PROGRAM Program dapat dibuat dengan pilihan menu. Urutan menu dan isinya dipersilakan ditrancang masing-masing.

Ukuran: px
Mulai penontonan dengan halaman:

Download "PROGRAM Program dapat dibuat dengan pilihan menu. Urutan menu dan isinya dipersilakan ditrancang masing-masing."

Transkripsi

1 Institut Teknologi Bandung Sekolah Teknik Elektro dan Informatika Program Studi Teknik Informatika DESKRIPSI dan SPESIFIKASI Tugas Besar IF Aljabar Geometri Aplikasi Aljabar Lanjar pada Metode Numerik Semester Tahun 4/5 Dosen: Dr. Ir Rinaldi Munir, M.T. PROSEDUR PENGERJAAN. Tugas dikerjakan secara berkelompok yang terdiri dari orang.. Tugas ini dikumpulkan hari Jumat Oktober 5 paling lambat pukul 7. pagi di atas loker Lab IRK. Silakan isi absensi pengumpulan dan tanggal untuk demo program di depan asisten BAHASA PEMROGRAMAN. Bahasa program yang digunakan adalah Java dengan kakas pengembangan program adalah JSE.. Program tidak harus berbasis GUI, cukup text-based saja. PROGRAM Program dapat dibuat dengan pilihan menu. Urutan menu dan isinya dipersilakan ditrancang masing-masing. LAPORAN. Cover: Cover laporan ada foto anggota kelompok (foto bertiga, bebas gaya). Foto ini menggantikan logo gajah ganesha. Bab : Deskripsi masalah (dapat meng-copy paste file tugas ini) Bab : Teori singkat mengenai metode eliminasi Gauss, metode eliminasi Gauss- Jordan, tatancang pemorosan, interpolasi, dll. Bab : Implementasi program dalam Java, meliputi struktur data, kelas-kelas Java, dll. Bab 4: Eksperimen. Bab ini beris hasil eksekusi program terhadap contoh-contoh kasus yang diberikan berikut analisis hasil eksekusi tersebut Bab 5: Kesimpulan dan saran (hasil yang dicapai, saran pengembangan). Tuliskan juga referensi (buku, web), yang dipakai/diacu di dalam Daftar Referensi. Keterangan laporan dan program: a) Laporan ditulis dalam bahasa Indonesia yang baik dan benar, tidak perlu panjang tetapi tepat sasaran dan jelas. b) Laporan tidak perlu memakai cover mika dan dijilid. Cukup dibuat agar laporan tidak akan tercecer bila dibaca. c) Laporan boleh menggunakan kertas rius, boleh bolak-balik, boleh dalam satu halaman kertas terdapat dua halaman tulisan asalkan masih terbaca.

2 d) Identitas per halaman harus jelas (misalnya : halaman, kode kuliah). e) Listing program ataupun algoritma tidak perlu disertakan pada laporan. e) Program disimpan di dalam folder Algeo-xxxxx. Lima digit terakhir adalah NIM anggota terkecil. Didalam folder tersebut terdapat tiga folder bin, src dan doc yang masing-masing berisi : Folder bin berisi java byte code (.class) Folder src berisi source code dari program java Folder test berisi data uji. Folder doc berisi dokumentasi program dan readme PENGUMPULAN TUGAS. Yang diserahkan saat pengumpulan tugas adalah: a) CD/DVD yang berisi program sumber (source code) dan arsip java yang sudah dikompilasi tanpa ada kesalahan. b) Laporan. Java bytecode di dalam CD/DVD dapat dijalankan. Asisten pemeriksa tidak akan melakukan setting atau kompilasi lagi agar program dapat berjalan. Program yang tidak dapat dijalankan tidak akan diberi nilai.. CD dan laporan akan dikembalikan setelah dinilai. PENILAIAN Komposisi penilaian umum adalah sebagai berikut :. Program: 8 %. Laporan : % SPESIFIKASI UMUM. Program harus dapat menerima input data dari Papan ketik File. Keluaran program harus dapat ditampilkan ke: Layar monitor Simpan ke dalam arsip Format keluaran (misalnya dalam bentuk tabel) didefinisikan sendiri. Keluaran harus mudah dibaca dan informatif.

3 SPESIFIKASI MATERI A. Tulislah program java untuk menyelesaikan sistem persamaan lanjar (SPL) dengan n peubah (variable) dan m persamaan: a x + a x an xn = b a x + a x an xn = b : : : : am x + am x amn xn = bm SPL diselesaikan secara numerik dengan metode eliminasi Gauss dan metode eliminasi Gauss-Jordan. Di dalam kedua metode tersebut diterapkan tatancang pemorosan untuk mengurangi galat pembulatan. Program harus dapat menangani kasus-kasus sebagai berikut: a) SPL memiliki solusi unik, tampilkan solusinya b) SPL memiliki solusi tak terbatas, tampilkan solusinya dalam bentuk parameter c) SPL tidak memiliki solusi, tuliskan tidak ada solusinya. Contoh-contoh SPL yang dijadikan data eksperimen: a).x +.4x +.x +.7x4 =..6x +.x +.8x +.4x4 =..6x +.x +.x +.x4 =.4.4x +.4x +.6x +.7x4 =.7 b) x + x - x + x5 = x + 6x 5x - x4 + 4x4 - x6 = - 5x + x4 + 5x6 = 5 x + 6x + 8x4 + 4x4 + 8x6 = 6 c) AX = B sebagai berikut: X =

4 B. Aplikasikan metode penyelesaian SPL pada persoalan sain dan rekayasa sebagai berikut:. Misalkan seorang insinyur Teknik Sipil merancang sebuah rangka statis yang berbentuk segitiga (Gambar ). Ujung segitiga yang bersudut bertumpu pada sebuah penyangga statis, sedangkan ujung segitiga yang lain bertumpu pada penyangga beroda. Rangka mendapat gaya eksternal sebesar pon. Gaya ini disebar ke seluruh bagian rangka. Gaya F menyatakan tegangan atau kompresi pada anggota rangka. Reaksi eksternal (H, V, dan V) adalah gaya yang mencirikan bagaimana rangka berinteraksi dengan permukaan pendukung. Engsel pada simpul dapat menjangkitkan gaya mendatar dan tegak pada permukaan, sedangkan gelinding pada simpul hanya menjangkitkan gaya tegak. pon 9 F F H 6 F V V Gambar Gaya-gaya pada rangka statis tertentu Struktur jenis ini dapat diuraikan sebagai sistem persamaan aljabar lanjar simultan. Diagram gaya-benda-bebas diperlihatkan untuk tiap simpul dalam Gambar. F, v F 6 F, h F, v F F F F, v H F F 6 F, h V V Gambar Diagram gaya-benda-bebas untuk simpul-simpul rangka statis 4

5 Menurut hukum Newton, resultan gaya dalam arah mendatar maupun tegak harus nol pada tiap simpul, karena sistem dalam keadaan diam (statis). Oleh karena itu, untuk simpul, FH = = -F cos + F cos 6 + F, h FV = = -F sin - F sin 6 + F, v untuk simpul, FH = = F + F cos + F, h + H FV = = F sin - F, v + V dan untuk simpul, FH = = -F - F cos 6 + F, h FV = = F sin 6 + F, v + V Gaya pon ke bawah pada simpul berpadanan dengan F, v = -, sedangkan semua Fi, v dan Fi, h lainnya adalah nol. Persoalan rangka statis ini dapat dituliskan sebagai sistem yang disusun oleh enam persamaan lanjar dengan 6 peubah yang tidak diketahui: FH = = -F cos + F cos 6 + F, h = -.866F +.5 F FV = = -F sin - F sin 6 + F, v = -.5F.866 F + FH = = F + F cos + F, h + H = F +.866F + + H FV = = F sin - F, v + V =.5 F + V FH = = -F - F cos 6 + F, h = -F.5 F FV = = F sin 6 + F, v + V =.866 F + V Keenam persamaan di atas ditulis ulang kembali dalam susunan yang teratur berdasarkan urutan peubah F, F, F, H, V, V: -.866F +.5 F = -.5F.866 F = F F H = -.5 F V = F.5 F =.866 F V = atau dalam bentuk matriks: 5

6 F F F = H V V Tentukan solusi sistem di atas!. Diberikan sebuah rangkaian listrik sbb : R R I I R4 I4 R5 I5 I54 I65 4 R45 5 R65 6 Diminta menghitung arus pada masing-masing rangkaian. Arah arus dimisalkan seperti diatas. Dengan hukum Kirchoff diperoleh persamaan-persamaan berikut : I + I5 + I = I65 - I5 - I54 = I4 - I = I54 - I4 = Dari hukum Ohm didapat : IR - V + V = I4R4 - V4 + V = I65R65 + V5 = IR + V = I54R54 - V5 + V4 = I5R5 - V5 + V = Tentukan I, I5, I, I65, I54, I, V, V, V4, V5 bila : R = 5 ohm, R5 = ohm, R = ohm, R65 = ohm, R54 = 5 ohm, R4 = 5 ohm, V = volt, V6 = volt 6

7 . (Interpolasi) Gunakan tabel di bawah ini untuk mencari polinom interpolasi dari pasangan titik-titik yang terdapat dalam tabel. Program menerima masukan nilai x yang akan dicari nilai fungsi f(x). x f(x) Lakukan pengujian pada nilai-nilai default berikut: x =. f(x) =? x =.55 f(x) =? x =.85 f(x) =? x =.8 f(x) =? 4. (Interpolasi) Konsentrasi larutan oksigen jenuh dalam air sebagai fungsi suhu dan konsentrasi klorida didefinisikan dalam tabel berikut: Konsentrasi larutan Oksigen jenuh (mg/l) untuk berbagai Suhu ( C) konsentrasi Klorida Klorida = mg/l Klorida = mg/l Estimasilah konsentrasi oksigen jenuh yang larut untuk T =.4 C pada konsentrasi klorida mg/l dan mg/l. 5. (Interpolasi) Harga rumah baru dari tahun 95 hingga 969 mengalami perubahan yang tercatat sebagai berikut: Tahun Harga ($ juta) 95, , , , , , , ,866 Berdasarkan data tersebut prediksilah harga rumah baru pada tahun 957, 964, 97, 975 (atau nilai lain sesuai masukan user) dengan menggunakan polinom interpolasi derajat n (n masukan dari pengguna). 7

Tugas Besar 1 IF2123 Aljabar Geometri Aplikasi Aljabar Lanjar pada Metode Numerik Semester I Tahun 2017/2018

Tugas Besar 1 IF2123 Aljabar Geometri Aplikasi Aljabar Lanjar pada Metode Numerik Semester I Tahun 2017/2018 Institut Teknologi Bandung Sekolah Teknik Elektro dan Informatika Program Studi Teknik Informatika Tugas Besar IF Aljabar Geometri Aplikasi Aljabar Lanjar pada Metode Numerik Semester I Tahun 07/08 DESKRIPSI

Lebih terperinci

Simulasi Transformasi Linier pada Bidang 2D Dengan Menggunakan OpenGL API

Simulasi Transformasi Linier pada Bidang 2D Dengan Menggunakan OpenGL API Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Tugas Besar II IF2123 Aljabar Geometri Simulasi Transformasi Linier pada Bidang 2D Dengan Menggunakan

Lebih terperinci

Aplikasi Algoritma Greedy pada Smart Building Environment

Aplikasi Algoritma Greedy pada Smart Building Environment Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Tugas Besar I IF2211 Strategi Algoritma Aplikasi Algoritma Greedy pada Smart Building Environment Waktu

Lebih terperinci

Aplikasi DFS dan BFS pada Web Crawler di dalam Mesin Pencari (Search Engine)

Aplikasi DFS dan BFS pada Web Crawler di dalam Mesin Pencari (Search Engine) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Tugas II IF2211 Strategi Algoritma Aplikasi DFS dan BFS pada Web Crawler di dalam Mesin Pencari (Search

Lebih terperinci

Tugas II IF211 Strategi Algoritma. Penyusunan Rencana Kuliah dengan Memanfaatkan DFS dan BFS

Tugas II IF211 Strategi Algoritma. Penyusunan Rencana Kuliah dengan Memanfaatkan DFS dan BFS Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Tugas II IF211 Strategi Algoritma Penyusunan Rencana Kuliah dengan Memanfaatkan DFS dan BFS Batas pengumpulan

Lebih terperinci

Tugas Besar III IF2211 Strategi Algoritma Deteksi Spam pada Media Sosial atau Chat-Messenger dengan Algoritma Pencocokan String

Tugas Besar III IF2211 Strategi Algoritma Deteksi Spam pada Media Sosial atau Chat-Messenger dengan Algoritma Pencocokan String Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Tugas Besar III IF2211 Strategi Algoritma Deteksi Spam pada Media Sosial atau Chat-Messenger dengan Algoritma

Lebih terperinci

Tugas I IF211 Strategi Algoritma Aplikasi Game Battleship dengan Memanfaatkan Algoritma Greedy

Tugas I IF211 Strategi Algoritma Aplikasi Game Battleship dengan Memanfaatkan Algoritma Greedy Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Tugas I IF211 Strategi Algoritma Aplikasi Game Battleship dengan Memanfaatkan Algoritma Greedy Far out

Lebih terperinci

Aplikasi Sistem Persamaan Linier dalam Persoalan Dunia Nyata (real world problem)

Aplikasi Sistem Persamaan Linier dalam Persoalan Dunia Nyata (real world problem) Aplikasi Sistem Persamaan Linier dalam Persoalan Dunia Nyata (real world problem) IF2123 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF2123 Aljabar Geometri

Lebih terperinci

Aplikasi Aljabar Lanjar pada Metode Numerik

Aplikasi Aljabar Lanjar pada Metode Numerik Aplikasi Aljabar Lanjar pada Metode Numerik IF223 Aljabar Geometri Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB Rinaldi Munir - IF223 Aljabar Geometri Apa itu Metode Numerik? Numerik: berhubungan

Lebih terperinci

Aplikasi Interpolasi Polinom dalam Tipografi

Aplikasi Interpolasi Polinom dalam Tipografi Aplikasi Interpolasi Polinom dalam Tipografi Muhammad Farhan Majid (13514029) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam

Operasi Eliminasi Gauss. Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam Operasi Eliminasi Gauss Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah

Lebih terperinci

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik

Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Penerapan Sistem Persamaan Lanjar Pada Rangkaian Listrik Ahmad Fa iq Rahman 13514081 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

ELIMINASI GAUSS MAKALAH. Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom. Di Susun Oleh: Kelompok VII Matematika C/VII

ELIMINASI GAUSS MAKALAH. Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom. Di Susun Oleh: Kelompok VII Matematika C/VII ELIMINASI GAUSS MAKALAH Untuk Memenuhi Tugas Terstruktur Mata Kuliah Metode Numerik Dosen Saluky M.Kom Di Susun Oleh: Kelompok VII Matematika C/VII Anggota : 1. Eko Kurniawan P. (59451064) 2. Siti Nurhairiyah

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-1 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-1 KONTRAK KULIAH METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode Numerik Sistem

Lebih terperinci

ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018

ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018 ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018 INSTITUT TEKNOLOGI SUMATERA 2018 MODUL 3 Petunjuk Praktikum Modul ini dilaksanakan dalam 2 (dua) sesi praktikum. Tiap sesi praktikum dilaksanakan dalam 3 tahap

Lebih terperinci

Penggunaan Metode Numerik Untuk Mencari Nilai Percepatan Gravitasi

Penggunaan Metode Numerik Untuk Mencari Nilai Percepatan Gravitasi Penggunaan Metode Numerik Untuk Mencari Nilai Percepatan Gravitasi Khaidzir Muhammad Shahih (13512068) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

SOLUSI SISTEM PERSAMAAN LINEAR

SOLUSI SISTEM PERSAMAAN LINEAR SOLUSI SISTEM PERSAMAAN LINEAR Bentuk umum persamaan linear dengan n peubah diberikan sebagai berikut : a1 x1 + a2 x2 +... + an xn = b ; a 1, a 2,..., a n R merupakan koefisien dari persamaaan dan x 1,

Lebih terperinci

ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018

ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018 ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018 INSTITUT TEKNOLOGI SUMATERA 2018 MODUL 4a Petunjuk Praktikum Modul ini dilaksanakan dalam 1 (satu) sesi praktikum. Tiap sesi praktikum dilaksanakan dalam 3

Lebih terperinci

Interpolasi Spline Kubik pada Trajektori Manusia

Interpolasi Spline Kubik pada Trajektori Manusia Interpolasi Spline Kubik pada Trajektori Manusia Samsu Sempena (13788) 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 1 Bandung 4132,

Lebih terperinci

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Interpolasi. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Interpolasi Metode Numerik Zulhaydar Fairozal Akbar [email protected] 2017 TOPIK Pengenalan

Lebih terperinci

Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik

Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik Membentuk Algoritma untuk Pemecahan Sistem Persamaan Lanjar secara Numerik Bervianto Leo P - 13514047 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018

ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018 ALGORITMA PEMOGRAMAN SEMESTER GENAP 2017/2018 INSTITUT TEKNOLOGI SUMATERA 2018 MODUL 2 Petunjuk Praktikum Modul ini dilaksanakan dalam 1 (satu) sesi praktikum. Tiap sesi praktikum dilaksanakan dalam 3

Lebih terperinci

LAPORAN PRAKTIKUM PERTENGAHAN SEMESTER (LAB. ACTIVITY) ALGORITMA & PEMROGRAMAN TEKNIK INFORMATIKA. Oleh: NIM : Materi:

LAPORAN PRAKTIKUM PERTENGAHAN SEMESTER (LAB. ACTIVITY) ALGORITMA & PEMROGRAMAN TEKNIK INFORMATIKA. Oleh: NIM : Materi: LAPORAN PRAKTIKUM PERTENGAHAN SEMESTER (LAB. ACTIVITY) ALGORITMA & PEMROGRAMAN TEKNIK INFORMATIKA Oleh: NIM : Materi: Pengenalan Bahasa Java Mengenali Lingkup Pemrograman Dasar-dasar Pemrograman Mendapatkan

Lebih terperinci

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi

Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Keunggulan Penyelesaian Persamaan Linear dengan Metode Dekomposisi LU dalam Komputerisasi Elvina Riama K. Situmorang 55) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

BAB II. Landasan Teori

BAB II. Landasan Teori BAB II Landasan Teori. Model Matematika Menurut Wirodikromo (998, p77) model matematika adalah suatu rumusan matematika (dapat berbentuk persamaan, pertidaksamaan / fungsi) yang diperoleh dari hasil penafsiran

Lebih terperinci

Penyelesaian SPL dalam Rangkaian Listrik

Penyelesaian SPL dalam Rangkaian Listrik Penyelesaian SPL dalam Rangkaian Listrik Harry Octavianus Purba (13514050) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Matriks Sebagai Representasi Orientasi Objek 3D

Matriks Sebagai Representasi Orientasi Objek 3D Matriks Sebagai Representasi Orientasi Objek 3D Cendhika Imantoro - 13514037 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

Lebih terperinci

PEMROGRAMAN BERORIENTASI OBJEK

PEMROGRAMAN BERORIENTASI OBJEK MODUL PRAKTIKUM PEMROGRAMAN BERORIENTASI OBJEK NINF615 SEMESTER GASAL 2016/2017 PROGRAM STUDI S1 TEKNIK INFORMATIKA MODUL PRAKTIKUM PEMROGRAMAN BERORIENTASI OBJEK DISUSUN OLEH: Tim Asisten Praktikum Jurusan

Lebih terperinci

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer

Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Implementasi Metode Jumlah Riemann untuk Mendekati Luas Daerah di Bawah Kurva Suatu Fungsi Polinom dengan Divide and Conquer Dewita Sonya Tarabunga - 13515021 Program Studi Tenik Informatika Sekolah Teknik

Lebih terperinci

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI

PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI PERBANDINGAN BEBERAPA METODE NUMERIK DALAM MENGHITUNG NILAI PI Perbandingan Beberapa Metode Numerik dalam Menghitung Nilai Pi Aditya Agung Putra (13510010)1 Program Studi Teknik Informatika Sekolah Teknik

Lebih terperinci

PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR

PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR PERBANDINGAN KOMPLEKSITAS ALGORITMA METODE-METODE PENYELESAIAN SISTEM PERSAMAAN LANJAR Achmad Dimas Noorcahyo NIM 3508076 Program Studi Teknik Informatika, Institut Teknologi Bandung Jalan Ganeca 0, Bandung

Lebih terperinci

Implementasi Algoritma Pencarian Akar Kuadrat Bilangan Positif

Implementasi Algoritma Pencarian Akar Kuadrat Bilangan Positif Implementasi Algoritma Pencarian Akar Kuadrat Bilangan Positif Muhammad Iqbal W. (0510633057) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Brawijaya Dosen Pembimbing: Waru Djuriatno, ST., MT. dan

Lebih terperinci

Oleh : Anna Nur Nazilah Chamim

Oleh : Anna Nur Nazilah Chamim Oleh : Anna Nur Nazilah Chamim 1. Silabus 2. Referensi 3. Kriteria Penilaian 4. Tata Tertib Perkuliahan 5. Pembentukan Kelompok 6. Materi 1 : pengantar Analisa Numerik Setelah mengikuti mata kuliah metode

Lebih terperinci

Bab 1. Pendahuluan Metode Numerik Secara Umum

Bab 1. Pendahuluan Metode Numerik Secara Umum Bab 1. Pendahuluan Metode Numerik Secara Umum Yuliana Setiowati Politeknik Elektronika Negeri Surabaya 2007 1 Topik Pendahuluan Persoalan matematika Metode Analitik vs Metode Numerik Contoh Penyelesaian

Lebih terperinci

II. SISTEM PERSAMAAN LANJAR I. PENDAHULUAN

II. SISTEM PERSAMAAN LANJAR I. PENDAHULUAN Solusi Sistem Persamaan Lanjar Homogen dengan Eliminasi Gauss-Jordan Sandy Socrates 135844 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

Pengantar Pemrograman dengan Bahasa Java

Pengantar Pemrograman dengan Bahasa Java Pengantar Pemrograman dengan Bahasa Java IF2123 Aljabar Geometri Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Sejarah Bahasa Java Bahasa java dibuat oleh James Gosling saat masih bergabung

Lebih terperinci

Pengantar Pemrograman dengan Bahasa Java

Pengantar Pemrograman dengan Bahasa Java Pengantar Pemrograman dengan Bahasa Java IF2123 Aljabar Geometri Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Sejarah Bahasa Java Bahasa java dibuat oleh James Gosling saat masih bergabung

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP)

GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) GARIS-GARIS BESAR PROGRAM PENGAJARAN (GBPP) Mata Kuliah : Metode Numerik Bobot Mata Kuliah : 3 Sks Deskripsi Mata Kuliah : Unified Modelling Language; Use Case Diagram; Class Diagram dan Object Diagram;

Lebih terperinci

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA

MATERI 2 MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA MATERI MATEMATIKA TEKNIK 1 PERSAMAAN DIFERENSIAL ORDE DUA 1 Tujuan 1. Dapat menyelesaikan persamaan diferensial orde dua.. Dapat menyelesaikan suatu Sistem Linier dengan menggunakan metode Eliminasi atau

Lebih terperinci

Penerapan Matriks dalam Kriptografi

Penerapan Matriks dalam Kriptografi Penerapan Matriks dalam Kriptografi Malvin Juanda/13514044 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia [email protected]

Lebih terperinci

Solusi Sistem Persamaan Linear Ax = b

Solusi Sistem Persamaan Linear Ax = b Solusi Sistem Persamaan Linear Ax = b Kie Van Ivanky Saputra April 27, 2009 K V I Saputra (Analisis Numerik) Kuliah Sistem Persamaan Linier c April 27, 2009 1 / 9 Review 1 Substitusi mundur pada sistem

Lebih terperinci

Triyana Muliawati, S.Si., M.Si.

Triyana Muliawati, S.Si., M.Si. SI 2201 - METODE NUMERIK Triyana Muliawati, S.Si., M.Si. Prodi Matematika Institut Teknologi Sumatera Lampung Selatan 35365 Hp. +6282260066546, Email. [email protected] 1. Pengenalan Metode

Lebih terperinci

Penyelesaian Teka-Teki Matematika Persegi Ajaib Menggunakan Aljabar Lanjar

Penyelesaian Teka-Teki Matematika Persegi Ajaib Menggunakan Aljabar Lanjar Penyelesaian Teka-Teki Matematika Persegi Ajaib Menggunakan Aljabar Lanjar Gaudensius Dimas Prasetyo Suprapto / 13514059 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi

Lebih terperinci

Penerapan Integrasi Numerik pada Medan Magnet karena Arus Listrik

Penerapan Integrasi Numerik pada Medan Magnet karena Arus Listrik Penerapan Integrasi Numerik pada Medan Magnet karena Arus Listrik Rianto Fendy Kristanto - 13507036 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

PENDAHULUAN METODE NUMERIK

PENDAHULUAN METODE NUMERIK PENDAHULUAN METODE NUMERIK TATA TERTIB KULIAH 1. Bobot Kuliah 3 SKS 2. Keterlambatan masuk kuliah maksimal 30 menit dari jam masuk kuliah 3. Selama kuliah tertib dan taat aturan 4. Dilarang makan dan minum

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar belakang

BAB I PENDAHULUAN 1.1 Latar belakang BAB I PENDAHULUAN 1.1 Latar belakang. Laboratorium Data Mining Center (DMC), merupakan salah satu laboratorium Institut Teknologi Telkom Fakultas Informatika. Kegiatan yang dijalankan oleh lab ini antara

Lebih terperinci

RANCANG BANGUN APLIKASI ALOKASI RESOURCE MANAGEMENT DI FAKULTAS TEKNIK UNIVERSITAS TANJUNGPURA

RANCANG BANGUN APLIKASI ALOKASI RESOURCE MANAGEMENT DI FAKULTAS TEKNIK UNIVERSITAS TANJUNGPURA RANCANG BANGUN APLIKASI ALOKASI RESOURCE MANAGEMENT DI FAKULTAS TEKNIK UNIVERSITAS TANJUNGPURA Hendri Supryadi 1, Tursina 2, Novi Safriadi 3 Program Studi Teknik Informatika Universitas Tanjungpura 1,2,3

Lebih terperinci

Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief

Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief Penggunaan Metode Dekomposisi LU Untuk Penentuan Produksi Suatu Industri Dengan Model Ekonomi Leontief Achmad Dimas Noorcahyo - 13508076 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika

Lebih terperinci

Course Note Numerical Method : Interpolation

Course Note Numerical Method : Interpolation Course Note Numerical Method : Interpolation Pengantar Interpolasi. Kalimat y = f(x), xo x xn adalah kalimat yang mengkorespondensikan setiap nilai x di dalam interval x0 x xn dengan satu atau lebih nilai-nilai

Lebih terperinci

Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss

Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss Penghitungan Polusi Udara Dalam Ruangan dengan Metode Eliminasi Gauss Tri Hastuti Yuniati (23515009) 1 Program Studi Magister Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan (bidang fisika, kimia, Teknik Sipil, Teknik Mesin, Elektro

Lebih terperinci

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT

RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik. Disusun oleh: Rafki Imani, MT RENCANA PEMBELAJARAN SEMESTER (KKSS43116) Metode Numerik Disusun oleh: Rafki Imani, MT PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS PUTRA INDONESIA YPTK PADANG 2017 LEMBAR

Lebih terperinci

Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM :

Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM : Program Studi Teknik Informatika Nama : Sekolah Teknik Elektro dan Informatika NIM : Institut Teknologi Bandung T.tangan: Solusi Kuis ke-2 IF2120 Matematika Diskrit (3 SKS) Relasi dan Fungsi, Aljabar Boolean,

Lebih terperinci

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2

ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK /2 ATUAN ACARA PERKULIAHAN MATA KULIAH ANALISA NUMERIK (S1/TEKNIK SIPIL) KODE / SKS : KK-031248 /2 Ming gu Pokok Bahasan & TIU Sub-pokok Bahasan dan Sasaran Belajar Cara Pengajara n Media Tugas Referensi

Lebih terperinci

Penggunaan Transformasi Matriks dalam Enkripsi dan Dekripsi

Penggunaan Transformasi Matriks dalam Enkripsi dan Dekripsi Penggunaan Transformasi Matriks dalam Enkripsi dan Dekripsi Varian Caesar - 13514041 Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR

PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR PERANGKAT LUNAK BANTU ANALISIS NUMERIK METODE DETERMINAN CRAMER, ELIMINASI GAUSS DAN LELARAN GAUSS-SEIDEL UNTUK MENYELESAIKAN SISTEM PERSAMAAN LINEAR Tacbir Hendro Pudjiantoro A B S T R A K Salah satu

Lebih terperinci

Pengaplikasian Graf Planar pada Analisis Mesh

Pengaplikasian Graf Planar pada Analisis Mesh Pengaplikasian Graf Planar pada Analisis Mesh Farid Firdaus - 13511091 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Tugas ini berkaitan dengan Metode-metode yang ada pada komputasi numerik. Tujuan dari tugas ini adalah:

Tugas ini berkaitan dengan Metode-metode yang ada pada komputasi numerik. Tujuan dari tugas ini adalah: PENDAHULUAN Tugas ini berkaitan dengan Metode-metode yang ada pada komputasi numerik. Tujuan dari tugas ini adalah: 1. Meningkatkan pemahaman mahasiswa Metode yang ada pada komputasi numerik. 2. Meningkatkan

Lebih terperinci

MEMBANGUN APLIKASI E BOOK READER DENGAN JAVA MICRO EDITION (JAVA ME) UNTUK PONSEL BERBASIS JAVA MIDP 2.0

MEMBANGUN APLIKASI E BOOK READER DENGAN JAVA MICRO EDITION (JAVA ME) UNTUK PONSEL BERBASIS JAVA MIDP 2.0 MEMBANGUN APLIKASI E BOOK READER DENGAN JAVA MICRO EDITION (JAVA ME) UNTUK PONSEL BERBASIS JAVA MIDP 2.0 SKRIPSI Disusun sebagai salah satu syarat menyelesaikan Program Studi Strata I pada Jurusan Teknik

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Citra adalah suatu representasi, kemiripan, atau imitasi dari suatu objek atau benda. Citra dapat dikelompokkan menjadi citra tampak dan citra tak tampak.

Lebih terperinci

Implementasi Pohon Keputusan untuk Membangun Jalan Cerita pada Game Engine Unity

Implementasi Pohon Keputusan untuk Membangun Jalan Cerita pada Game Engine Unity Implementasi Pohon Keputusan untuk Membangun Jalan Cerita pada Game Engine Unity Winarto - 13515061 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.

Lebih terperinci

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik.

Jenis Gaya gaya gesek. Hukum I Newton. jenis gaya gesek. 1. Menganalisis gejala alam dan keteraturannya dalam cakupan mekanika benda titik. gaya yang muncul ketika BENDA BERSENTUHAN dengan PERMUKAAN KASAR. ARAH GAYA GESEK selalu BERLAWANAN dengan ARAH GERAK BENDA. gaya gravitasi/gaya berat gaya normal GAYA GESEK Jenis Gaya gaya gesek gaya

Lebih terperinci

Mata Kuliah: Statika Struktur Satuan Acara Pengajaran:

Mata Kuliah: Statika Struktur Satuan Acara Pengajaran: Mata Kuliah: Statika Struktur Satuan Acara engajaran: Minggu I II III IV V VI VII VIII IX X XI Materi Sistem aya meliputi Hk Newton, sifat, komposisi, komponen, resultan, keseimbangan gaya, Momen dan Torsi

Lebih terperinci

Penggunaan Metode Newton dan Lagrange pada Interpolasi Polinom Pergerakan Harga Saham: Studi Kasus Saham PT Adaro Energi Tbk.

Penggunaan Metode Newton dan Lagrange pada Interpolasi Polinom Pergerakan Harga Saham: Studi Kasus Saham PT Adaro Energi Tbk. Penggunaan Metode Newton dan Lagrange pada Interpolasi Polinom Pergerakan Harga Saham: Studi Kasus Saham PT Adaro Energi Tbk. Dannis Muhammad 13507112 Program Studi Teknik Informatika Sekolah Teknik Elektro

Lebih terperinci

Metode Matriks Balikan

Metode Matriks Balikan Metode Matriks Balikan MisalkanA -1 adalahmatriksbalikandaria. Sistempersamaan lanjar Ax = b dapat diselesaikan sebagai berikut: Ax= b A -1 Ax= A -1 b I x= A -1 b (A -1 A = I ) x= A -1 b Cara penyelesaiandenganmengalikanmatriksa

Lebih terperinci

UNIVERSITAS BINA NUSANTARA

UNIVERSITAS BINA NUSANTARA UNIVERSITAS BINA NUSANTARA Program Ganda Teknik Informatika - Matematika Skripsi Sarjana Program Ganda Semester Genap 2005/2006 PERBANDINGAN METODE INTEGRASI NUMERIK BOOLE, GAUSS- LEGENDRE, DAN ADAPTIVE

Lebih terperinci

Aljabar Linear Dasar Edisi Kedua

Aljabar Linear Dasar Edisi Kedua Buku Aljabar Linear Dasar Edisi Kedua ini merupakan penyempurnaan dari buku edisi pertama. Buku ini disusun berdasarkan pengalaman mengajar penulis di IT Telkom (sebelumnya STT Telkom) sejak tahun 1993.

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Nama Mata Kuliah : Metode Numerik Kode Mata Kuliah : TI 016 Bobot Kredit : 3 SKS Semester Penempatan : III Kedudukan Mata Kuliah : Mata Kuliah Keilmuan Keterampilan Mata

Lebih terperinci

BAB III ANALISIS STRUKTUR

BAB III ANALISIS STRUKTUR BAB III ANALISIS STRUKTUR Persoalan yang dibahas dalam mata kuliah prasyarat terdahulu adalah mengenai kesetimbangan suatu benda tegar dan semua gaya yang terlibat merupakan gaya luar terhadap benda tegar

Lebih terperinci

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva

PAM 252 Metode Numerik Bab 4 Pencocokan Kurva PAM 252 Metode Numerik Bab 4 Pencocokan Kurva Mahdhivan Syafwan Jurusan Matematika FMIPA Universitas Andalas Semester Genap 2013/2014 1 Mahdhivan Syafwan Metode Numerik: Pencocokan Kurva Permasalahan dan

Lebih terperinci

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk :

Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : Persamaan Linear Sebuah garis dalam bidang xy bisa disajikan secara aljabar dengan sebuah persamaan berbentuk : a x + a y = b Persamaan jenis ini disebut sebuah persamaan linear dalam peubah x dan y. Definisi

Lebih terperinci

FINAL PROJECT PAPB 2014 DOSEN: HERMAN TOLLE PAPB KELAS A, B, C DAN G

FINAL PROJECT PAPB 2014 DOSEN: HERMAN TOLLE PAPB KELAS A, B, C DAN G FINAL PROJECT PAPB 2014 DOSEN: HERMAN TOLLE PAPB KELAS A, B, C DAN G FINAL PROJECT PAPB 2014 Sebagai pengganti Ujian Akhir Semester, maka setiap mahasiswa wajib bekerja dalam kelompok untuk membuat sebuah

Lebih terperinci

Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.

Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Metode Numerik (Pendahuluan) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Kajian Pokok Metode Numerik Tujuan: Menyelesaikan suatu persamaan menggunakan model matematika. Pemodelan penyelesaian matematika

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Persiapan UAS Doc. Name: K13AR12FIS01UAS Version: 2015-11 halaman 1 01. Seorang pendengar A berada di antara suatu sumber bunyi S yang menghasilkan bunyi berfrekuensi f dan tembok

Lebih terperinci

Mencari Banyak Posisi yang dapat Dijangkau sebuah Lingkaran dengan Dynamic Programming

Mencari Banyak Posisi yang dapat Dijangkau sebuah Lingkaran dengan Dynamic Programming Mencari Banyak Posisi yang dapat Dijangkau sebuah Lingkaran dengan Dynamic Programming Jehian Norman Saviero - 13515139 Program Sarjana Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut

Lebih terperinci

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran

Mulyono (NIM : ) BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Penelitian ini menghasilkan diagram alir, kode program serta keluaran Mulyono (NIM : 0301060025) BAB IV HASIL PENELITIAN DAN PEMBAHASAN Penelitian ini menghasilkan diagram alir, kode program serta keluaran berupa tingkat ketelitian metode Biseksi dan metode Regula Falsi

Lebih terperinci

BAB 1 PENDAHULUAN. hal, persamaan ini timbul langsung dari perumusan mula dari persoalannya, didalam hal

BAB 1 PENDAHULUAN. hal, persamaan ini timbul langsung dari perumusan mula dari persoalannya, didalam hal BAB 1 PENDAHULUAN 1.1 Latar Belakang Persamaan Simultan timbul hampir disetiap cabang matematik, dalam beberapa hal, persamaan ini timbul langsung dari perumusan mula dari persoalannya, didalam hal lain

Lebih terperinci

Pendahuluan Metode Numerik Secara Umum

Pendahuluan Metode Numerik Secara Umum Pendahuluan Metode Numerik Secara Umum Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan

Lebih terperinci

Regresi Linier. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA

Regresi Linier. Metode Numerik POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA POLITEKNIK ELEKTRONIKA NEGERI SURABAYA DEPARTEMEN TEKNIK INFORMATIKA DAN KOMPUTER PROGRAM STUDI TEKNIK INFORMATIKA Regresi Linier Metode Numerik Zulhaydar Fairozal Akbar [email protected] 2017 TOPIK Pengenalan

Lebih terperinci

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak?????

Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain. benda + gaya = gerak????? DINAMIKA PARTIKEL GAYA Tarikan/dorongan yang bekerja pada suatu benda akibat interaksi benda tersebut dengan benda lain Macam-macam gaya : a. Gaya kontak gaya normal, gaya gesek, gaya tegang tali, gaya

Lebih terperinci

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika

BAB 3 DINAMIKA. Tujuan Pembelajaran. Bab 3 Dinamika 25 BAB 3 DINAMIKA Tujuan Pembelajaran 1. Menerapkan Hukum I Newton untuk menganalisis gaya pada benda diam 2. Menerapkan Hukum II Newton untuk menganalisis gaya dan percepatan benda 3. Menentukan pasangan

Lebih terperinci

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran

SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks

Lebih terperinci

BESARAN DAN SATUAN DISUSUN OLEH : STEVANUS ARIANTO PENDAHULUAN PENGUKURAN JANGKA SORONG MIKROMETER SEKRUP BESARAN DASAR FAKTOR SI SATUAN DIMENSI

BESARAN DAN SATUAN DISUSUN OLEH : STEVANUS ARIANTO PENDAHULUAN PENGUKURAN JANGKA SORONG MIKROMETER SEKRUP BESARAN DASAR FAKTOR SI SATUAN DIMENSI BESARAN DAN SATUAN DISUSUN OLEH : STEVANUS ARIANTO PENDAHULUAN PENGUKURAN JANGKA SORONG MIKROMETER SEKRUP CONTOH SOAL CONTOH SOAL CARA ANALITIS BESARAN DASAR FAKTOR SI SATUAN DIMENSI ANGKA PENTING KEGIATAN

Lebih terperinci

Penggunaan Metode Numerik dan MATLAB dalam Fisika

Penggunaan Metode Numerik dan MATLAB dalam Fisika Tugas Akhir Mata Kuliah Metode Numerik Dr. Kebamoto Penggunaan Metode Numerik dan MATLAB dalam Fisika Oleh : A. Arif Sartono 6305220017 DEPARTEMEN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS

Lebih terperinci

Bahan Kuliah ke-24. IF5054 Kriptografi. Manajemen Kunci. Disusun oleh: Ir. Rinaldi Munir, M.T.

Bahan Kuliah ke-24. IF5054 Kriptografi. Manajemen Kunci. Disusun oleh: Ir. Rinaldi Munir, M.T. Bahan Kuliah ke-24 IF5054 Kriptografi Manajemen Kunci Disusun oleh: Ir. Rinaldi Munir, M.T. Departemen Teknik Informatika Institut Teknologi Bandung 2004 24. Manajemen Kunci 24.1 Pendahuluan Kekuatan sistem

Lebih terperinci

Pembangkitan Bilangan Acak Dengan Metode Lantai Dan Modulus Bertingkat

Pembangkitan Bilangan Acak Dengan Metode Lantai Dan Modulus Bertingkat Pembangkitan Bilangan Acak Dengan Metode Lantai Dan Modulus Bertingkat Kenji Prahyudi 13508058 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

HUKUM KIRCHOFF I. TUJUAN II. TEORI

HUKUM KIRCHOFF I. TUJUAN II. TEORI HUKUM KIRCHOFF I. TUJUAN Setelah menyelesaikan percobaan Hukum Kirchoff ini diharapkan para peserta praktikum Fisika Dasar dapat: 1. Memahami hukum kirchoff tentang arus dan tegangan listrik 2. Menerapkan

Lebih terperinci

Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia

Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia Penerapan Matriks dalam Analisis Sektor Perekonomian Indonesia Scarletta Julia Yapfrine (13514074) Program Studi Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel.

5. PERSAMAAN LINIER. 1. Berikut adalah contoh SPL yang terdiri dari 4 persamaan linier dan 3 variabel. 1. Persamaan Linier 5. PERSAMAAN LINIER Persamaan linier adalah suatu persamaan yang variabel-variabelnya berpangkat satu. Disamping persamaan linier ada juga persamaan non linier. Contoh : a) 2x + 3y

Lebih terperinci

2 Mekanika Rekayasa 1

2 Mekanika Rekayasa 1 BAB 1 PENDAHULUAN S ebuah konstruksi dibuat dengan ukuran-ukuran fisik tertentu haruslah mampu menahan gaya-gaya yang bekerja dan konstruksi tersebut harus kokoh sehingga tidak hancur dan rusak. Konstruksi

Lebih terperinci

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor.

Syarif Abdullah (G ) Matematika Terapan FMIPA Institut Pertanian Bogor. Syarif Abdullah (G551150381) Matematika Terapan FMIPA Institut Pertanian Bogor e-mail: [email protected] 25 Maret 2016 Ringkasan Kuliah ke-6 Analisis Numerik (16 Maret 2016) Materi : System

Lebih terperinci

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2

METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1. Mohamad Sidiq PERTEMUAN-2 METODE NUMERIK 3SKS-TEKNIK INFORMATIKA-S1 Mohamad Sidiq PERTEMUAN-2 SISTEM BILANGAN DAN KESALAHAN METODE NUMERIK TEKNIK INFORMATIKA S1 3 SKS Mohamad Sidiq MATERI PERKULIAHAN SEBELUM-UTS Pengantar Metode

Lebih terperinci

Aplikasi Bilangan Kompleks pada Dinamika Fluida

Aplikasi Bilangan Kompleks pada Dinamika Fluida Aplikasi Bilangan Kompleks pada Dinamika Fluida Evita Chandra (13514034) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,

Lebih terperinci

Studi Dan Implementasi Clustering Penerima Kunci Dengan Metode Shamir Secret Sharing Advanced

Studi Dan Implementasi Clustering Penerima Kunci Dengan Metode Shamir Secret Sharing Advanced Abstrak Studi Dan Implementasi Clustering Penerima Kunci Dengan Metode Shamir Secret Sharing Advanced Ir. Rinaldi Munir M.T 1, Addie Baratha 2 Laboratorium Ilmu dan Rekayasa Komputasi Departemen Teknik

Lebih terperinci

DIGITAL SIGNATURE UNTUK VALIDASI IJAZAH SECARA ONLINE

DIGITAL SIGNATURE UNTUK VALIDASI IJAZAH SECARA ONLINE DIGITAL SIGNATURE UNTUK VALIDASI IJAZAH SECARA ONLINE Benardi Atmadja (13510078) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN 62 BAB 3 ANALISIS DAN PERANCANGAN 3.1 Analisis 3.1.1 Analisis Masalah yang Dihadapi Persamaan integral merupakan persamaan yang sering muncul dalam berbagai masalah teknik, seperti untuk mencari harga

Lebih terperinci

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3.

BAB I PENDAHULUAN. Tahap-tahap memecahkan masalah dengan metode numeric : 1. Pemodelan 2. Penyederhanaan model 3. BAB I PENDAHULUAN Tujuan Pembelajaran: Mengetahui apa yang dimaksud dengan metode numerik. Mengetahui kenapa metode numerik perlu dipelajari. Mengetahui langkah-langkah penyelesaian persoalan numerik.

Lebih terperinci