Gambar 4.21 Grafik nomor pengujian vs volume penguapan prototipe alternatif rancangan 1

Ukuran: px
Mulai penontonan dengan halaman:

Download "Gambar 4.21 Grafik nomor pengujian vs volume penguapan prototipe alternatif rancangan 1"

Transkripsi

1 efisiensi sistem menurun seiring dengan kenaikan debit penguapan. Maka, dari grafik tersebut dapat ditarik kesimpulan bahwa sistem akan bekerja lebih baik pada debit operasi yang rendah. Gambar 4.20 Grafik temperatur pengujian vs volume penguapan prototipe alternatif rancangan 1 Grafik pada gambar 4.20 menunjukkan hubungan antara temperatur pengujian terhadap volume penguapan. Trendline pada grafik tersebut menunjukkan bahwa volume penguapan bensin akan bertambah seiring dengan kenaikan temperatur operasi. Gambar 4.21 Grafik nomor pengujian vs volume penguapan prototipe alternatif rancangan 1 72

2 Grafik pada gambar 4.21 menunjukkan hubungan antara nomor pengujian terhadap volume penguapan. Trendline pada grafik tersebut menunjukkan bahwa volume bensin yang menguap akan berkurang seiring dengan jumlah pengujian. Pada saat dilakukan pengujian kelima, bensin untuk pengujian tersebut diganti dengan yang baru sehingga volume penguapan naik kembali. Hal tersebut juga didukung dengan warna dari bensin lama yang lebih keruh bila dibandingkan dengan warna bensin baru. Dari analisis hasil pengujian prototipe alternatif rancangan 1, dapat ditarik beberapa kesimpulan sebagai berikut: Rata rata efisiensi sistem yang didapat sebesar 37.43%. Sistem akan bekerja lebih baik pada temperatur operasi maupun debit operasi yang rendah. Laju penguapan bensin dipengaruhi oleh temperatur dan umur dari bensin. Semakin tinggi temperatur, semakin besar laju penguapannya. Sedangkan semakin lama umur bensin, semakin kecil laju penguapannya Pengujian Alternatif Rancangan 2 Berikut gambar skema dari model pengujian prototipe alternatif rancangan 2: Gambar 4.22 Skema pengujian prototipe alternatif rancangan 2 73

3 Pengujian prototipe ini pada dasarnya sama dengan pengujian prototipe alternatif rancangan 1. Perbedaannya hanya pada saluran masukan dan keluaran dari wadah bensin yang menggunakan saluran yang sama. Karena itu prosedur pengujiannya pun sama dengan prosedur pengujian alternatif rancangan Hasil Pengujian Prototipe Alternatif Rancangan 2 Berikut foto foto dari set-up pengujian prototipe alternatif rancangan 2: Gambar 4.23 Foto set-up pengujian prototipe alternatif rancangan 2 Gambar 4.24 Foto sistem perpipaan alternatif rancangan 2 Setelah dilakukan beberapa kali pengujian, didapatkan bahwa tidak ada bensin yang menguap meskipun telah digunakan magnetic stirrer untuk mengaduk dan memanaskan. Hal tersebut dapat terjadi akibat terjadinya keadaan jenuh antara uap bensin dengan udara luar yang mengakibatkan bensin cair tidak dapat menguap lebih banyak. Selain itu, pompa vakum tidak dapat bekerja dengan 74

4 baik pada sistem perpipaan tersebut sehingga tidak ada uap bensin yang tertarik dan pada tabung kondensator tidak tertangkap apapun Pengujian Alternatif Rancangan 3 rancangan 3: Berikut gambar skema dari model pengujian prototipe alternatif Gambar 4.25 Skema pengujian prototipe alternatif rancangan 3 Sama halnya dengan pengujian prototipe alternatif rancangan 2, pengujian ini pun memiliki prinsip yang sama dengan pengujian prototipe alternatif rancangan 1. Perbedaannya terdapat pada konfigurasi pemasangan peralatan di dalam casing. Pompa vakum menarik campuran uap bensin dengan udara dari wadah bensin dan mendorongnya masuk ke dalam modul membran. Selanjutnya modul membran akan memisahkan uap bensin dengan udara, di mana udara akan dilepaskan ke lingkungan sedangkan uap bensin dikembalikan ke dalam tangki timbun. Sebelum dikembalikan, uap bensin pada pengujian ini juga dilewatkan melalui tiga buah tabung kondensator agar dapat dilihat uap bensin yang dapat direcover. Prosedur pengujian ini juga sama dengan prosedur pengujian alternatif rancangan Hasil Pengujian Prototipe Alternatif Rancangan 3. Berikut foto foto dari set-up pengujian prototipe alternatif rancangan 3: 75

5 Gambar 4.26 Foto set-up pengujian prototipe alternatif rancangan 3 Gambar 4.27 Foto bagian dalam casing alternatif rancangan 3 Setelah dilakukan beberapa kali pengujian, sistem selalu mengalami kebocoran di berbagai titik. Kebocoran tersebut tidak dapat ditanggulangi dengan penyegelan ulang menggunakan seal tape. Pada akhirnya pengujian tidak tidak dapat diteruskan karena salah satu tabung kondensator tidak dapat lagi menahan tekanan yang ditimbulkan oleh keluaran dari pompa vakum dan mengalami kerusakan. Dari pengujian tersebut dapat disimpulkan bahwa tekanan pada prototipe ini lebih besar dari prototipe alternatif rancangan 1 maupun dari prototipe alternatif rancangan 2. Hal tersebut terjadi karena diakibatkan oleh pompa vakum yang mendapatkan tekanan masukan lebih besar karena tidak terhambat oleh aliran di dalam modul membran sehingga menghasilkan tekanan keluaran yang lebih besar pula. 76

6 Gambar 4.28 Foto kerusakan pada tabung kondensator Percobaan tersebut menggunakan pompa vakum dengan kapasitas maupun daya yang disesuaikan dengan kondisi sebenarnya yang terjadi di lapangan. Maka dari itu, akan dilakukan pengujian ulang untuk prototipe alternatif rancangan 3 dengan menggunakan pompa vakum dengan kapasitas dan daya yang lebih kecil agar sesuai dengan kondisi pengujian. Untuk debit yang terjadi pada saat pengujian, digunakan data yang didapat dari pengujian prototipe alternatif rancangan 1. Debit rata rata yang terjadi adalah sebesar ml/s atau sama dengan 2.511x10-4 cfm. Selanjutnya, untuk menghitung daya pompa yang diperlukan digunakan persamaan 4.9: nrt Ph E = ln η P l Di mana: E = daya pompa (W) n = laju mol ( mol / s ) R = konstanta universal gas = J/m.k T = temperatur (K) P h = inlet pressure (bar) P l = outlet pressure (bar) η = effisiensi pompa (4.15) 77

7 Beberapa asumsi yang digunakan untuk persamaan di atas: - Aliran berupa steady state flow. - Debit aliran konstan. - Massa jenis uap BBM sepanjang aliran konstan. - Gesekan pada dinding-dinding pipa diabaikan. - Efisiensi pompa sebesar 90%. - Temperatur operasi diambil dari rata rata data pengujian prototipe alternatif rancangan 1, yaitu sebesar 34 0 C atau sama dengan 307 K. - Inlet pressure dan outlet pressure disamakan dengan yang terjadi pada kondisi lapangan, yaitu 700 Pa dan 10 5 Pa. Untuk laju mol (n) dihitung menggunakan persamaan 4.10: Di mana: Q. ρ n = (4.16) X. Mr Q = debit uap bensin = ml/s = 4.266x10-4 m 3 /h ρ = massa jenis bensin = 3.6 kg/m 3 [11] X permeat = perbandingan stoikiometri massa mol udara terhadap bensin = 14.7 Mr = berat molekul bensin = 105 gr/mol [11] Maka didapatkan: m. x 3.6 kg jam n = m 14.7 x 105 gr mol 7 = x10 mol s 3 x 1 jam 3600 s 1000 g x 1 kg (4.17) Maka besarnya daya pompa vakum yang diperlukan: 7 J mol x x 307 K 5 s m K 10 Pa E =. ln (4.18) Pa = x10 3 Watt 78

8 Karena kapasitas maupun daya pompa vakum yang diperlukan sangat kecil, maka digunakan pompa vakum yang ada di pasaran dengan daya paling kecil. Berikut foto pompa vakum yang telah dipilih beserta spesifikasinya dan foto set-up pengujian yang baru: Gambar 4.29 Foto pompa vakum pada pengujian prototipe alternatif rancangan 3 Tabel 4.7 Spesifikasi Pompa Vakum Pengujian Prototipe Alternatif Rancangan 3 Power Supply Pumping Rate Limited Pressure Rotating Speed Power Outer Figure Weight 220V / 50 Hz 1 cfm 10 Pa 1440 r/min 90 W 247 x 110 x 207 mm 6.7 kg Gambar 4.30 Foto set-up baru pengujian prototipe alternatif rancangan 3 79

9 Pengujian prototipe tersebut dilakukan selama 20 menit dengan pencatatan data dilakukan setiap selang waktu 2 menit. Pengujian dilakukan sebanyak sepuluh kali dengan temperatur pengujian yang bervariasi. Contoh hasil pengujian pertama ditunjukkan pada tabel berikut: Tabel 4.8 Hasil Pengujian Pertama Prototipe Alternatif Rancangan 3 Nomor Waktu Tinggi Tabung Temperatur Volume Permeate Pengujian (Menit) (cm) ( o C) (ml) Δt total T rata - rata Gambar 4.31 Foto hasil pengujian prototipe alternatif rancangan 3 Data hasil pengujian kedua hingga kesepuluh dapat dilihat pada lampiran C. 80

10 Analisis Hasil Pengujian Prototipe Alternatif Rancangan 3 Data hasil pengujian yang telah didapatkan dianalisis menggunakan prosedur perhitungan yang sama pada hasil pengujian prototipe alternatif rancangan 1. Berikut tabel hasil perhitungan seluruh pengujian: Tabel 4.9 Perhitungan Analisis Hasil Pengujian Prototipe Alternatif Rancangan 3 Nomor Temperatur Volume Volume Debit Efisiensi Pengujian Pengujian ( 0 C) Permeat (ml) Penguapan (ml) Penguapan (ml/s) Sistem (%) Rata - Rata Gambar 4.32 Grafik efisiensi sistem vs temperatur pengujian prototipe alternatif rancangan 3 81

11 Gambar 4.33 Grafik efisiensi sistem vs debit penguapan prototipe alternatif rancangan 3 Gambar 4.34 Grafik nomor pengujian vs volume penguapan prototipe alternatif rancangan 3 82

12 Gambar 4.35 Grafik temperatur pengujian vs volume penguapan prototipe alternatif rancangan 3 Gambar 4.32 hingga gambar 4.35 menunjukkan grafik dari analisis hasil pengujian protitipe alternatif rancangan 3. Dapat dilihat bahwa setiap grafik memiliki trendline yang sama dengan grafik dari analisis hasil pengujian prototipe alternatif rancangan 1. Dari analisis hasil pengujian prototipe alternatif rancangan 3, dapat ditarik beberapa kesimpulan sebagai berikut: Rata rata efisiensi sistem yang didapat sebesar 67.93%. Sistem alternatif rancangan 3 memiliki karakteristik sifat yang sama dengan sistem alternatif rancangan 1, yaitu akan bekerja lebih baik pada temperatur maupun debit operasi yang rendah. 4.7 Pengambilan Keputusan Rancangan Sistem Vapor Recovery Havival Setelah dilakukan pengujian pada ketiga alternatif perancangan sistem yang telah dikembangkan, dibuat sebuah tabel pengambilan keputusan berdasarkan hasil pengujian serta kriteria perancangan yang telah ditetapkan sebelumnya. Berikut tabel pengambilan keputusan tersebut: 83

13 Tabel 4.10 Pengambilan Keputusan Perancangan Sistem Vapor Recovery Havival Rancangan Rancangan Rancangan No. Kriteria Mengurangi kerugian akibat penguapan Tidak menghambat aliran fluida Tidak banyak modifikasi Membran dapat bekerja dengan baik Dapat melakukan proses separasi Memiliki efisiensi yang baik Menarik dan sederhana Tidak terlalu berat dan besar Pengoperasiannya mudah Perawatan mudah Biaya produksi murah Jumlah Dari tabel di atas, maka dapat dilihat bahwa alternatif rancangan 3 yang memiliki kinerja paling baik serta paling banyak memenuhi kriteria yang diperlukan maupun diinginkan dalam perancangan. Karena itu alternatif rancangan 3 yang paling sesuai untuk dikembangkan lebih lanjut menjadi sistem vapor recovery yang lebih optimal. 84

14 4.8 Process Flow Diagram Gambar 4.36 Process flow diagram dari sistem vapor recovery Havival Keterangan: = aliran bensin cair = aliran campuran uap bensin dengan udara = aliran uap bensin = aliran udara Seperti yang telah dijelaskan pada subbab 2.3.2, tekanan pada tangki timbun akan berubah-ubah akibat pengaruh temperatur ataupun pada saat proses unloading ataupun proses loading. Proses unloading, yang merupakan proses penyaluran bensin dari truk penyalur ke tangki timbun, ditunjukkan oleh panah merah yang mengarah masuk ke dalam tangki timbun. Sedangkan proses unloading, yang merupakan proses proses penyaluran bensin dari tangki timbun 85

15 menuju dispenser, ditunjukkan oleh panah merah yang mengarah keluar dari tangki timbun. Kenaikan temperatur di dalam tangki timbun ataupun proses unloading akan menyebabkan kenaikan tekanan. Pada saat itu campuran uap bensin dengan udara akan terdorong ke dalam masukan sistem untuk menyeimbangkan tekanan kembali, yang ditunjukkan oleh panah oranye. Selanjutnya, campuran uap bensin dengan udara tersebut akan ditarik lalu didorong oleh pompa vakum masuk ke dalam modul membran. Pada modul membran akan terjadi proses separasi antara uap bensin dengan udara. Aliran udara yang telah bersih dari uap bensin akan dikeluarkan menuju lingkungan sekitar, yang ditunjukkan oleh panah biru yang keluar dari sistem. Sedangkan aliran uap bensin yang telah bersih dari udara akan terdorong masuk kembali ke dalam tangki timbun, yang ditunjukkan oleh panah kuning. Penurunan temperatur di dalam tangki timbun ataupun proses loading akan menyebabkan penurunan tekanan. Pada saat itu, udara dari lingkungan sekitar akan masuk ke dalam tangki timbun melalui pipa sistem, yang ditunjukkan oleh panah biru yang masuk ke dalam tangki timbun. Semua aliran yang terjadi akan mengarah sesuai dengan process flow diagram karena dijaga oleh ketiga check valve yang dipasang pada pipa-pipa sistem vapor recovery. Ketiga check valve tersebut hanya mengizinkan terjadinya aliran pada satu arah saja. 4.9 Analisis Keuntungan Ekonomi Dari tabel 1.1 diketahui bahwa konsumsi nasional per tahunnya untuk bahan bakar jenis bensin adalah sekitar liter dengan rata rata losses factor sekitar 0.78%. Maka besarnya kerugian yang terjadi akibat penguapan bensin per tahunnya adalah sebesar liter. Dengan mengaplikasikan sistem vapor recovery Havival, maka penguapan yang terjadi dapat di-recover sekitar 67.93% nya, yaitu sebesar liter. Dengan harga premium per liternya sebesar Rp 4.500,00 maka dapat dicegah kerugian ekonomi yang terjadi sebesar Rp ,00. 86

16 Selain mencegah terjadinya kerugian ekonomi, pengaplikasian sistem vapor recovery Havival juga akan mengurangi penguapan bensin ke lingkungan sekitar. Dengan begitu bahaya kebakaran maupun bahaya kesehatan bagi masyarakat yang tinggal di sekitar SPBU akan berkurang. 87

BAB IV PENGEMBANGAN DAN PENGUJIAN PROTOTIPE SISTEM VAPOR RECOVERY

BAB IV PENGEMBANGAN DAN PENGUJIAN PROTOTIPE SISTEM VAPOR RECOVERY BAB IV PENGEMBANGAN DAN PENGUJIAN PROTOTIPE SISTEM VAPOR RECOVERY 4.1 Sistem Peralatan SPBU Konvensional Berikut merupakan skema peralatan peralatan yang terdapat di SPBU pada umumnya: Gambar 4.1 Skema

Lebih terperinci

BAB III PEMILIHAN DAN PENGUJIAN MEMBRAN UNTUK SISTEM VAPOR RECOVERY

BAB III PEMILIHAN DAN PENGUJIAN MEMBRAN UNTUK SISTEM VAPOR RECOVERY BAB III PEMILIHAN DAN PENGUJIAN MEMBRAN UNTUK SISTEM VAPOR RECOVERY Seperti yang telah disebutkan pada subbab 1., tujuan dari tugas akhir ini adalah pengembangan sistem vapor recovery dengan teknologi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Jumlah kendaraan bermotor di Indonesia dari tahun ke tahun cenderung bertambah. Hingga akhir tahun 2006, diperkirakan terdapat 50 juta kendaraan bermotor di

Lebih terperinci

BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN

BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN 3.1 PERANCANGAN ALAT 3.1.1 Design Tabung (Menentukan tebal tabung) Tekanan yang dialami dinding, ΔP = 1 atm (luar) + 0 atm (dalam) = 10135 Pa F PxA

Lebih terperinci

BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN

BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN BAB III PERANCANGAN, INSTALASI PERALATAN DAN PENGUJIAN 3.1 PERANCANGAN ALAT 3.1.1. DESIGN REAKTOR Karena tekanan yang bekerja tekanan vakum pada tabung yang cendrung menggencet, maka arah tegangan yang

Lebih terperinci

PENGEMBANGAN DAN PENGUJIAN SISTEM VAPOR RECOVERY HAVIVAL MENGGUNAKAN TEKNOLOGI MEMBRAN PADA TANGKI TIMBUN DI SPBU

PENGEMBANGAN DAN PENGUJIAN SISTEM VAPOR RECOVERY HAVIVAL MENGGUNAKAN TEKNOLOGI MEMBRAN PADA TANGKI TIMBUN DI SPBU PENGEMBANGAN DAN PENGUJIAN SISTEM VAPOR RECOVERY HAVIVAL MENGGUNAKAN TEKNOLOGI MEMBRAN PADA TANGKI TIMBUN DI SPBU TUGAS SARJANA Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Metodologi Penelitian ini terdiri dari dua tahap, yaitu percobaan pendahuluan dan percobaan utama. Percobaan pendahuluan berupa penyiapan umpan, karakterisasi umpan,

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB IV PERHITUNGAN SISTEM HIDRAULIK

BAB IV PERHITUNGAN SISTEM HIDRAULIK BAB IV PERHITUNGAN SISTEM HIDRAULIK 4.1 Perhitungan Beban Operasi System Gaya yang dibutuhkan untuk mengangkat movable bridge kapasitas 100 ton yang akan diangkat oleh dua buah silinder hidraulik kanan

Lebih terperinci

BAB IV ANALISA SIMULASI DAN EKSPERIMEN

BAB IV ANALISA SIMULASI DAN EKSPERIMEN BAB IV ANALISA SIMULASI DAN EKSPERIMEN 4.1 ANALISA SIMULASI 1 Turbin Boiler 2 Kondensor Air laut masuk Pompa 4 3 Throttling Process T 1 Air Uap Q in 4 W Turbin W Pompa 3 Q out 2 S Tangki Air Destilasi

Lebih terperinci

TUGAS AKHIR PERENCANAAN SYSTEM HYDROLIK PADA MOVABLE BRIDGE DERMAGA KAPASITAS 100 TON

TUGAS AKHIR PERENCANAAN SYSTEM HYDROLIK PADA MOVABLE BRIDGE DERMAGA KAPASITAS 100 TON TUGAS AKHIR PERENCANAAN SYSTEM HYDROLIK PADA MOVABLE BRIDGE DERMAGA KAPASITAS 100 TON Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun Oleh

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Peralatan 3.1.1 Instalasi Alat Uji Alat uji head statis pompa terdiri 1 buah pompa, tangki bertekanan, katup katup beserta alat ukur seperti skema pada gambar 3.1 : Gambar

Lebih terperinci

BAB IV ANALISA EKSPERIMEN DAN SIMULASI

BAB IV ANALISA EKSPERIMEN DAN SIMULASI BAB IV ANALISA EKSPERIMEN DAN SIMULASI Selama percobaan dilakukan beberapa modifikasi atau perbaikan dalam rangka usaha mendapatkan air kondensasi. Semenjak dari memperbaiki kebocoran sampai penggantian

Lebih terperinci

Lampiran 1. Perhitungan kebutuhan panas

Lampiran 1. Perhitungan kebutuhan panas LAMPIRAN 49 Lampiran 1. Perhitungan kebutuhan panas 1. Jumlah Air yang Harus Diuapkan = = = 180 = 72.4 Air yang harus diuapkan (w v ) = 180 72.4 = 107.6 kg Laju penguapan (Ẇ v ) = 107.6 / (32 x 3600) =

Lebih terperinci

BAB III PERALATAN DAN PROSEDUR PENGUJIAN

BAB III PERALATAN DAN PROSEDUR PENGUJIAN BAB III PERALATAN DAN PROSEDUR PENGUJIAN 3.1 PERANCANGAN ALAT PENGUJIAN Desain yang digunakan pada penelitian ini berupa alat sederhana. Alat yang di desain untuk mensirkulasikan fluida dari tanki penampungan

Lebih terperinci

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA

BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA BAB III METODE PENGUJIAN DAN PEMBAHASAN PERHITUNGAN SERTA ANALISA 3.1 Metode Pengujian 3.1.1 Pengujian Dual Fuel Proses pembakaran di dalam ruang silinder pada motor diesel menggunakan sistem injeksi langsung.

Lebih terperinci

Pengaruh Suhu dan Tekanan Tangki Destilasi terhadap Kinerja Permeasi Uap dengan Membran Keramik dalam Pemurnian Larutan Etanol-Air

Pengaruh Suhu dan Tekanan Tangki Destilasi terhadap Kinerja Permeasi Uap dengan Membran Keramik dalam Pemurnian Larutan Etanol-Air Pengaruh Suhu dan Tekanan Tangki Destilasi terhadap Kinerja Permeasi Uap dengan Membran Keramik dalam Pemurnian Larutan Etanol-Air Misri Gozan 1, Said Zul Amraini 2 Alief Nasrullah Pramana 1 1 Departemen

Lebih terperinci

LABORATORIUM SATUAN OPERASI

LABORATORIUM SATUAN OPERASI LABORATORIUM SATUAN OPERASI SEMESTER GENAP TAHUN AJARAN 2013-2014 MODUL : Pompa Sentrifugal PEMBIMBING : Ir. Unung Leoanggraini, MT Praktikum : 10 Maret 2014 Penyerahan : 17 Maret 2014 (Laporan) Oleh :

Lebih terperinci

Mulai. Merancang bentuk alat. Menggambar dan menentukan dimensi alat. Memilih bahan. Diukur bahan yang akan digunakan

Mulai. Merancang bentuk alat. Menggambar dan menentukan dimensi alat. Memilih bahan. Diukur bahan yang akan digunakan Lampiran 1. Flow Chart Pelaksanaan Penelitian Mulai Merancang bentuk alat Menggambar dan menentukan dimensi alat Memilih bahan Diukur bahan yang akan digunakan Dipotong, dibubut dan dikikir bahan yang

Lebih terperinci

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG

AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG AZAS TEKNIK KIMIA (NERACA ENERGI) PRODI TEKNIK KIMIA FAKULTAS TEKNIK UNIVERSITAS NEGERI SEMARANG KESETIMBANGAN ENERGI Konsep dan Satuan Perhitungan Perubahan Entalpi Penerapan Kesetimbangan Energi Umum

Lebih terperinci

Bab IV Data Percobaan dan Analisis Data

Bab IV Data Percobaan dan Analisis Data Bab IV Data Percobaan dan Analisis Data 4.1 Data Percobaan Parameter yang selalu tetap pada tiap percobaan dilakukan adalah: P O = 1 atm Panci tertutup penuh Bukaan gas terbuka penuh Massa air pada panci

Lebih terperinci

PROGRAM STUDI DIII TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014

PROGRAM STUDI DIII TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2014 KAJIAN NUMERIK PENGARUH VARIASI IGNITION TIMING DAN AFR TERHADAP PERFORMA UNJUK KERJA PADA ENGINE MOTOR TEMPEL EMPAT LANGKAH SATU SILINDER YAMAHA F2.5 MENGGUNAKAN BAHAN BAKAR BENSIN DAN LPG Oleh: Helmi

Lebih terperinci

Pilihan ganda soal dan jawaban teori kinetik gas 20 butir. 5 uraian soal dan jawaban teori kinetik gas.

Pilihan ganda soal dan jawaban teori kinetik gas 20 butir. 5 uraian soal dan jawaban teori kinetik gas. Pilihan ganda soal dan jawaban teori kinetik gas 20 butir. 5 uraian soal dan jawaban teori kinetik gas. A. Pilihlah salah satu jawaban yang paling tepat! 1. Partikel-partikel gas ideal memiliki sifat-sifat

Lebih terperinci

Kata kunci : prototipe, pengujian, temperatur, tabung vakum, minyak sayur

Kata kunci : prototipe, pengujian, temperatur, tabung vakum, minyak sayur PENGUJIAN PERFORMA PROTOTIPE ALAT PEMINDAH MASAKAN DENGAN KAPASITAS 10 LITER Yeny Pusvyta 1* 1 Program Studi Teknik Mesin Universitas IBA Jl. Mayor Ruslan Palembang. *Email : yeny_pusvyta@yahoo,com Abstrak

Lebih terperinci

Studi Eksperimen Variasi Beban Pendinginan pada Evaporator Mesin Pendingin Difusi Absorpsi R22-DMF

Studi Eksperimen Variasi Beban Pendinginan pada Evaporator Mesin Pendingin Difusi Absorpsi R22-DMF JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: 2337-3539 (2301-9271 Print) F-18 Studi Eksperimen Variasi Beban Pendinginan pada Evaporator Mesin Pendingin Difusi Absorpsi R22-DMF Akhmad Syukri Maulana dan

Lebih terperinci

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada

Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter. A. Prasetyadi, FA. Rusdi Sambada Pompa Air Energi Termal dengan Fluida Kerja Petroleum Eter A. Prasetyadi, FA. Rusdi Sambada Jurusan Teknik Mesin, Fakultas Sains dan Teknologi, Universitas Sanata Dharma Kampus 3, Paingan, Maguwoharjo,

Lebih terperinci

PERBANDINGAN UNJUK KERJA GENSET 4-LANGKAH MENGGUNAKAN BAHAN BAKAR BENSIN DAN LPG DENGAN PENAMBAHAN MIXER VENTURI

PERBANDINGAN UNJUK KERJA GENSET 4-LANGKAH MENGGUNAKAN BAHAN BAKAR BENSIN DAN LPG DENGAN PENAMBAHAN MIXER VENTURI TUGAS AKHIR KONVERSI ENERGI PERBANDINGAN UNJUK KERJA GENSET 4-LANGKAH MENGGUNAKAN BAHAN BAKAR BENSIN DAN LPG DENGAN PENAMBAHAN MIXER VENTURI Pembimbing : Ir. Joko Sarsetyanto, MT PROGRAM STUDI DIPLOMA

Lebih terperinci

SKRIPSI / TUGAS AKHIR

SKRIPSI / TUGAS AKHIR SKRIPSI / TUGAS AKHIR ANALISIS PEMANFAATAN GAS BUANG DARI TURBIN UAP PLTGU 143 MW UNTUK PROSES DESALINASI ALBERT BATISTA TARIGAN (20406065) JURUSAN TEKNIK MESIN PENDAHULUAN Desalinasi adalah proses pemisahan

Lebih terperinci

BAB V DATA DAN ANALISA PERHITUNGAN. Seperti dijelaskan pada subbab 4.2 diatas, pengambilan data dilakukan dengan

BAB V DATA DAN ANALISA PERHITUNGAN. Seperti dijelaskan pada subbab 4.2 diatas, pengambilan data dilakukan dengan BAB V DATA DAN ANALISA PERHITUNGAN 5.1 Proses pengambilan data Seperti dijelaskan pada subbab 4.2 diatas, pengambilan data dilakukan dengan cara mengukur temperatur pada tiga jenis bahan bakar yang berbeda

Lebih terperinci

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA

(Indra Wibawa D.S. Teknik Kimia. Universitas Lampung) POMPA POMPA Kriteria pemilihan pompa (Pelatihan Pegawai PUSRI) Pompa reciprocating o Proses yang memerlukan head tinggi o Kapasitas fluida yang rendah o Liquid yang kental (viscous liquid) dan slurrie (lumpur)

Lebih terperinci

Fahmi Wirawan NRP Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc

Fahmi Wirawan NRP Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc Fahmi Wirawan NRP 2108100012 Dosen Pembimbing Prof. Dr. Ir. H. Djoko Sungkono K, M. Eng. Sc Latar Belakang Menipisnya bahan bakar Kebutuhan bahan bakar yang banyak Salah satu solusi meningkatkan effisiensi

Lebih terperinci

MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG. Oleh : Hari Budianto

MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG. Oleh : Hari Budianto MODIFIKASI MESIN MOTOR BENSIN 4 TAK TIPE 5K 1486 cc MENJADI BAHAN BAKAR LPG Oleh : Hari Budianto 2105 030 057 Latar Belakang Kebutuhan manusia akan energi setiap tahun terus bertambah, selaras dengan perkembangan

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Tempat penelitian Penelitian dilakukan di Laboratorium Fenomena Dasar Mesin (FDM) Jurusan Teknik Mesin Fakultas Teknik Universitas Muhammadiyah Yogyakarta. 3.2.Alat penelitian

Lebih terperinci

Bab III. Metodelogi Penelitian

Bab III. Metodelogi Penelitian Bab III Metodelogi Penelitian 3.1. Kerangka Penelitian Analisa kinerja AC split 3/4 PK dengan mengunakan refrigeran R-22 dan MC-22 variasi tekanan refrigeran dengan pembebanan terdapat beberapa tahapan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Hidrodinamika 2.1.1 Definisi Hidrodinamika Hidrodinamika merupakan salah satu cabang ilmu yang berhubungan dengan gerak liquid atau lebih dikhususkan pada gerak air. Skala

Lebih terperinci

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya

BAB II DASAR TEORI. Laporan Tugas Akhir. Gambar 2.1 Schematic Dispenser Air Minum pada Umumnya BAB II DASAR TEORI 2.1 Hot and Cool Water Dispenser Hot and cool water dispenser merupakan sebuah alat yang digunakan untuk mengkondisikan temperatur air minum baik dingin maupun panas. Sumber airnya berasal

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM Franciscus Manuel Sitompul 1,Mulfi Hazwi 2 Email:manuel_fransiskus@yahoo.co.id 1,2, Departemen

Lebih terperinci

BAB 3 METODOLOGI PENGUJIAN

BAB 3 METODOLOGI PENGUJIAN BAB 3 METODOLOGI PENGUJIAN Setiap melakukan penelitian dan pengujian harus melalui beberapa tahapan-tahapan yang ditujukan agar hasil penelitian dan pengujian tersebut sesuai dengan standar yang ada. Caranya

Lebih terperinci

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU)

Gbr. 2.1 Pusat Listrik Tenaga Gas dan Uap (PLTGU) BAB II TINJAUAN PUSTAKA 2.1 Pengertian HRSG HRSG (Heat Recovery Steam Generator) adalah ketel uap atau boiler yang memanfaatkan energi panas sisa gas buang satu unit turbin gas untuk memanaskan air dan

Lebih terperinci

Gambar 3.1 Arang tempurung kelapa dan briket silinder pejal

Gambar 3.1 Arang tempurung kelapa dan briket silinder pejal BAB III METODE PENELITIAN 3.1 Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Energi Biomassa, Program Studi S-1 Teknik Mesin, Fakultas Teknik, Universitas Muhammadiayah Yogyakarta

Lebih terperinci

BAB IV PEMBAHASAN KINERJA BOILER

BAB IV PEMBAHASAN KINERJA BOILER BAB IV PEMBAHASAN KINERJA BOILER 4.1 Spesifikasi boiler di PT. Kartika Eka Dharma Spesifikasi boiler yang digunakan oleh PT. Kartika Eka Dharma adalah boiler jenis pipa air dengan kapasitas 1 ton/ jam,

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI

LAPORAN TUGAS AKHIR BAB II DASAR TEORI BAB II DASAR TEORI 2.1 Dispenser Air Minum Hot and Cool Dispenser air minum adalah suatu alat yang dibuat sebagai alat pengkondisi temperatur air minum baik air panas maupun air dingin. Temperatur air

Lebih terperinci

BAB III METODOLOGI PENELITIAN. bahan dan alat uji yang digunakan untuk pengumpulan data, pengujian, diagram

BAB III METODOLOGI PENELITIAN. bahan dan alat uji yang digunakan untuk pengumpulan data, pengujian, diagram BAB III METODOLOGI PENELITIAN 3.1. Deskripsi Penelitian Metode penelitian menjelaskan tentang tempat dan waktu pelaksanaan, bahan dan alat uji yang digunakan untuk pengumpulan data, pengujian, diagram

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator.

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator. BAB III METODOLOGI 3.1 Desain Peralatan Desain genset bermula dari genset awal yaitu berbahan bakar bensin dimana diubah atau dimodifikasi dengan cara fungsi karburator yang mencampur bensin dan udara

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK 40 BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4.1 HASIL PERHITUNGAN PARAMETER PENSTOCK Diameter pipa penstock yang digunakan dalam penelitian ini adalah 130 mm, sehingga luas penampang pipa (Ap) dapat dihitung

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. METODE PENELITIAN Penelitian dilakukan untuk mengetahui fenomena yang terjadi pada mesin Otto dengan penggunaan bahan bakar yang ditambahkan aditif dengan variasi komposisi

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS. Sebelum melakukan pengujian pada sistem Bottle Filler secara keseluruhan, dilakukan beberapa tahapan antara lain :

BAB IV PENGUJIAN DAN ANALISIS. Sebelum melakukan pengujian pada sistem Bottle Filler secara keseluruhan, dilakukan beberapa tahapan antara lain : BAB IV PENGUJIAN DAN ANALISIS Bab ini akan membahas mengenai pengujian dan analisis pada alat Bottle Filter yang berbasis mikrokontroler. Tujuan dari pengujian adalah untuk mengetahui apakah alat yang

Lebih terperinci

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA

BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA BAB III PEMBUATAN ALAT UJI DAN METODE PENGAMBILAN DATA Untuk mendapatkan koefisien gesek dari saluran pipa berpenampang persegi, nilai penurunan tekanan (pressure loss), kekasaran pipa dan beberapa variabel

Lebih terperinci

BAB IV HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA 4.2 HASIL MODIFIKASI ALAT REAKTOR PIROLISIS

BAB IV HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA 4.2 HASIL MODIFIKASI ALAT REAKTOR PIROLISIS 40 BAB IV HASIL YANG DICAPAI DAN MANFAAT BAGI MITRA 4.1 PENDAHULUAN Hasil penelitian dan eksperimen akan ditampilkan di BAB IV ini. Hasil penelitian akan didiskusikan untuk mengetahui kinerja alat konversi

Lebih terperinci

ANALISA BESARAN NILAI EFISIENSI POMPA (P3) PADA MESIN MIXER DI LINE 2 PT. CCAI

ANALISA BESARAN NILAI EFISIENSI POMPA (P3) PADA MESIN MIXER DI LINE 2 PT. CCAI ANALISA BESARAN NILAI EFISIENSI POMPA (P3) PADA MESIN MIXER DI LINE 2 PT. CCAI Nama : Rama Pradana NPM : 25411817 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Pembimbing : Dr. RR. Sri Poernomo

Lebih terperinci

Proses Pengosongan Mixer Batch Larutan Cat Densitas 1,66; Viskositas 110 Cp; Volume Liter Ke Hopper Pengalengan Selama 20 Menit

Proses Pengosongan Mixer Batch Larutan Cat Densitas 1,66; Viskositas 110 Cp; Volume Liter Ke Hopper Pengalengan Selama 20 Menit TUGAS UNIT OPERASI II : MEKANIKA FLUIDA Proses Pengosongan Mixer Batch Larutan Cat Densitas 1,66; Viskositas 110 Cp; Volume 20000 Liter Ke Hopper Pengalengan Selama 20 Menit Disusun oleh : Kelompok 7 Abrar

Lebih terperinci

Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya. Oleh: Dewi Jumineti

Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya. Oleh: Dewi Jumineti Analisa Kinerja Alat Destilasi Penghasil Air Tawar dengan Sistem Evaporasi Uap Tenaga Surya Oleh: Dewi Jumineti 4210 100 010 Outline Rumusan Masalah Tujuan Batasan Masalah Desain alat Metodologi Grafik

Lebih terperinci

LAPORAN TUGAS AKHIR BAB II DASAR TEORI. 2.2 Komponen-Komponen Tabung Vortex dan Fungsinya. Inlet Udara. Chamber. Orifice (diafragma) Valve (Katup)

LAPORAN TUGAS AKHIR BAB II DASAR TEORI. 2.2 Komponen-Komponen Tabung Vortex dan Fungsinya. Inlet Udara. Chamber. Orifice (diafragma) Valve (Katup) BAB II DASAR TEORI 2.1 Sejarah Tabung Vortex Tabung vortex ditemukan oleh G.J. Ranque pada tahun 1931 dan kemudian dikembangkan lebih lanjut oleh Prof. Hilsch pada tahun 1947. Tabung vortex adalah salah

Lebih terperinci

PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 2012

PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 2012 Hasil Penelitian dan Kegiatan PTLR Tahun 202 ISSN 0852-2979 PENGOPERASIAN BOILER SEBAGAI PENYEDIA ENERGI PENGUAPAN PADA PENGOLAHAN LIMBAH RADIOAKTIF CAIR DALAM EVAPORATOR TAHUN 202 Heri Witono, Ahmad Nurjana

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sistem Perpipaan Dalam pembuatan suatu sistem sirkulasi harus memiliki sistem perpipaan yang baik. Sistem perpipaan yang dipakai mulai dari sistem pipa tunggal yang sederhana

Lebih terperinci

BAB III SET-UP ALAT UJI

BAB III SET-UP ALAT UJI BAB III SET-UP ALAT UJI Rangkaian alat penelitian MBG dibuat sebagai waterloop (siklus tertutup) dan menggunakan pompa sebagai penggerak fluida. Pengamatan pembentukan micro bubble yang terjadi di daerah

Lebih terperinci

Bab III Rancangan Penelitian

Bab III Rancangan Penelitian Bab III Rancangan Penelitian III.1 Metodologi Secara Umum Dehidrasi iso propil alkohol dengan metode adsorpsi ini dilakukan dengan tujuan untuk memperoleh senyawa IPA dengan kadar minimal 99,8%-vol, yang

Lebih terperinci

Teori Kinetik Gas. C = o C K K = K 273 o C. Keterangan : P2 = tekanan gas akhir (N/m 2 atau Pa) V1 = volume gas awal (m3)

Teori Kinetik Gas. C = o C K K = K 273 o C. Keterangan : P2 = tekanan gas akhir (N/m 2 atau Pa) V1 = volume gas awal (m3) eori Kinetik Gas Pengertian Gas Ideal Istilah gas ideal digunakan menyederhanakan permasalahan tentang gas. Karena partikel-partikel gas dapat bergerak sangat bebas dan dapat mengisi seluruh ruangan yang

Lebih terperinci

TEKANAN UAP AIR DIBAWAH 100 C PANAS MOLAR DARI PENGUAPAN

TEKANAN UAP AIR DIBAWAH 100 C PANAS MOLAR DARI PENGUAPAN TEKANAN UAP AIR DIBAWAH 100 C PANAS MOLAR DARI PENGUAPAN Topik Terkait: Tekanan, temperatur, volume, penguapan, tekanan uap, persamaan Clausius-Clapeyron. I. Tujuan Percobaan 1. Menyelidiki tekanan uap

Lebih terperinci

Bab III Metodelogi Penelitian

Bab III Metodelogi Penelitian Bab III Metodelogi Penelitian 3.1. Kerangka Penelitian Dalam pengujian analisa kinerja AC split merk TCL 3/4 PK mengunakan refrigeran R-22 dan MC-22 dengan variasi tekanan tanpa pembebanan terdapat beberapa

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Penelitian terhadap aliran campuran air crude oil yang mengalir pada pipa pengecilan mendadak ini dilakukan di Laboratorium Thermofluid Jurusan Teknik Mesin. 3.1 Diagram Alir

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN Tahapan-tahapan pengerjaan yang dilakukan dalam penelitian ini adalah sebagai berikut : 1. Tahap Persiapan Penelitian Pada tahapan ini akan dilakukan studi literatur dan pendalaman

Lebih terperinci

BAB I PENDAHULUAN BAB I PENDAHULUAN

BAB I PENDAHULUAN BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan salah satu kebutuhan pokok yang sangat penting dalam kehidupan manusia saat ini, hampir semua aktifitas manusia berhubungan dengan energi listrik.

Lebih terperinci

LABORATORIUM TEKNIK KIMIA SEMESTER GENAP TAHUN AJARAN 2015

LABORATORIUM TEKNIK KIMIA SEMESTER GENAP TAHUN AJARAN 2015 LABORATORIUM TEKNIK KIMIA SEMESTER GENAP TAHUN AJARAN 2015 MODUL : Aliran Fluida PEMBIMBING : Emmanuella MW,Ir.,MT Praktikum : 8 Maret 2017 Penyerahan : 15 Maret 2017 (Laporan) Oleh : Kelompok : 3 Nama

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan Bab IV Hasil dan Pembahasan IV.1. Hasil Konstruksi Kolom Adsorpsi Berdasarkan rancangan dari kolom adsorpsi pada gambar III.1., maka berikut ini adalah gambar hasil konstruksi kolom adsorpsi : Tinggi =1,5

Lebih terperinci

III. METODOLOGI PENELITIAN. Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin

III. METODOLOGI PENELITIAN. Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin III. METODOLOGI PENELITIAN A. Alat dan Bahan Pengujian Alat-alat dan bahan yang digunakan dalam proses pengujian ini meliputi : mesin bensin 4-langkah, alat ukur yang digunakan, bahan utama dan bahan tambahan..

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Data Hasil Pengujian Variasi sudut kondensor dalam penelitian ini yaitu : 0 0, 15 0, dan 30 0 serta aliran air dalam kondensor yaitu aliran air searah dengan laju uap (parallel

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1. Bahan Penelitian Dalam pengujian ini bahan yang digunakan adalah air. Air dialirkan sling pump melalui selang plastik ukuran 3/4 menuju bak penampung dengan variasi jumlah

Lebih terperinci

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER

BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER BAB IV ANALISA PENGUJIAN DAN PERHITUNGAN BLOWER 4.1 Perhitungan Blower Untuk mengetahui jenis blower yang digunakan dapat dihitung pada penjelasan dibawah ini : Parameter yang diketahui : Q = Kapasitas

Lebih terperinci

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator.

BAB III METODOLOGI. Genset 1100 watt berbahan bakar gas antara lain. 2 perangkat berbeda yaitu engine dan generator atau altenator. BAB III METODOLOGI 3.1 Desain Peralatan Desain genset bermula dari genset awal yaitu berbahan bakar bensin dimana diubah atau dimodifikasi dengan cara fungsi karburator yang mencampur bensin dan udara

Lebih terperinci

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah.

FLUIDA. Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Nama :... Kelas :... FLUIDA Standar Kompetensi : 8. Menerapkan konsep dan prinsip pada mekanika klasik sistem kontinu (benda tegar dan fluida) dalam penyelesaian masalah. Kompetensi dasar : 8.. Menganalisis

Lebih terperinci

Teori Kinetik Gas Teori Kinetik Gas Sifat makroskopis Sifat mikroskopis Pengertian Gas Ideal Persamaan Umum Gas Ideal

Teori Kinetik Gas Teori Kinetik Gas Sifat makroskopis Sifat mikroskopis Pengertian Gas Ideal Persamaan Umum Gas Ideal eori Kinetik Gas eori Kinetik Gas adalah konsep yang mempelajari sifat-sifat gas berdasarkan kelakuan partikel/molekul penyusun gas yang bergerak acak. Setiap benda, baik cairan, padatan, maupun gas tersusun

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System

BAB IV HASIL ANALISA DAN PEMBAHASAN. 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System 32 BAB IV HASIL ANALISA DAN PEMBAHASAN 4.1 Pembangkit Listrik Tenaga Panas Bumi Single Flash System PLTP Gunung Salak merupakan PLTP yang berjenis single flash steam system. Oleh karena itu, seperti yang

Lebih terperinci

PENGARUH PEMANASAN BAHAN BAKAR DENGAN RADIATOR SEBAGAI UPAYA MENINGKATKAN KINERJA MESIN BENSIN

PENGARUH PEMANASAN BAHAN BAKAR DENGAN RADIATOR SEBAGAI UPAYA MENINGKATKAN KINERJA MESIN BENSIN PENGARUH PEMANASAN BAHAN BAKAR DENGAN RADIATOR SEBAGAI UPAYA MENINGKATKAN KINERJA MESIN BENSIN Agus Suyatno 1) ABSTRAK Proses pembakaran bahan bakar di dalam silinder dipengaruhi oleh: temperatur, kerapatan

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian ini dilaksanakan di Laboratorium Teknik Energi Terbarukan Departemen Teknik Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Bogor dan

Lebih terperinci

Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi

Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi Bab 4 Perancangan dan Pembuatan Pembakar (Burner) Gasifikasi 4.1 Pertimbangan Awal Pembakar (burner) adalah alat yang digunakan untuk membakar gas hasil gasifikasi. Di dalam pembakar (burner), gas dicampur

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISA DATA

BAB IV PENGOLAHAN DATA DAN ANALISA DATA BAB IV PENGOLAHAN DATA DAN ANALISA DATA.1 PERHITUNGAN DATA Dari percobaan yang telah dilakukan, didapatkan data mentah berupa temperatur kerja fluida pada saat pengujian, perbedaan head tekanan, dan waktu

Lebih terperinci

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram

Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Analisa Pengaruh Variasi Volume Tabung Udara Dan Variasi Beban Katup Limbah Terhadap Performa Pompa Hidram Andrea Sebastian Ginting 1, M. Syahril Gultom 2 1,2 Departemen Teknik Mesin, Fakultas Teknik,

Lebih terperinci

PERBANDINGAN BIDANG API ISOTHERMAL KOMPOR ENGKEL DINDING API TUNGGAL DAN DINDING API GANDA BERBAHAN BAKAR BIOETHANOL

PERBANDINGAN BIDANG API ISOTHERMAL KOMPOR ENGKEL DINDING API TUNGGAL DAN DINDING API GANDA BERBAHAN BAKAR BIOETHANOL PERBANDINGAN BIDANG API ISOTHERMAL KOMPOR ENGKEL DINDING API TUNGGAL DAN DINDING API GANDA BERBAHAN BAKAR BIOETHANOL Yusufa Anis Silmi (2108 100 022) Dosen Pembimbing : Prof. Dr. Ir. H. Djoko Sungkono

Lebih terperinci

Oleh : Dwi Dharma Risqiawan Dosen Pembimbing : Ary Bachtiar K.P, ST, MT, PhD

Oleh : Dwi Dharma Risqiawan Dosen Pembimbing : Ary Bachtiar K.P, ST, MT, PhD STUDI EKSPERIMEN PERBANDINGAN PENGARUH VARIASI TEKANAN MASUK TURBIN DAN VARIASI PEMBEBANAN GENERATOR TERHADAP PEFORMA TURBIN PADA ORGANIC RANKINE CYCLE Oleh : Dwi Dharma Risqiawan 2109100120 Dosen Pembimbing

Lebih terperinci

III. METODOLOGI PENELITIAN. berdasarkan prosedur yang telah di rencanakan sebelumnya. Dalam pengambilan data

III. METODOLOGI PENELITIAN. berdasarkan prosedur yang telah di rencanakan sebelumnya. Dalam pengambilan data 26 III. METODOLOGI PENELITIAN A. Instalasi Pengujian Pengujian dengan memanfaatkan penurunan temperatur sisa gas buang pada knalpot di motor bakar dengan pendinginan luar menggunakan beberapa alat dan

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Mulai

BAB III METODOLOGI PENELITIAN. Mulai BAB III METODOLOGI PENELITIAN 3.1. DIAGRAM ALIR METODOLOGI PENELITIAN Pada suatu penelitian tidak lepas dari metodologi yang digunakan. Oleh sebab itu agar prosedur penelitian tertata dan terarah sesuai

Lebih terperinci

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... PRAKATA... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR LAMPIRAN...

DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... PRAKATA... DAFTAR ISI... DAFTAR GAMBAR... DAFTAR LAMPIRAN... DAFTAR ISI HALAMAN JUDUL... HALAMAN PENGESAHAN... HALAMAN PERNYATAAN... PRAKATA... DAFTAR ISI...... DAFTAR GAMBAR...... DAFTAR LAMPIRAN...... ARTI LAMBANG DAN SINGKATAN...... INTISARI...... ABSTRACT......

Lebih terperinci

Soal Teori Kinetik Gas

Soal Teori Kinetik Gas Soal Teori Kinetik Gas Tahun Ajaran 203-204 FISIKA KELAS XI November, 203 Oleh Ayu Surya Agustin Soal Teori Kinetik Gas Tahun Ajaran 203-204 A. SOAL PILIHAN GANDA Pilihlah salah satu jawaban yang paling

Lebih terperinci

BAB IV PELAKSANAAN DAN PEMBAHASAN

BAB IV PELAKSANAAN DAN PEMBAHASAN 31 BAB IV PELAKSANAAN DAN PEMBAHASAN 4.1 ALUR PROSES PELAKSANAAN Mulai perawatan Pemeriksaan dan penyetelan pada mesin oil sealed rotary vacuum pump model P450 Membongkar dan memperbaiki komponen tersebut

Lebih terperinci

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM

PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM PENGUJIAN PENGARUH VARIASI HEAD SUPPLY DAN PANJANG LANGKAH KATUP LIMBAH TERHADAP UNJUK KERJA POMPA HIDRAM SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik FRANCISCUS

Lebih terperinci

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL

TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL TUGAS AKHIR BIDANG KONVERSI ENERGI PERANCANGAN, PEMBUATAN DAN PENGUJIAN POMPA DENGAN PEMASANGAN TUNGGAL, SERI DAN PARALEL Oleh: ANGGIA PRATAMA FADLY 07 171 051 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS

Lebih terperinci

BAB III METODOLOGI PENELITIAN. pirolisator merupakan sarana pengolah limbah plastik menjadi

BAB III METODOLOGI PENELITIAN. pirolisator merupakan sarana pengolah limbah plastik menjadi BAB III METODOLOGI PENELITIAN 3.1 Perencanaan Alat Alat pirolisator merupakan sarana pengolah limbah plastik menjadi bahan bakar minyak sebagai pengganti minyak bumi. Pada dasarnya sebelum melakukan penelitian

Lebih terperinci

PERANCANGAN KOMPRESSOR SENTRIFUGAL PADA TURBOCHARGER UNTUK MENAIKAN DAYA MESIN BENSIN 1500cc SEBESAR 25%

PERANCANGAN KOMPRESSOR SENTRIFUGAL PADA TURBOCHARGER UNTUK MENAIKAN DAYA MESIN BENSIN 1500cc SEBESAR 25% PERANCANGAN KOMPRESSOR SENTRIFUGAL PADA TURBOCHARGER UNTUK MENAIKAN DAYA MESIN BENSIN 1500cc SEBESAR 25% DOSEN PEMBIMBING Prof.Dr.Ir. I MADE ARYA DJONI, MSc LATAR BELAKANG Material piston Memaksimalkan

Lebih terperinci

Oleh : Endiarto Satriyo Laksono Maryanto Sasmito

Oleh : Endiarto Satriyo Laksono Maryanto Sasmito Oleh : Endiarto Satriyo Laksono 2108039006 Maryanto Sasmito 2108039014 Dosen Pembimbing : Ir. Syamsul Hadi, MT Instruktur Pembimbing Menot Suharsono, S.Pd ABSTRAK Dalam industri rumah untuk membuat peralatan

Lebih terperinci

PROGRAM STUDI DIPLOMA III JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2010

PROGRAM STUDI DIPLOMA III JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2010 Oleh Maulana Sigit Wicaksono 218 3 83 PROGRAM STUDI DIPLOMA III JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 21 Pembimbing Ir. Joko Sarsetyanto, MT. LATAR

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan data Pengambilan data dilakukan pada tanggal 11 Desember 212 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan angin (v) = 3

Lebih terperinci

BAB III PROSEDUR PENGUJIAN

BAB III PROSEDUR PENGUJIAN 3.1 Diagram Alir Metodologi Pengujian BAB III PROSEDUR PENGUJIAN Start Studi pustaka Pembuatan mesin uji Persiapan Pengujian 1. Persiapan dan pengesetan mesin 2. Pemasangan alat ukur 3. Pemasangan sensor

Lebih terperinci

FIsika TEORI KINETIK GAS

FIsika TEORI KINETIK GAS KTSP & K-3 FIsika K e l a s XI TEORI KINETIK GAS Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami definisi gas ideal dan sifat-sifatnya.. Memahami

Lebih terperinci

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015

Ditulis Guna Melengkapi Sebagian Syarat Untuk Mencapai Jenjang Sarjana Strata Satu (S1) Jakarta 2015 UNIVERSITAS GUNADARMA FAKULTAS TEKNOLOGI INDUSTRI ANALISIS SISTEM PENURUNAN TEMPERATUR JUS BUAH DENGAN COIL HEAT EXCHANGER Nama Disusun Oleh : : Alrasyid Muhammad Harun Npm : 20411527 Jurusan : Teknik

Lebih terperinci

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu

LTM TERMODINAMIKA TEKNIK KIMIA Pemicu NERACA ENERGI DAN EFISIENSI POMPA Oleh Rizqi Pandu Sudarmawan [0906557045], Kelompok 3 I. Neraca Energi Pompa Bila pada proses ekspansi akan menghasilkan penurunan tekanan pada aliran fluida, sebaliknya

Lebih terperinci

PRESTASI MOTOR BENSIN HONDA KARISMA 125 CC TERHADAP BAHAN BAKAR BIOGASOLINE, GAS LPG DAN ASETILEN

PRESTASI MOTOR BENSIN HONDA KARISMA 125 CC TERHADAP BAHAN BAKAR BIOGASOLINE, GAS LPG DAN ASETILEN Jakarta, 26 Januari 2013 PRESTASI MOTOR BENSIN HONDA KARISMA 125 CC TERHADAP BAHAN BAKAR BIOGASOLINE, GAS LPG DAN ASETILEN Nama : Gani Riyogaswara Npm : 20408383 Fakultas : Teknologi Industri Jurusan :

Lebih terperinci

BAB III PENGUJIAN DAN ANALISA POMPA VAKUM

BAB III PENGUJIAN DAN ANALISA POMPA VAKUM BAB III PENGUJIAN DAN ANALISA POMPA VAKUM 3.1 Prinsip Kerja Pompa Vacum Pada gambar 2-5 dijelaskan bahwa proses terjadinya hisapan adalah akibat adanya kehilangan tekanan pada aliran udara didalam pipa

Lebih terperinci