Proses Kilang Minyak Bumi Halaman 7 dari 14 Kontributor : Adhi Budhiarto

8 pendingin steam/water di upstream unit, system injeksi water catalytic reforming, kebocoran naphtha hydrotreater stripper feed effluent heat exchanger, proses drying yang tidak cukup di drying zone di dalam regeneration tower, dan kebocoran steam jacket di regeneration section. Metal Karena efek reaksi irreversible, maka kontaminasi metal ke dalam katalis catalytic reforming sama sekali tidak dibolehkan, sehingga umpan catalytic reformer tidak boleh mengandung metal sedikit pun. Beberapa sumber kandungan metal dalam umpan naphtha adalah : arsenic (ppb) dalam virgin naphtha, lead mungkin timbul akibiat memproses ulang off-spec leaded gasoline atau kontaminasi umpan dari tangki yang sebelumnya digunakan untuk leaded gasoline, produk korosi, senyawa water treating yang mengandung zinc, copper, phosphorous, kandungan silicon dalam cracked naphtha yang berasal dari silicon based antifoam agent yang diijeksikan ke dalam coke chamber untuk mencegah foaming, dan injeksi corrosion inhibitor yang berlebihan ke stripper naphtha hydrotreater. High feed end point Catalytic reforming didisain untuk memproduksi aromatic hydrocarbon. Produksi aromatic ini tidak dapat terjadi tanpa kondensasi single ring aromatic menjadi mulgi-ring polycyclic aromatic, yang merupakan petunjuk adanya coke. Endpoint naphtha maksimum yang diijinkan sebagai umpan catalytic reforming adalah 204 o C. Pada endpoint > 204 o C, konsentrasi polycyclic aromatic dalam umpan naphtha akan meningkat tajam. Jika umpan catalytic reforming merupakan hasil blending dari berbagai sumber (straight run naphtha, hydrocracker naphtha, cracked naphtha), maka tiap arus umpan harus dianalisa secara terpisah dan tiap stream tidak boleh memiliki endpoint > 204 o C. Hasil blending antara high end point stream dengan low end point stream akan mengaburkan kandungan fraksi endpoint yang tinggi. III. Feed dan Produk Catalytic Reforming Unit Feed unit catalytic reforming adalah heavy naphtha yang berasal dari unit naphtha hydrotreating yang telah mengalami treating untuk menghilangkan impurities seperti sulfur, nitrogen, oxygen, halida, dan metal yang merupakan racun bagi katalis catalytic reforming. Boiling range umpan heavy naphtha antara 70 s/d 150 o C. Teknologi Proses Kilang Minyak Bumi Halaman 8 dari 14 Kontributor : Adhi Budhiarto

9 Produk unit catalytic reforming berupa high octane motor gasoline component (HOMC) yang digunakan sebagai komponen blending motor gasoline. Produk unit catalytic reforming ini mempunyai RONC > 95 dan bahkan dapat mencapai RONC 100. Produk lain adalah LPG dan byproduct hydrogen. Produk LPG dikirim ke tangki produk (jika sudah memenuhi spesifikasi produk LPG) atau dikirim ke unit Amine-LPG recovery terlebih dahulu. By product hydrogen dikirim ke unit hydrotreater dan hydrogen plant. IV. Aliran Proses Catalytic Reforming IV.1. Aliran Proses Semi-Regenerative Catalytic Reforming (Fixed Bed Catalytic Reforming) Process Flow Diagram Fixed Bed Catalytic Reforming dapat dilihat pada gambar berikut : Gambar 3. Process Flow Diagram Fixed Bed Catalytic Reforming IV.2. Aliran Proses Catalytic Reforming-Continuous Catalytic Regeneration/CCR Process Flow Diagram Catalytic Reforming-Continuous Catalytic Regeneration dapat dilihat pada gambar berikut : Teknologi Proses Kilang Minyak Bumi Halaman 9 dari 14 Kontributor : Adhi Budhiarto

10 Gambar 4. Process Flow Diagram Catalytic Reforming-CCR (Seksi Reaktor) Gambar 5. Process Flow Diagram Catalytic Reforming-CCR (Seksi CCR) Teknologi Proses Kilang Minyak Bumi Halaman 10 dari 14 Kontributor : Adhi Budhiarto

11 V. Variabel Proses Catalytic Reforming Unit Beberapa variabel proses yang berpengaruh pada operasi Catalytic Reforming adalah sebagai berikut : V.1. Catalyst Type Tipe katalis berpengaruh terhadap operasi catalytic reforming terutama dalam hal basic catalyst formulation (metal-acid loading), chloride level, platinum level, dan activator level. V.2. Temperatur Reaksi Catalytic reformer reactor catalyst bed temperature merupakan parameter utama yang digunakan untuk mengendalikan operasi agar produk dapat sesuai dengan spesifikasi. Katalis catalytic reformer dapat beroperasi hingga temperatur yang cukup tinggi, namun pada temperatur di atas 560 o C dapat menyebabkan reaksi thermal yang akan mengurangi reformate dan hydrogen yield serta meningkatkan kecepatan pembentukan coke pada permukaan katalis. Temperatur reactor dapat didefinisikan menjadi 2 macam, yaitu : Weighted Average Inlet Temperature (WAIT), yaitu total (fraksi berat katalis dalam bed dikali temperature inlet bed). Weighted Average Bed Temperature (WABT), yaitu total (fraksi berat katalis dalam bed dikali rata-rata temperatur inlet dan outlet). Dari kedua macam definisi tersebut di atas, WAIT paling sering digunakan dalam perhitungan karena kemudahan perhitungan, walaupun WABT sebenarnya adalah ukuran yang lebih baik dari kondisi reaksi dan temperatur katalis rata-rata. V.3. Space Velocity Space velocity merupakan ukuran jumlah naphtha yang diproses untuk jumlah katalis yang tertentu selama waktu tertentu. Jika volume umpan naphtha per jam dan volume katalis yang digunakan, istilah yang digunakan adalah Liquid Hourly Space Velocity (LHSV). Sedangkan jika berat umpan naphtha per jam dan berat katalis yang digunakan, maka istilah yang digunakan adalah Weight Hourly Space Velocity (WHSV). Satuannya sama, yaitu 1/jam Semakin tinggi space velocity atau semakin rendah residence time, maka semakin rendah octane number (RONC) produk atau semakin rendah jumlah reaksi yang terjadi pada WAIT yang tetap. Jika space velocity naik, untuk mempertahankan RONC produk, maka kompensasi yang dilakukan adalah dengan menaikkan temperatur reaktor. Teknologi Proses Kilang Minyak Bumi Halaman 11 dari 14 Kontributor : Adhi Budhiarto

12 V.4. Reactor Pressure Sebenarnya lebih tepat mengatakan hydrogen partial pressure sebagai variabel proses dibandingkan reactor pressure, namun untuk kemudahan penggunaan, maka reactor pressure dapat digunakan sebagai variabel proses (hydrogen partial pressure = purity hydrogen x tekanan reactor). Penyederhanaan ini dapat diterima karena hydrogen yang ada dalam sistem merupakan produk samping reaksi sehingga juga tergantung tekanan reaktor, berbeda dengan di unit hydrocracker yang menggunakan supply hydrogen dari hydrogen plant. Tekanan reaktor akan mempengaruhi struktur yield produk, kebutuhan temperatur reaktor, dan kecepatan pembentukan coke pada permukaan katalis. Menurunkan tekanan reaktor akan meningkatkan jumlah hydrogen dan yield reformate, mengurangi kebutuhan temperatur untuk membuat produk dengan octane number yang sama, dan meningkatkan kecepatan pembentukan coke pada permukaan katalis. V.5. Hydrogen/Hydrocarbon Ratio Hydrogen/hydrocarbon ratio didefinisikan sebagai mol recycle hydrogen per mol naphtha umpan. Kenaikan H 2 /HC ratio akan menyebabkan naphtha melalui reaktor dengan lebih cepat (residence time lebih singkat), sehingga akan menurunkan kecepatan pembentukan coke pada permukaan katalis dengan pengaruh yang kecil terhadap kualitas dan yield produk. VI. Troubleshooting Beberapa contoh permasalahan, penyebab, dan troubleshooting yang terjadi di Catalytic Reforming Unit dapat dilihat dalam table II berikut ini : Teknologi Proses Kilang Minyak Bumi Halaman 12 dari 14 Kontributor : Adhi Budhiarto

13 Tabel II. Contoh Permasalahan, Penyebab, dan Troubleshooting Catalytic Reforming Unit Permasalahan Penyebab Troubleshooting T reaktor rendah Umpan kurang naphthenic. Kontaminasi sulfur. Kontaminasi metal. Injeksi chloride yang berlebihan. Bad temperature indicator. Tidak perlu troubleshooting. Cari sumber kontaminasi. Cari sumber kontaminasi. Kurangi injeksi chloride. Perbaiki atau ganti temperature indicator. T reaktor tinggi Umpan lebih naphthenic. Tidak perlu troubleshooting. Produksi H2 purity-nya rendah Yield reformate rendah Kecepatan pembentukan coking yang tinggi ΔP reaktor tinggi ΔP reaktor rendah Loss of chloride injection Kontaminasi nitrogen. Umpan kurang naphthenic. Kontaminasi sulfur. Injeksi chloride yang berlebihan. Kontaminasi metal. Kontaminasi water. Umpan kurang naphthenic. Kontaminasi sulfur. Injeksi chloride yang berlebihan. Water tinggi. H 2 /HC ratio rendah. Umpan sangat parafinic. Internal screen plugging. Excessive coke level. Bad pressure indicator. Loss of catalyst bed. Bad pressure indicator. Pompa injeksi stop atau valve tertutup. Suction atau discharge plugging. Cari sumber kontaminasi. Tidak perlu troubleshooting. Cari sumber kontaminasi. Kurangi injeksi chloride. Cari sumber kontaminasi. Cari sumber kontaminasi. Tidak perlu troubleshooting. Cari sumber kontaminasi. Kurangi injeksi chloride. Kurangi injeksi water dan cari sumbernya. Naikkan recycle rate. Tidak perlu troubleshooting. Shutdown dan cleaning reaktor. Shutdown dan cleaning reaktor. Perbaiki atau ganti pressure indicator. Shutdown dan repair reaktor. Perbaiki atau ganti pressure indicator. Restart pompa dan line up jika perlu. Stop pompa dan repair suction/discharge. Teknologi Proses Kilang Minyak Bumi Halaman 13 dari 14 Kontributor : Adhi Budhiarto

14 VII. Istilah-istilah BUKU PINTAR MIGAS INDONESIA Mogas Motor gasoline RONC Research Octane Number Clear (unleaded) Straight run naphtha Naphtha yang berasal dari unit naptha hydrotreater VIII. Daftar Pustaka 1. Operating Manual CCR-Platforming Unit PERTAMINA Unit Pengolahan II Dumai. 2. Operation Manual for Unit 300 Platforming Process Unit, Pakistan-Arabian Refinery Limited, Mid-Country Refinery Project (PARCO), Mahmood Kot, Pakistan. Teknologi Proses Kilang Minyak Bumi Halaman 14 dari 14 Kontributor : Adhi Budhiarto

BAB III VACUUM DISTILLATION UNIT (VDU)

BAB III VACUUM DISTILLATION UNIT (VDU) BAB III VACUUM DISTILLATION UNIT (VDU) I. Pendahuluan Pada awalnya kilang hanya terdiri dari suatu Crude Distillation Unit (CDU) yang beroperasi dengan prinsip dasar pemisahan berdasarkan titik didih komponen

Lebih terperinci

BAB X VISBREAKING PROCESS

BAB X VISBREAKING PROCESS BAB X VISBREAKING PROCESS I. Pendahuluan Proses perengkahan panas (thermal cracking process) adalah suatu proses pemecahan rantai hydrocarbon dari senyawa rantai panjang menjadi hydrocarbon dengan rantai

Lebih terperinci

BAB II CRUDE DISTILLATION UNIT (CDU)

BAB II CRUDE DISTILLATION UNIT (CDU) BAB II RUDE DISTILLATION UNIT (DU) I. Pendahuluan rude Distillation Unit (DU) beroperasi dengan prinsip dasar pemisahan berdasarkan titik didih komponen penyusunnya. Kolom DU memproduksi produk LPG, naphtha,

Lebih terperinci

BAB VII INTRODUCTION TO FLUID CATALYTIC CRACKING (FCC)

BAB VII INTRODUCTION TO FLUID CATALYTIC CRACKING (FCC) BAB VII INTRODUCTION TO FLUID CATALYTIC CRACKING (FCC) Ringkasan Terjemahan dari Materi Presentasi Quak Foo, Lee Chemical and Biological Engineering, the University of British Columbia I. Apakah FCC itu?

Lebih terperinci

BAB IV HYDROTREATING PROCESS

BAB IV HYDROTREATING PROCESS BAB IV HYDROTREATING PROESS I. Pendahuluan Hydrotreating atau disebut juga hydroprocessing adalah proses hidrogenasi katalitik untuk menjenuhkan hidrokarbon dan menghilangkan sulfur, nitrogen, oksigen,

Lebih terperinci

Pengertian Cracking Perkembangan Catalytic Cracking Reaksi Perengkahan Katalis untuk Cracking Variabel Proses estimasi

Pengertian Cracking Perkembangan Catalytic Cracking Reaksi Perengkahan Katalis untuk Cracking Variabel Proses estimasi Pengertian Cracking Perkembangan Catalytic Cracking Reaksi Perengkahan Katalis untuk Cracking Variabel Proses estimasi Pengertian Cracking Cracking merupakan proses perengkahan atau dekomposisi, penyusunan

Lebih terperinci

LATAR BELAKANG. Kilang PT. Pertamina (Persero) RU VI Balongan dilaksanakan. pada bulan Oktober 1994 dan diresmikan oleh Presiden

LATAR BELAKANG. Kilang PT. Pertamina (Persero) RU VI Balongan dilaksanakan. pada bulan Oktober 1994 dan diresmikan oleh Presiden LATAR BELAKANG Kilang PT. Pertamina (Persero) RU VI Balongan dilaksanakan pada bulan Oktober 1994 dan diresmikan oleh Presiden Soeharto pada tanggal 24 Mei 1995. Sumber bahan baku yang diolah di PT. PERTAMINA

Lebih terperinci

Prarancangan Pabrik Gasoline dari Metanol dengan Fixed Bed MTG Process dengan Kapasitas Ton/Tahun BAB I PENDAHULUAN

Prarancangan Pabrik Gasoline dari Metanol dengan Fixed Bed MTG Process dengan Kapasitas Ton/Tahun BAB I PENDAHULUAN BAB I PENDAHULUAN A. LATAR BELAKANG Energi merupakan salah satu kebutuhan pokok manusia di samping sandang, pangan, dan papan. Keberlangsungan hidup manusia bergantung pada ketersediaan energi. Selama

Lebih terperinci

Pra Desain Pabrik Produksi Gasoline Pada Kilang Minyak Skala Kecil

Pra Desain Pabrik Produksi Gasoline Pada Kilang Minyak Skala Kecil F127 Pra Desain Pabrik Produksi Gasoline Pada Kilang Minyak Skala Kecil Bilal Chabibulloh, Wisnu Kusuma Atmaja, Juwari dan Renanto Departemen Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA II-1 BAB II TINJAUAN PUSTAKA 2.1 Tetradecene Senyawa tetradecene merupakan suatu cairan yang tidak berwarna yang diperoleh melalui proses cracking senyawa asam palmitat. Senyawa ini bereaksi dengan oksidan

Lebih terperinci

Teknologi Minyak dan Gas Bumi. Di susun oleh : Nama : Rostati Sumarto( ) Wulan Kelas : A Judul : Sour water stripper

Teknologi Minyak dan Gas Bumi. Di susun oleh : Nama : Rostati Sumarto( ) Wulan Kelas : A Judul : Sour water stripper Teknologi Minyak dan Gas Bumi Di susun oleh : Nama : Rostati Sumarto(1500020074) Wulan Kelas : A Judul : Sour water stripper Proses Sour Water Stripping di Pabrik Minyak di Indonesia Balongan Cilacap Kilang

Lebih terperinci

BAB VI HYDROCRACKING PROCESS

BAB VI HYDROCRACKING PROCESS I. Pendahuluan BAB VI HYDRORAKING PROESS Hydrocracking merupakan unit proses kilang minyak bumi yang termasuk kelompok secondary processing, yaitu proses downstream kilang minyak bumi yang menggunakan

Lebih terperinci

Upstream dan Downstream Ter-Integrasi

Upstream dan Downstream Ter-Integrasi Upstream dan Downstream Ter-Integrasi Tujuan: Untuk menciptakan kemandirian energy, industry dan meningkatkan ketahanan energy dan industry nasional melalui pembangunan Upstream dan Downstream yang terintegrasi.

Lebih terperinci

MODIFIED PROSES CLAUSE PADA BERBAGAI UMPAN GAS REKAYASA PROSES APRILIANA DWIJAYANTI NIM

MODIFIED PROSES CLAUSE PADA BERBAGAI UMPAN GAS REKAYASA PROSES APRILIANA DWIJAYANTI NIM MODIFIED PROSES CLAUSE PADA BERBAGAI UMPAN GAS REKAYASA PROSES APRILIANA DWIJAYANTI NIM. 23014038 MAGISTER TEKNIK KIMIA FAKULTAS TEKNIK INDUSTRI INSTITUT TEKNOLOGI BANDUNG 2015 PENDAHULUAN Proses penghilangan

Lebih terperinci

Secara umum tahapan-tahapan proses pembuatan Amoniak dapat diuraikan sebagai berikut :

Secara umum tahapan-tahapan proses pembuatan Amoniak dapat diuraikan sebagai berikut : PROSES PEMBUATAN AMONIAK ( NH3 ) Amoniak diproduksi dengan mereaksikan gas Hydrogen (H 2) dan Nitrogen (N 2) dengan rasio H 2/N 2 = 3 : 1. Disamping dua komponen tersebut campuran juga berisi inlet dan

Lebih terperinci

BAB VIII HYDROGEN PRODUCTION UNIT (HPU)

BAB VIII HYDROGEN PRODUCTION UNIT (HPU) BAB VIII HYDROGEN PRODUCTION UNIT (HPU) I. Pendahuluan Hydrogen Production Unit (HPU) menggunakan proses steam/hydrocarbon reforming. Hydrogen production unit di kilang minyak bumi biasanya diperlukan

Lebih terperinci

H 2 S + 2NaOH Na 2 S + 2H 2 O

H 2 S + 2NaOH Na 2 S + 2H 2 O Treating untuk produk minyak bumi cara pencucian dengan larutan alkali (caustic, lye), Bau dan warna dapat diperbaiki dengan menghilangkan asam-2 organik (asam naphthenat dan phenol) senyawa senyawa sulfur

Lebih terperinci

II. DESKRIPSI PROSES

II. DESKRIPSI PROSES II. DESKRIPSI PROSES A. Proses Pembuatan Trimetiletilen Secara umum pembuatan trimetiletilen dapat dilakukan dengan 2 proses berdasarkan bahan baku yang digunakan, yaitu pembuatan trimetiletilen dari n-butena

Lebih terperinci

LEMBAR PERSETUJUAN. Laporan Kerja Praktek dengan judul Evaluasi Kinerja Reboiler E-2 Pada Unit

LEMBAR PERSETUJUAN. Laporan Kerja Praktek dengan judul Evaluasi Kinerja Reboiler E-2 Pada Unit LEMBAR PERSETUJUAN Laporan Kerja Praktek dengan judul Evaluasi Kinerja Reboiler E-2 Pada Unit Sour Water Stripper 840-V2 Hydrocracking Complex (HCC) di PT.PERTAMINA (persero) RU II Dumai Riau oleh Mohd

Lebih terperinci

II. DESKRIPSI PROSES. (2007), metode pembuatan VCM dengan mereaksikan acetylene dengan. memproduksi vinyl chloride monomer (VCM). Metode ini dilakukan

II. DESKRIPSI PROSES. (2007), metode pembuatan VCM dengan mereaksikan acetylene dengan. memproduksi vinyl chloride monomer (VCM). Metode ini dilakukan II. DESKIPSI POSES A. Jenis - Jenis Proses a) eaksi Acetylene (C2H2) dengan Hydrogen Chloride (HCl) Menurut Nexant s ChemSystem Process Evaluation/ esearch planning (2007), metode pembuatan VCM dengan

Lebih terperinci

KATALIS LTS LK SEBAGAI SULFUR GUARD UNIT DESULFURIZER PABRIK AMONIAK KALTIM 2 PUPUK KALTIM

KATALIS LTS LK SEBAGAI SULFUR GUARD UNIT DESULFURIZER PABRIK AMONIAK KALTIM 2 PUPUK KALTIM KATALIS LTS LK-821-2 SEBAGAI SULFUR GUARD UNIT DESULFURIZER PABRIK AMONIAK KALTIM 2 PUPUK KALTIM Anton Sri Widodo, Suharyoso Departemen Pengendalian Proses PT Pupuk Kalimantan Timur Jl. Ir. James Simandjuntak

Lebih terperinci

Opsi Teknis Pengadaan Bensin Tanpa Timbel Dollaris Riauaty

Opsi Teknis Pengadaan Bensin Tanpa Timbel Dollaris Riauaty Opsi Teknis Pengadaan Bensin Tanpa Timbel Dollaris Riauaty 1. Pendahuluan Timbel (tetraethyl lead = TEL) ditambahkan kedalam bensin untuk meningkatkan angka oktan atau meningkatkan resistensi terjadinya

Lebih terperinci

IDENTIFIKASI SUMBER EMISI DAN PERHITUNGAN BEBAN EMISI

IDENTIFIKASI SUMBER EMISI DAN PERHITUNGAN BEBAN EMISI IDENTIFIKASI SUMBER EMISI DAN PERHITUNGAN BEBAN EMISI Oleh: *) Martono ABSTRAK Agar mampu menghitung beban emisi langkah pertama kita harus memahami sumber emisi dan beban emisi sehingga mampu mengestimasi

Lebih terperinci

KINERJA REAKTOR UREA DC-101 DI PT. PUPUK ISKANDAR MUDA ABSTRAK

KINERJA REAKTOR UREA DC-101 DI PT. PUPUK ISKANDAR MUDA ABSTRAK KINERJA REAKTOR UREA DC-101 DI PT. PUPUK ISKANDAR MUDA Teuku Raja Wahidin 1*, Ratni Dewi 2, M. Yunus 2 1* DIV Teknologi Kimia Industri, Jurusan Teknik Kimia, Politeknik Negeri Lhokseumawe 2 Jurusan Teknik

Lebih terperinci

Prarancangan Pabrik Hidrorengkah Aspal Buton dengan Katalisator Ni/Mo dengan Kapasitas 90,000 Ton/Tahun BAB I PENGANTAR

Prarancangan Pabrik Hidrorengkah Aspal Buton dengan Katalisator Ni/Mo dengan Kapasitas 90,000 Ton/Tahun BAB I PENGANTAR BAB I PENGANTAR A. Latar Belakang Dewasa ini permasalahan krisis energi cukup menjadi perhatian utama dunia, hal ini disebabkan menipisnya sumber daya persediaan energi tak terbarukan seperti minyak bumi

Lebih terperinci

II. DESKRIPSI PROSES

II. DESKRIPSI PROSES II. DESKRIPSI PROSES A. JENIS-JENIS PROSES Proses pembuatan metil klorida dalam skala industri terbagi dalam dua proses, yaitu : a. Klorinasi Metana (Methane Chlorination) Reaksi klorinasi metana terjadi

Lebih terperinci

Instrumentasi dan Pengendalian Proses

Instrumentasi dan Pengendalian Proses 01 PENDAHULUAN Instrumentasi dan Pengendalian Proses - 121171673 salah satu ilmu terapan dalam teknik kimia dengan tujuan utama memberikan dasar pengetahuan tentang: a) dasar-dasar instrumentasi proses

Lebih terperinci

BAB IX DELAYED COKING UNIT (DCU)

BAB IX DELAYED COKING UNIT (DCU) BAB IX DELAYED COKING UNIT (DCU) I. Pendahuluan Proses perengkahan panas (thermal cracking process) adalah suatu proses pemecahan rantai hydrocarbon dari senyawa rantai panjang menjadi hydrocarbon dengan

Lebih terperinci

PLANT 2 - GAS DEHYDRATION AND MERCURY REMOVAL

PLANT 2 - GAS DEHYDRATION AND MERCURY REMOVAL PROSES PENGOLAHAN GAS ALAM CAIR (Liquifed Natural Gas) Gas alam cair atau LNG adalah gas alam (metana terutama, CH4) yang telah diubah sementara untuk bentuk cair untuk kemudahan penyimpanan atau transportasi.

Lebih terperinci

SINTESIS BUTANOL H 9. OH, merupakan

SINTESIS BUTANOL H 9. OH, merupakan SINTESIS BUTANOL Salah satu jenis produksi industri kimia yang dibutuhkan dalam jumlah yang terus meningkat adalah industri n-butanol. n-butanol yang memiliki rumus kimia C 4 H 9 OH, merupakan produk hasil

Lebih terperinci

BAB XI AMINE UNIT (H 2 S/CO 2 ABSORPTION UNIT & AMINE REGENERATION UNIT)

BAB XI AMINE UNIT (H 2 S/CO 2 ABSORPTION UNIT & AMINE REGENERATION UNIT) BAB XI AMINE UNIT (H 2 S/CO 2 ABSORPTION UNIT & AMINE REGENERATION UNIT) I. Pendahuluan Senyawa amine biasanya digunakan untuk menghilangkan senyawa sulfur (terutama H 2 S) yang terkandung dalam recycle

Lebih terperinci

CH 3 -O-CH 3. Pabrik Dimethyl Ether (DME) dari Styrofoam bekas dengan Proses Direct Synthesis. Dosen Pembimbing: Dr.Ir. Niniek Fajar Puspita, M.

CH 3 -O-CH 3. Pabrik Dimethyl Ether (DME) dari Styrofoam bekas dengan Proses Direct Synthesis. Dosen Pembimbing: Dr.Ir. Niniek Fajar Puspita, M. Pabrik Dimethyl Ether (DME) dari Styrofoam bekas dengan Proses Direct Synthesis CH 3 -O-CH 3 Dosen Pembimbing: Dr.Ir. Niniek Fajar Puspita, M.Eng 1. Agistira Regia Valakis 2310 030 009 2. Sigit Priyanto

Lebih terperinci

II. DESKRIPSI PROSES

II. DESKRIPSI PROSES II. DESKRIPSI PROSES A. Jenis-Jenis Proses 1-Butena atau butilen dengan rumus molekul C 4 H 8 merupakan senyawa berbentuk gas yang larut dalam senyawa hidrokarbon, alkohol, eter tetapi tidak larut dalam

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Reaksi pembentukan C8H4O3 (phthalic anhydride) adalah reaksi heterogen fase gas dengan katalis padat, dimana terjadi reaksi oksidasi C8H10 (o-xylene) oleh

Lebih terperinci

PROSES PRODUKSI ASAM SULFAT

PROSES PRODUKSI ASAM SULFAT PRODU KSI A SAM SU LFAT BAB III PROSES PROSES PRODUKSI ASAM SULFAT 3.1 Flow Chart Proses Produksi Untuk mempermudah pembahasan dan urutan dalam menguraikan proses produksi, penulis merangkum dalam bentuk

Lebih terperinci

Tujuan Pembelajaran. Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut.

Tujuan Pembelajaran. Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut. Tujuan Pembelajaran Saat kuselesaikan bab ini, kuingin dapat melakukan hal-hal berikut. Mengenal contoh-contoh dari tujuh (7) obyektif pengendalian pada proses-proses kimia Menghitung indikator dari variabilitas

Lebih terperinci

K3 KEBAKARAN. Pelatihan AK3 Umum

K3 KEBAKARAN. Pelatihan AK3 Umum K3 KEBAKARAN Pelatihan AK3 Umum Kebakaran Hotel di Kelapa Gading 7 Agustus 2016 K3 PENANGGULANGAN KEBAKARAN FENOMENA DAN TEORI API SISTEM PROTEKSI KEBAKARAN FENOMENA & TEORI API Apakah...? Suatu proses

Lebih terperinci

Prarancangan Pabrik Xylen dari Etil Benzen Kapasitas ton/tahun BAB I PENGANTAR

Prarancangan Pabrik Xylen dari Etil Benzen Kapasitas ton/tahun BAB I PENGANTAR BAB I PENGANTAR A. LATAR BELAKANG Pembangunan di bidang industri kimia di Indonesia semakin pesat perkembangannya. Hal ini dibuktikan dengan didirikannya beberapa pabrik kimia di Indonesia. Kegiatan pengembangan

Lebih terperinci

BAB I PENGANTAR. A. Latar Belakang

BAB I PENGANTAR. A. Latar Belakang BAB I PENGANTAR A. Latar Belakang Saat ini hidrogen diproyeksikan sebagai unsur penting untuk memenuhi kebutuhan clean energy di masa depan. Salah satunya adalah fuel cell. Sebagai bahan bakar, jika hidrogen

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1 Uraian Proses 3.1.1 Persiapan Bahan Baku Proses pembuatan Acrylonitrile menggunakan bahan baku Ethylene Cyanohidrin dengan katalis alumina. Ethylene Cyanohidrin pada T-01

Lebih terperinci

Prarancangan Pabrik Etilena dari Propana Kapasitas ton/tahun BAB I PENDAHULUAN

Prarancangan Pabrik Etilena dari Propana Kapasitas ton/tahun BAB I PENDAHULUAN BAB I PENDAHULUAN Etilena merupakan senyawa hidrokarbon dengan rumus kimia C 2 H 4. Senyawa ini memiliki nama IUPAC ethene, dan dikenal juga dengan nama elayl, acetene, bicarburetted hydrogen, olefiant

Lebih terperinci

Proses Produksi Amonia

Proses Produksi Amonia Proses Produksi Urea Proses pembuatan Urea dibuat dengan bahan baku gas CO2 dan liquid NH3 yang disupply dari Pabrik Amonia. Proses pembuatan Urea tersebut dibagi menjadi 6 unit, yaitu: (1) Sintesa Unit

Lebih terperinci

BAHAN BAKAR BENSIN RAMAH LINGKUNGAN

BAHAN BAKAR BENSIN RAMAH LINGKUNGAN BAHAN BAKAR BENSIN RAMAH LINGKUNGAN A.S. Nasution dan Oberlin Sidjabat PPPTMGB LEMIGAS Jl. Ciledug Raya Kav. 109, Cipulir, Kebayoran Lama, Jakarta Selatan 12230 Telepon: (021) 7394422 Ext. 1559/1518 Fax

Lebih terperinci

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL

ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL FLYWHEEL: JURNAL TEKNIK MESIN UNTIRTA Homepage jurnal: http://jurnal.untirta.ac.id/index.php/jwl ANALISIS PENCAMPURAN BAHAN BAKAR PREMIUM - PERTAMAX TERHADAP KINERJA MESIN KONVENSIONAL Sadar Wahjudi 1

Lebih terperinci

REAKTOR KIMIA NON KINETIK KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS CSTR R. PLUG R.BATCH

REAKTOR KIMIA NON KINETIK KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS CSTR R. PLUG R.BATCH TUTORIAL 3 REAKTOR REAKTOR KIMIA NON KINETIK BALANCE R. YIELD R. STOIC EQUILIBRIUM R. EQUIL R. GIBBS KINETIK CSTR R. PLUG R.BATCH MODEL REAKTOR ASPEN Non Kinetik Kinetik Non kinetik : - Pemodelan Simulasi

Lebih terperinci

BAB III SPESIFIKASI PERALATAN PROSES

BAB III SPESIFIKASI PERALATAN PROSES 34 BAB III SPESIFIKASI PERALATAN PROSES 3.1. Tangki Tangki Bahan Baku (T-01) Tangki Produk (T-02) Menyimpan kebutuhan Menyimpan Produk Isobutylene selama 30 hari. Methacrolein selama 15 hari. Spherical

Lebih terperinci

PERHITUNGAN EFISIENSI BOILER

PERHITUNGAN EFISIENSI BOILER 1 of 10 12/22/2013 8:36 AM PERHITUNGAN EFISIENSI BOILER PERHITUNGAN EFISIENSI BOILER Efisiensi adalah suatu tingkatan kemampuan kerja dari suatu alat. Sedangkan efisiensi pada boiler adalah prestasi kerja

Lebih terperinci

Prarancangan Pabrik Metanol dari Low Rank Coal Kapasitas ton/tahun BAB I PENDAHULUAN

Prarancangan Pabrik Metanol dari Low Rank Coal Kapasitas ton/tahun BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN Metanol sangat dibutuhkan dalam dunia industry, karena banyak produk yang dihasilkan berbahan metanol. Metanol digunakan oleh berbagai industri seperti industri plywood,

Lebih terperinci

TUGAS KELOMPOK PERANCANGAN PROSES KIMIA (4 th Week May 2009)

TUGAS KELOMPOK PERANCANGAN PROSES KIMIA (4 th Week May 2009) TUGAS KELOMPOK PERANCANGAN PROSES KIMIA (4 th Week May 2009) Tugas kelompok ini bertujuan: Melatih mahasiswa berkreasi dalam perancangan proses dari hasil-hasil penelitian laboratorium untuk dapat dipakai

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang

BAB I PENDAHULUAN A. Latar Belakang BAB I PENDAHULUAN A. Latar Belakang Pertambahan jumlah kendaraan bermotor yang terus meningkat di Indonesia menyebabkan pula tingginya kebutuhan bahan bakar minyak (BBM). Sebagian besar kendaraan bermotor

Lebih terperinci

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan

V. SPESIFIKASI ALAT. Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan V. SPESIFIKASI ALAT Pada lampiran C telah dilakukan perhitungan spesifikasi alat-alat proses pembuatan pabrik furfuril alkohol dari hidrogenasi furfural. Berikut tabel spesifikasi alat-alat yang digunakan.

Lebih terperinci

KONVERSI KATALITIK GLYCEROL MENJADI ACETOL (HYDROXI-2 PROPANON) Pembimbing : Prof. Dr. Ir. Suprapto, DEA

KONVERSI KATALITIK GLYCEROL MENJADI ACETOL (HYDROXI-2 PROPANON) Pembimbing : Prof. Dr. Ir. Suprapto, DEA KONVERSI KATALITIK GLYCEROL MENJADI ACETOL (HYDROXI-2 PROPANON) Pembimbing : Prof. Dr. Ir. Suprapto, DEA Presentasi Tesis 1 Pebruari 2010 Oleh : Abdul Chalim (NRP. 2307 201 008) Program Magister Jurusan

Lebih terperinci

BAB III PROSES PEMBAKARAN

BAB III PROSES PEMBAKARAN 37 BAB III PROSES PEMBAKARAN Dalam pengoperasian boiler, prestasi yang diharapkan adalah efesiensi boiler tersebut yang dinyatakan dengan perbandingan antara kalor yang diterima air / uap air terhadap

Lebih terperinci

Jenis pengujian atau. Spesifikasi, metode pengujian, yang diuji. sifat-sifat yang diukur

Jenis pengujian atau. Spesifikasi, metode pengujian, yang diuji. sifat-sifat yang diukur AMANDEMEN LAMPIRAN SERTIFIKAT AKREDITASI LABORATORIUM NO. LP-116-IDN Nama Laboratorium : Laboratorium Kilang PT Pertamina (Persero) Unit Pengolahan IV, Cilacap Masa berlaku: Penandatangan sertifikat/laporan

Lebih terperinci

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG

Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG 1. SIKLUS PLTGU 1.1. Siklus PLTG Prinsip kerja PLTG dapat dijelaskan melalui gambar dibawah ini : Gambar 1.1. Skema PLTG Proses yang terjadi pada PLTG adalah sebagai berikut : Pertama, turbin gas berfungsi

Lebih terperinci

MENURUNKAN KANDUNGAN AMMONIA DI GAS BUANG PT.DSM KALTIM MELAMINE BONTANG

MENURUNKAN KANDUNGAN AMMONIA DI GAS BUANG PT.DSM KALTIM MELAMINE BONTANG MENURUNKAN KANDUNGAN AMMONIA DI GAS BUANG PT.DSM KALTIM MELAMINE BONTANG Muchlis Ahmadi 1), Paulus Joko Susilo 2) 1) Process Engineering PT DSM KALTIM Melamine Bontang Kalimantan Timur 2) SHE Supervisor

Lebih terperinci

Harry Rachmadi (12/329784/TK/39050) ` 1 Zulfikar Pangestu (12/333834/TK/40176) Asia/Pasific North America Wesern Europe Other Regions 23% 33% 16% 28%

Harry Rachmadi (12/329784/TK/39050) ` 1 Zulfikar Pangestu (12/333834/TK/40176) Asia/Pasific North America Wesern Europe Other Regions 23% 33% 16% 28% BAB I PENGANTAR I.1 Latar Belakang Seiring dengan meningkatnya kesadaran akan sumber daya energi yang terbarukan dan ramah lingkungan, pemanfaatan hidrogen sebagai sumber pembawa energi (energy carrier)

Lebih terperinci

BAB V ANALISIS BAB V ANALISIS. 5.1 Analisis History

BAB V ANALISIS BAB V ANALISIS. 5.1 Analisis History BAB V ANALISIS 5.1 Analisis History Seperti telah diuraikan di Bab III bahwa hasil perkiraan tingkat risiko yang dijadikan dasar untuk membuat Corrosion Mapping disandingkan dengan data historis yang dapat

Lebih terperinci

BAB III SPESIFIKASI ALAT PROSES

BAB III SPESIFIKASI ALAT PROSES BAB III SPESIFIKASI ALAT PROSES III.. Spesifikasi Alat Utama Alat-alat utama di pabrik ini meliputi mixer, static mixer, reaktor, separator tiga fase, dan menara destilasi. Spesifikasi yang ditunjukkan

Lebih terperinci

Prarancangan Pabrik Dodekilbenzena dari Dodeken dan Benzena Dengan Kapasitas Ton/Tahun BAB I PENGANTAR

Prarancangan Pabrik Dodekilbenzena dari Dodeken dan Benzena Dengan Kapasitas Ton/Tahun BAB I PENGANTAR BAB I PENGANTAR A. Latar Belakang Peningkatan jumlah penduduk dari tahun ke tahun memiliki dampak yang sangat besar terhadap berbagai aspek dalam kehidupan. Salah satu dampak yang dapat dirasakan adalah

Lebih terperinci

BAB I PENDAHULUAN. Konsumsi plastik dalam kehidupan sehari-hari semakin meningkat selama

BAB I PENDAHULUAN. Konsumsi plastik dalam kehidupan sehari-hari semakin meningkat selama BAB I PENDAHULUAN 1.1 Latar Belakang Konsumsi plastik dalam kehidupan sehari-hari semakin meningkat selama tiga dekade terakhir. Sifat plastik yang ringan, transparan, mudah diwarnai, tahan terhadap korosi

Lebih terperinci

Pengolahan Minyak Bumi

Pengolahan Minyak Bumi Primary Process Oleh: Syaiful R. K.(2011430080) Achmad Affandi (2011430096) Allief Damar GE (2011430100) Ari Fitriyadi (2011430101) Arthur Setiawan F Pengolahan Minyak Bumi Minyak Bumi Minyak bumi adalah

Lebih terperinci

PRARANCANGAN PABRIK FORMALDEHID PROSES FORMOX KAPASITAS TON / TAHUN

PRARANCANGAN PABRIK FORMALDEHID PROSES FORMOX KAPASITAS TON / TAHUN EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA PRARANCANGAN PABRIK FORMALDEHID PROSES FORMOX KAPASITAS 70.000 TON / TAHUN JESSICA DIMA F. M. Oleh: RISA DEVINA MANAO L2C008066 L2C008095 JURUSAN TEKNIK

Lebih terperinci

BAB I PENGANTAR. A. Latar Belakang

BAB I PENGANTAR. A. Latar Belakang BAB I PENGANTAR A. Latar Belakang Batu bara merupakan mineral organik yang mudah terbakar yang terbentuk dari sisa tumbuhan purba yang mengendap dan kemudian mengalami perubahan bentuk akibat proses fisik

Lebih terperinci

EVALUASI KINERJA KOLOM FRAKSINASI CRUDE DISTILLATION UNIT (CDU) PADA BEBAGAI OPERASI OVER KAPASITAS DENGAN SIMULASI HYSYS

EVALUASI KINERJA KOLOM FRAKSINASI CRUDE DISTILLATION UNIT (CDU) PADA BEBAGAI OPERASI OVER KAPASITAS DENGAN SIMULASI HYSYS EVALUASI KINERJA KOLOM FRAKSINASI CRUDE DISTILLATION UNIT (CDU) PADA BEBAGAI OPERASI OVER KAPASITAS DENGAN SIMULASI HYSYS EVALUASI KINERJA KOLOM FRAKSINASI CRUDE DISTILLATION UNIT (CDU) PADA BEBAGAI OPERASI

Lebih terperinci

TUGAS PERANCANGAN PABRIK FORMALDEHID PROSES HALDOR TOPSOE KAPASITAS TON / TAHUN

TUGAS PERANCANGAN PABRIK FORMALDEHID PROSES HALDOR TOPSOE KAPASITAS TON / TAHUN XECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PERANCANGAN PABRIK FORMALDEHID PROSES HALDOR TOPSOE KAPASITAS 100.000 TON / TAHUN Oleh: Dewi Riana Sari 21030110151042 Anggun Pangesti P. P. 21030110151114

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Dimetil Eter Dimetil Eter (DME) adalah senyawa eter yang paling sederhana dengan rumus kimia CH 3 OCH 3. Dikenal juga sebagai methyl ether atau wood ether. Jika DME dioksidasi

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4..1. Analisis Reaksi Proses Proses Pembakaran 4.1.1 Perhitungan stoikiometry udara yang dibutuhkan untuk pembakaran Untuk pembakaran diperlukan udara. Jumlah udara

Lebih terperinci

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas Ton/Tahun BAB I PENDAHULUAN

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas Ton/Tahun BAB I PENDAHULUAN BAB I PENDAHULUAN Kelapa sawit merupakan salah satu komoditas utama yang dikembangkan di Indonesia. Dewasa ini, perkebunan kelapa sawit semakin meluas. Hal ini dikarenakan kelapa sawit dapat meningkatkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Pupuk urea adalah pupuk buatan senyawa kimia organik dari CO(NH 2 ) 2,

BAB 2 TINJAUAN PUSTAKA. Pupuk urea adalah pupuk buatan senyawa kimia organik dari CO(NH 2 ) 2, BAB 2 TINJAUAN PUSTAKA 2.1 Urea Pupuk urea adalah pupuk buatan senyawa kimia organik dari CO(NH 2 ) 2, pupuk padat berbentuk butiran bulat kecil (diameter lebih kurang 1 mm). Pupuk ini mempunyai kadar

Lebih terperinci

Bab I Pendahuluan - 1 -

Bab I Pendahuluan - 1 - Bab I Pendahuluan I.1 Latar Belakang Pada saat ini, pengoperasian reaktor unggun diam secara tak tunak telah membuka cara baru dalam intensifikasi proses (Budhi, 2005). Dalam mode operasi ini, reaktor

Lebih terperinci

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA

JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS GUNADARMA ANALISA SISTEM KONTROL LEVEL DAN INSTRUMENTASI PADA HIGH PRESSURE HEATER PADA UNIT 1 4 DI PLTU UBP SURALAYA. Disusun Oleh : ANDREAS HAMONANGAN S (10411790) JURUSAN TEKNIK ELEKTRO KONSENTRASI TEKNIK ELEKTRONIKA

Lebih terperinci

TUGAS PERACANGAN PABRIK KIMIA

TUGAS PERACANGAN PABRIK KIMIA TUGAS PERACANGAN PABRIK KIMIA PRA RANCANGAN PABRIK METANOL DENGANN PROSES ICI TEKANAN RENDAH KAPASITAS 450.000 TON/TAHUN Disusun oleh : AFFIAN WIDJANARKO HAMDILLAH USMAN L2C008002 L2C008052 JURUSAN TEKNIK

Lebih terperinci

FORUM IPTEK Vol 13 No. 03 STUDI PENGAMATAN PROSES DEHIDRASI PADA PROSES PEMURNIAN GAS

FORUM IPTEK Vol 13 No. 03 STUDI PENGAMATAN PROSES DEHIDRASI PADA PROSES PEMURNIAN GAS 1. Pendahuluan STUDI PENGAMATAN PROSES DEHIDRASI PADA PROSES PEMURNIAN GAS Oleh : Risdiyanta ST Abstrak Dalam proses pengolahan gas alam (natural gas) maka di lakukan proses pemurnian mulai dari pemisahan

Lebih terperinci

II. DESKRIPSI PROSES. MEK mulai dikembangkan pada tahun 1980-an sebagai pelarut cat. Dalam pembuatan

II. DESKRIPSI PROSES. MEK mulai dikembangkan pada tahun 1980-an sebagai pelarut cat. Dalam pembuatan II. DESKRIPSI PROSES A. Jenis Proses MEK mulai dikembangkan pada tahun 1980-an sebagai pelarut cat. Dalam pembuatan MEK dikenal 3 macam metode pembuatan berdasarkan perbedaan bahan bakunya (Ullman, 2007).

Lebih terperinci

PRARANCANGAN PABRIK UREA FORMALDEHID PROSES FORMOX KAPASITAS TON / TAHUN

PRARANCANGAN PABRIK UREA FORMALDEHID PROSES FORMOX KAPASITAS TON / TAHUN EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA PRARANCANGAN PABRIK UREA FORMALDEHID PROSES FORMOX KAPASITAS 44.000 TON / TAHUN MURTIHASTUTI Oleh: SHINTA NOOR RAHAYU L2C008084 L2C008104 JURUSAN TEKNIK

Lebih terperinci

BAB II DESKRIPSI PROSES

BAB II DESKRIPSI PROSES BAB II DESKRIPSI PROSES 2.1. Spesifikasi Bahan Baku dan Produk 2.1.1. Spesifikasi bahan baku 2.1.1.1. Ethylene Dichloride (EDC) a. Rumus Molekul : b. Berat Molekul : 98,96 g/mol c. Wujud : Cair d. Kemurnian

Lebih terperinci

PRARANCANGAN PABRIK FORMALDEHID MENGGUNAKAN METAL OXIDE CATALYST PROCESS KAPASITAS TON/TAHUN

PRARANCANGAN PABRIK FORMALDEHID MENGGUNAKAN METAL OXIDE CATALYST PROCESS KAPASITAS TON/TAHUN EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA PRARANCANGAN PABRIK FORMALDEHID MENGGUNAKAN METAL OXIDE CATALYST PROCESS KAPASITAS 50.000 TON/TAHUN Oleh: ROIKHATUS SOLIKHAH L2C 008 099 TRI NUGROHO L2C

Lebih terperinci

Evaluasi Kinerja Unit Sekunder pada Kilang Minyak dengan Integrasi Panas

Evaluasi Kinerja Unit Sekunder pada Kilang Minyak dengan Integrasi Panas Evaluasi Kinerja Unit Sekunder pada Kilang Minyak dengan Integrasi Panas Veni Indah Christiana 2308100167 Syennie Puspitasari 2308100168 Dosen Pembimbing: Ir. Musfil Ahmad Syukur, M.Eng.Sc Outline Pembahasan

Lebih terperinci

Prarancangan Pabrik Gasifikasi Batubara Kapasitas Ton/Tahun BAB I PENDAHULUAN

Prarancangan Pabrik Gasifikasi Batubara Kapasitas Ton/Tahun BAB I PENDAHULUAN BAB I PENDAHULUAN A. Latar Belakang Sebagian besar energi yang digunakan rakyat Indonesia saat ini berasal dari bahan bakar fosil yaitu minyak bumi, gas dan batu bara. Pada masa mendatang, produksi batubara

Lebih terperinci

EVALUASI KINERJA KOLOM FRAKSINASI CRUDE DISTILLATION UNIT (CDU) PADA BEBAGAI OPERASI OVER KAPASITAS DENGAN SIMULASI HYSYS

EVALUASI KINERJA KOLOM FRAKSINASI CRUDE DISTILLATION UNIT (CDU) PADA BEBAGAI OPERASI OVER KAPASITAS DENGAN SIMULASI HYSYS EVALUASI KINERJA KOLOM FRAKSINASI CRUDE DISTILLATION UNIT (CDU) PADA BEBAGAI OPERASI OVER KAPASITAS DENGAN SIMULASI HYSYS Ummu Hani, Dinny Winda Astuti Abstrak Salah satu upaya memenuhi kebutuhan bahan

Lebih terperinci

PABRIK ASETON DARI ISOPROPIL ALKOHOL DENGAN PROSES DEHIDROGENASI

PABRIK ASETON DARI ISOPROPIL ALKOHOL DENGAN PROSES DEHIDROGENASI PABRIK ASETON DARI ISOPROPIL ALKOHOL DENGAN PROSES DEHIDROGENASI Nama Mahasiswa : Wahyu Mayangsari (2308 030 047) : Hanifia Ilmawati (2308 030 095) Jurusan : DIII Teknik Kimia FTI-ITS Dosen Pembimbing

Lebih terperinci

MAKALAH PENDADARAN PRARANCANGAN PABRIK CYCLOHEXANE DENGAN PROSES HYDROGENASI BENZENE KAPASITAS TON PER TAHUN

MAKALAH PENDADARAN PRARANCANGAN PABRIK CYCLOHEXANE DENGAN PROSES HYDROGENASI BENZENE KAPASITAS TON PER TAHUN MAKALAH PENDADARAN PRARANCANGAN PABRIK CYCLOHEXANE DENGAN PROSES HYDROGENASI BENZENE KAPASITAS 70.000 TON PER TAHUN Oleh : PAMEDAR WASKITO TOMO D 500 010 049 Dosen Pembimbing : 1. Akida Mulyaningtyas,

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Sumatera Utara

BAB I PENDAHULUAN. 1 Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Bahan bakar fosil merupakan salah satu sumber energi yang membutuhkan proses hingga dapat dikonsumsi oleh masyarakat. Salah satu bahan bakar fosil yaitu minyak.

Lebih terperinci

BAB II DESKRIPSI PROSES. Kemurnian : minimal 99% : maksimal 1% propana (CME Group) Density : 600 kg/m 3. : 23,2 % berat dari udara.

BAB II DESKRIPSI PROSES. Kemurnian : minimal 99% : maksimal 1% propana (CME Group) Density : 600 kg/m 3. : 23,2 % berat dari udara. 15 BAB II DESKRIPSI PROSES 2.1 Spesifikasi Bahan Baku dan Produk 2.1.1 Spesifikasi Bahan Baku Butana Bentuk Warna : cair jenuh : jernih Kemurnian : minimal 99% Impuritas : maksimal 1% propana (CME Group)

Lebih terperinci

BAB III PERANCANGAN PROSES

BAB III PERANCANGAN PROSES BAB III PERANCANGAN PROSES 3.1. Uraian Proses Larutan benzene sebanyak 1.257,019 kg/jam pada kondisi 30 o C, 1 atm dari tangki penyimpan (T-01) dipompakan untuk dicampur dengan arus recycle dari menara

Lebih terperinci

Teknologi Desalinasi Menggunakan Multi Stage Flash Distillation (MSF)

Teknologi Desalinasi Menggunakan Multi Stage Flash Distillation (MSF) Teknologi Desalinasi Menggunakan Multi Stage Flash Distillation (MSF) IFFATUL IZZA SIFTIANIDA (37895) Program Studi Teknik Nuklir FAKULTAS TEKNIK UNIVERSITAS GADJAH MADA ABSTRAK Teknologi Desalinasi Menggunakan

Lebih terperinci

Gambar 4.21 Grafik nomor pengujian vs volume penguapan prototipe alternatif rancangan 1

Gambar 4.21 Grafik nomor pengujian vs volume penguapan prototipe alternatif rancangan 1 efisiensi sistem menurun seiring dengan kenaikan debit penguapan. Maka, dari grafik tersebut dapat ditarik kesimpulan bahwa sistem akan bekerja lebih baik pada debit operasi yang rendah. Gambar 4.20 Grafik

Lebih terperinci

PENGOLAHAN AIR SUNGAI UNTUK BOILER

PENGOLAHAN AIR SUNGAI UNTUK BOILER PENGOLAHAN AIR SUNGAI UNTUK BOILER Oleh Denni Alfiansyah 1031210146-3A JURUSAN TEKNIK MESIN POLITEKNIK NEGERI MALANG MALANG 2012 PENGOLAHAN AIR SUNGAI UNTUK BOILER Air yang digunakan pada proses pengolahan

Lebih terperinci

BAB III SPESIFIKASI ALAT

BAB III SPESIFIKASI ALAT 42 BAB III SPESIFIKASI ALAT 3.1. Reaktor Tugas 1. Tekanan 2. Suhu umpan 3. Suhu produk Waktu tinggal Shell - Tinggi - Diameter - Tebal Shell Head - Tebal head - Tinggi head Tabel 3.1 Reaktor R Mereaksikan

Lebih terperinci

II. DESKRIPSI PROSES. Tahap-tahap reaksi formaldehid Du-Pont untuk memproduksi MEG sebagai

II. DESKRIPSI PROSES. Tahap-tahap reaksi formaldehid Du-Pont untuk memproduksi MEG sebagai II. DESKRIPSI PROSES 2.1 Macam Macam Proses 1. Proses Formaldehid Du Pont Tahap-tahap reaksi formaldehid Du-Pont untuk memproduksi MEG sebagai berikut : CH 2 O + CO + H 2 O HOCH 2 COOH 700 atm HOCH 2 COOH

Lebih terperinci

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA

LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA LAPORAN SKRIPSI ANALISA DISTRIBUSI TEMPERATUR PADA CAMPURAN GAS CH 4 -CO 2 DIDALAM DOUBLE PIPE HEAT EXCHANGER DENGAN METODE CONTROLLED FREEZE OUT-AREA Disusun oleh : 1. Fatma Yunita Hasyim (2308 100 044)

Lebih terperinci

HALAMAN JUDUL TUGAS AKHIR PRARANCANGAN PABRIK BIOAVTUR DARI CRUDE PALM OIL DENGAN PROSES UNIVERSAL OIL PRODUCT (UOP) KAPASITAS 87.

HALAMAN JUDUL TUGAS AKHIR PRARANCANGAN PABRIK BIOAVTUR DARI CRUDE PALM OIL DENGAN PROSES UNIVERSAL OIL PRODUCT (UOP) KAPASITAS 87. HALAMAN JUDUL TUGAS AKHIR PRARANCANGAN PABRIK BIOAVTUR DARI CRUDE PALM OIL DENGAN PROSES UNIVERSAL OIL PRODUCT (UOP) KAPASITAS 87.000 TON/TAHUN Dwi Hantoko Oleh: Muflih Arisa Adnan I0509013 I0509029 JURUSAN

Lebih terperinci

PABRIK VINYL ACETATE DARI ACETYLENE DAN ACETIC ACID DENGAN PROSES VAPOR PHASE PRA RENCANA PABRIK. Oleh : MOHAMAD HAMDAN SULTONIK

PABRIK VINYL ACETATE DARI ACETYLENE DAN ACETIC ACID DENGAN PROSES VAPOR PHASE PRA RENCANA PABRIK. Oleh : MOHAMAD HAMDAN SULTONIK PABRIK VINYL ACETATE DARI ACETYLENE DAN ACETIC ACID DENGAN PROSES VAPOR PHASE PRA RENCANA PABRIK Oleh : MOHAMAD HAMDAN SULTONIK 0631010077 JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS PEMBANGUNAN

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Absorpsi dan stripper adalah alat yang digunakan untuk memisahkan satu komponen atau lebih dari campurannya menggunakan prinsip perbedaan kelarutan. Solut adalah komponen

Lebih terperinci

Kelompok B Pembimbing

Kelompok B Pembimbing TK-40Z2 PENELITIAN Semester II 2007/2008 SINTESIS DAN UJI AKTIVITAS Cu/Zn/Al 2 O 3 UNTUK KATALIS REFORMASI KUKUS METANOL SEBAGAI PENYEDIA HIDROGEN SEL TUNAM (FUEL CELL) Kelompok B.67.3.20 Michael Jubel

Lebih terperinci

BAB III SISTEM PLTGU UBP TANJUNG PRIOK

BAB III SISTEM PLTGU UBP TANJUNG PRIOK BAB III SISTEM PLTGU UBP TANJUNG PRIOK 3.1 Konfigurasi PLTGU UBP Tanjung Priok Secara sederhana BLOK PLTGU UBP Tanjung Priok dapat digambarkan sebagai berikut: deaerator LP Header Low pressure HP header

Lebih terperinci

BAB I PENDAHULUAN. Prarancangan Pabrik Vinyl Chloride Monomer dari Ethylene Dichloride dengan Kapasitas Ton/ Tahun. A.

BAB I PENDAHULUAN. Prarancangan Pabrik Vinyl Chloride Monomer dari Ethylene Dichloride dengan Kapasitas Ton/ Tahun. A. BAB I PENDAHULUAN A. Latar Belakang Vinyl chloride monomer (VCM) merupakan senyawa organik dengan rumus molekul C 2 H 3 Cl. Dalam perkembangannya, VCM diproduksi sebagai produk antara dan digunakan untuk

Lebih terperinci

TUGAS PERANCANGAN PABRIK METHANOL DARI GAS ALAM DENGAN PROSES LURGI KAPASITAS TON PER TAHUN

TUGAS PERANCANGAN PABRIK METHANOL DARI GAS ALAM DENGAN PROSES LURGI KAPASITAS TON PER TAHUN EXECUTIVE SUMMARY TUGAS PERANCANGAN PABRIK KIMIA TUGAS PERANCANGAN PABRIK METHANOL DARI GAS ALAM DENGAN PROSES LURGI KAPASITAS 230000 TON PER TAHUN Oleh: ISNANI SA DIYAH L2C 008 064 MUHAMAD ZAINUDIN L2C

Lebih terperinci

Oleh : Dimas Setiawan ( ) Pembimbing : Dr. Bambang Sudarmanta, ST. MT.

Oleh : Dimas Setiawan ( ) Pembimbing : Dr. Bambang Sudarmanta, ST. MT. Karakterisasi Proses Gasifikasi Downdraft Berbahan Baku Sekam Padi Dengan Desain Sistem Pemasukan Biomassa Secara Kontinyu Dengan Variasi Air Fuel Ratio Oleh : Dimas Setiawan (2105100096) Pembimbing :

Lebih terperinci