BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 5 BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Pada bab ini akan menjelaskan teori tentang analisis elektrokimia, sel elektrokimia, larutan elektrolit, jenis jenis elektroda, potensiometri, voltammetri, potentiostatic dan SEM (Scaning Electron Microscopy). 2.2 ANALISIS ELEKTROKIMIA Analisis elektrokimia merupakan metode analisis kuantitatif atau kualitatif yang didasarkan pada sifat-sifat kelistrikan suatu larutan zat yang dianalisis (cuplikan) di dalam suatu sel elektrokimia. Di dalam sel elektrokimia dapat dipelajari hubunganhubungan antara konsentrasi dengan potensial (potensiometri), konsentrasi dengan daya hantar listrik (konduktometri), konsentrasi dengan jumlah muatan listrik (koulometri), konsentrasi dengan potensial dan arus listrik (polarografi dan voltammetri) (Hendayana, dkk., 1994). Reaksi oksidasi dan reduksi merupakan konsep dasar reaksi yang terjadi dalam elektrokimia. Adanya elektron yang berpindah dari satu spesi atom ke spesi atom yang lain atau pelepasan elektron (oksidasi) dan penangkapan elektron (reduksi) berarti ada elektron yang mengalir (Khopkar, 1990). Aliran elektron merupakan indikasi terjadinya arus listrik. Serah terima elektron mengakibatkan terjadinya perubahan muatan atom-atom yang berikatan atau spesi kimia yang terlibat. Perubahan muatan tersebut yang selanjutnya disebut peristiwa oksidasi dan reduksi atau dikenal sebagai reaksi redoks yang dapat memberikan informasi mengenai konsentrasi, kinetika,

2 6 mekanisme reaksi, dan aktifitas dari spesi dalam larutan. Reaksi oksidasi dan reduksi (redoks) dapat dituliskan dalam bentuk ½ reaksi sebagai berikut: O + ne - R (2.1) Dimana O adalah spesi yang dioksidasi dan R adalah spesi yang tereduksi. Setiap proses reduksi dan oksidasi terjadi pada permukaan elektroda dari sel elektrokimia. Dalam sistem yang dikontrol secara termodinamik, potensial elektroda dapat diukur dengan menentukan konsentrasi spesi elektroaktif pada permukaan elektroda berdasarkan persamaan Nernst: [ ] [ ] (2.2) Dimana E adalah potensial standar dari reaksi redoks, R konstanta gas (8.314 J/K mol), T temperatur (K), n bilangan yang menyatakan transfer elektron dalam reaksi, F adalah konstanta Faraday ( coulombs) (Wang, 1994). Elektrokimia mempelajari hubungan antara energi listrik dengan terjadinya reaksi kimia. Hubungan tersebut dapat dipahami melalui proses yang terjadi dalam sel elektrokimia. Dalam penelitian ini, reaksi yang terjadi pada elektroda Ag/AgCl dapat dinyatakan dalam persamaan Nernst: ( ) [ ] (2.3) Aktivitas spesies ionik sama dengan konsentrasi produknya dan koefisien aktivitasnya. Memperhatikan aktivitas itu koefisien untuk spesies kimia dalam fase padat didefinisikan sebagai satu keasatuan dan pada konsentrasi ion klorida rendah sampai sedang koefisien aktivitas ion klorida juga kira-kira satu kesatuan Persamaan (2.3) dapat dinyatakan dalam bentuk konsentrasi bukan aktivitas, menjadi: ( ) * + (2.4) Karena perak klorida adalah garam yang mudah larut, konsentrasinya Idealnya harus tetap konstan di media berair. Demikian juga dengan Konsentrasi perak juga harus tetap konstan karena dalam fase padat sehingga, rasio konsentrasi klorida perak ke perak, (k) harus tetap konstan dan persamaan (2.4) menjadi: ( ) * [ ] + (2.5)

3 7 Dengan membalik dan memisahkan istilah logaritmik lalu mengkonversi untuk mendasarkan 10 hasil: ( ) [ [ ] ( )] (2.6) Dengan mensubstitusikan berbagai konstanta pada suhu 25 C, menjadi: ( ) (2.7) Oleh karena itu, dalam kondisi ideal dan pada suhu operasi Dari 25 C, potensial elektroda terukur (E) secara teoritis berkurang sekitar 59 mv untuk setiap dekade perubahan klorida konsentrasi ion. Persamaan (2.7) juga menjelaskan untuk apapun dengan konsentrasi klorida, potensi terukur bisa berubah jika rasio (k) perak klorida terhadap perubahan perak (Cranny, et al,. 2011) Sel Elektrokimia Sel elektrokimia merupakan seperangkat komponen peralatan dan bahan elektrolit yang dapat menghantarkan arus listrik. Secara umum sel elektrokimia terdiri dari dua elektroda dan penghantar luar. Awal tahun 1950an sebagian besar percobaan elektrokimia menggunakan tiga elektroda dan instrumennya dilengkapi dengan potensiostat (Reiger, 1994). Elektrolit dalam sel elektrokimia dapat berupa leburan atau larutan. Elektroda dicelupkan dalam larutan elektrolit yang sesuai sehingga terjadi kontak antar muka elektroda dengan elektrolit. Kontak antar muka tersebut menimbulkan potensial sel yang menentukan berlangsungnya reaksi oksidasi dan reduksi (redoks). Setiap proses reduksi dan oksidasi terjadi pada permukaan elektroda dari sel elektrokimia. Kesatuan elektrolit dan elektroda dinamakan setengah sel. Setiap sel elektrokimia terdiri dari dua buah setengah sel. Elektroda yang merupakan tempat terjadinya proses oksidasi disebut anoda. Elektroda yang merupakan tempat terjadinya proses reduksi disebut katoda. Anoda dan katoda dalam sel elektrokimia dihubungkan dengan penghantar untuk mengalirkan elektron sehingga menghasilkan arus listrik. Sel elektrokimia diklasifikasikan sebagai sel galvani dan sel elektrolisis, keduanya berguna dalam analisis elektrokimia. Sel galvani merupakan sel elektrokimia yang dapat menghasilkan listrik karena terjadinya reaksi kimia yang spontan, sedangkan sel elektrolisis adalah sel elektrokimia yang menggunakan listrik sebagai sumber energi untuk terjadinya reaksi kimia. Sel elektrokimia juga dapat bersifat reversibel dan irreversibel. Reversibel jika arah reaksi elektrokimia dapat

4 8 berbalik ketika arah dari aliran elektron diubah. Irreversibel jika pengubahan arus menyebabkan perbedaan ½ reaksi yang terjadi pada salah satu atau kedua elektroda (Skoog, et al., 1992). Elektroanalisis sendiri mempelajari fenomena yang terjadi pada interfase antara permukaan elektroda dan lapisan tipis di sekitar elektroda. Bahan yang digunakan untuk pembuatan sel elektrokimia harus dapat dipakai padam range temperatur yang lebar, bentuk stabil, tahan terhadap larutan, pelarut organic dan reagen, tahan lama, dan yang terpenting adalah terbuat dari bahan yang transparan, sehingga larutan dan elektrodanya dapat diamati (Sawyer, et al., 1995). Bahan penyusun dari sel yang umum digunakan adalah glas, teflon, dan quart Larutan Elektrolit Analisis secara elektrokimia, tidak ada pelarut tunggal yang ideal. Pemilihan pelarut biasanya berdasarkan beberapa faktor diantaranya didasarkan pada konduktivitas, kemampuan melarutkan elektrolit dan elektroaktif analit, aktifitas redoks, dan reaktifitas dengan materi yang diteliti. Pelarut tidak boleh menimbulkan efek adsorbsi dari elektroaktif analit pada elektroda. Pelarut juga harus tidak bereaksi dengan analit atau dengan produk dan harus tidak mengalami reaksi elektrokimia pada range potensial berlebih (Gosser, 1993; Reiger, 1994). Larutan elektrolit merupakan kombinasi dari pelarut dan elektrolit pendukung. Pemilihan larutan elektrolit bergantung pada aplikasinya. Larutan elektrolit digunakan untuk mengurangi hambatan dari larutan, menambah konduktifitas dan mengontrol potensial selama penelitian untuk mengurangi efek migrasi elektron yang mempengaruhi arus yang terukur tidak hanya terukur dari analit yang berdifusi melainkan juga dari migrasi (Skoog, et al., 1963), serta mempertahankan agar kekuatan ion konstan (Wang, 1994). Larutan elektrolit yang digunakan pada penelitian ini adalah larutan KCl. Penggunanaan larutan berair KCl karena potential junction dapat dieliminasi (Reiger, 1994).

5 9 2.3 POTENSIOMETRI Potensiometri adalah salah satu teknik analisis yang telah lama dikenal, perkembangan metode potensiometri termasuk sangat pesat, hal ini disebabkan oleh kesesuaian dengan kebutuhan analisis relatif cepat, murah serta hasil analisis yang akurat. Potensiometri merupakan metode analitik yang didasarkan pada pengukuran potensial larutan analit sebagai penentu konsentrasi analit. Persamaan sel dapat dituliskan sebagai persamaan 2.8 (Harvey, 2000). Esel = Ekatoda Eanoda (2.8) Potensial suatu elektroda tidak dapat diukur tersendiri tetapi dengan mengabungkan elektroda pembanding yang memiliki nilai tetap selama pengukuran. Perangkat yang digunakan pada pengukuran potensiometri secara langsung antara lain elektroda selektif ion (ESI), elektroda pembanding, dan alat pengukur potensial berupa sebuah ph / milivolt meter yang dapat mendeteksi 0,2 mv atau lebih (Wang, 2006). Pada potensiometri katoda berfungsi sebagai elektroda indikator (Eind), reaksi yang terjadi adalah reaksi oksidasi sedangkan anoda berfungsi sebagai elektroda pembanding (Eref) rekasi yang terjadi adalah oksidasi. Adanya perbedaan konsentrasi dan mobilitas ion-ion dalam larutan sel elektrokimia menimbulkan adanya potensial liquid junction (Elj) pada batas antamuka larutan, sehingga persamaan potensial sel menjadi persamaan 2.9 (Harvey,2000). Esel = Eind - Eref + Elj (2.9) Elektroda yang digunakan dalam teknik elektrokimia terdiri dari tiga elektroda, yaitu elektroda kerja (WE), elektroda pembanding (RE), dan elektroda kounter (CE) (Siswoyo, et al., 2000) Elektroda Kerja (WE) Elektroda kerja merupakan elektroda tempat reaksi yang diinginkan terjadi (Underwood, 1999). Karakteristik yang ideal dari elektroda kerja adalah memilki daerah potensial yang lebar, hambatan kecil, dan permukaan yang reprodusibel. Daerah potensial dari masing-masing elektroda tergantung pada bahan elektroda dan komposisi dari elektrolit. Daerah potensial dapat disesuaikan dengan elektroda dan larutan elektrolit yang digunakan (Fifield and Haines, 1995). Elektroda kerja

6 10 digunakan untuk menunjukkan secara tidak langsung jika elektroda ini merespon beberapa ½ reaksi spesifik (Reiger, 1994). Elektroda kerja yang digunakan adalah elektroda Ag/AgCl Elektroda Pembanding (RE) Elektroda pembanding merupakan elektroda yang mempunyai potensial elektrokimia konstan sepanjang tidak ada arus yang mengalir dan sama sekali tidak peka terhadap komposisi larutan yang akan diselidiki. Elektroda pembanding digunakan untuk mengukur potensial pada elekroda kerja. Pasangan elektroda pembanding adalah elektroda kerja. Potensial yang akan diukur bergantung pada konsentrasi zat yang akan diselidiki (Hendayana, dkk, 1994). Pemilihan elektroda pembanding harus memperhatikan beberapa faktor yaitu: 1. elektroda pembanding harus reversibel dan sesuai dengan persamaan Nernst, 2. tegangannya harus konstan setiap waktu, 3. potensialnya harus kembali ke nilai dasar setelah arus kecil dilewatkan melalui elektroda (Sawyer, et al., 1995). Beberapa contoh elektroda pembanding: a. Elektroda Hidrogen Standar (SHE) Ini merupakan elektroda referensi dengan sistem logam mulia / gas hidrogen. Reaksi yang terjadi dapat ditulis sebagai berikut: H + + e - = H 2 (2.10) Elektrolit yang digunakan dalam elektroda ini adalah asam klorida. Fasa-fasa yang ada dapat dinyatakan sebagai berikut: Pt (s) H 2 (g) H + (aq) (2.11) Garis tegak menyatakan batas fasa. Potensial elektrodanya dapat dinyatakan sebagai berikut: + E H /H2 = E 0 H + /H2 + (RT/F) ln ([H + ]/[H 2 ] 1/2 ) (2.12) Dimana [H + ] adalah konsentrasi ion hidrogen di dalam larutan, [H 2 ] adalah tekanan parsial gas hidrogen. Untuk kondisi standar, bahan murni pada temperatur 25 C, tekanan hidrogen parsial pada 1 atm, aktifitas ion hidrogen 1 unit (equivalent dengan 1,18 M asam klorida), maka suku ke dua dari persamaan menjadi nol, sehingga: + E H /H2 = E 0 H + /H2 (2.13)

7 11 Potensial elektroda sekarang menjadi potensial elektroda hidrogen standar (SHE) yang nilainya nol pada semua temperatur. Berdasarkan konvensi SHE merupakan elektroda referensi standar utama. Elektroda ini sangat tidak praktis, karena elektroda ini memerlukan suplai gas hidrogen. Waktu yang diperiukan untuk menstabilkan elektroda hidrogen standar yang baru dibuat cukup lama. Hal ini disebabkan lambatnya elektroda hidrogen mencapai kesetimbangan. Karena kesulitankesulitan ini, maka elektroda ini jarang digunakan. Gambar 2.1 Elektroda referensi Hidrogen (SHE) Sumber : Suryanto, 2007 b. Elektroda Perak /Perak Klorida Ini merupakan elektroda referensi dengan sistem logam / garam. Elektroda ini banyak digunakan karena mudah dan handal. Elektroda ini dapat dioperasikan pada temperatur lebih dari 100 C. Reaksi keseimbangan yang terjadi dapat ditulis sebagai berikut: AgCI + e - = Ag + Cl - (2.14) Fasa-fasa yang ada dapat dinyatakan sebagai berikut: Ag (s) AgCI (s) Cl - (aq) (2.15) Potensial elektrodanya dapat dinyatakan sebagai berikut: E Ag/AgCl = E 0 Ag/AgCl (RT/F) ln ([AgCl]/[Ag][Cl - ]) (2.16) Dimana E 0 Ag/AgCl = 0,2223 V vs SHE pada 25 o C dengan koefisien temperatur 0,23

8 12 mv/ o C. karena perak dan perak klorida berada dalam bentuk padat maka [AgCI]=[Ag]=l. Dengan ini maka persamaan 2.16 berubah menjadi: E Ag/AgCl = E 0 Ag/AgCl (RT/F) ln ([Cl - ]) (2.17) Persamaan 2.13 memperlihatkan bahwa potensial elektroda ini tergantung pada aktifitas ion klorida didalam elektroda. Untuk itu penting sekali untuk mengetahui komposisi elektrolit yang menjadi larutan pengisi serta konsentrasinya. Untuk larutan pengisi yang mengandung 3,5 M kalium klorida, maka potensial elektrodanya mencapai V vs SHE pada temperature 25 o C. Kelemahan dari elektroda ini adalah sensitif terhadap cahaya. Cahaya menyebabkan AgCl berubah menjadi Ag. Selain itu elektroda ini tidak cocok untuk larutan yang mengandung ion komplek seperti ion ammonium dan ion sianida. Gambar 2.2 Elektroda referensi Ag/AgCl Sumber : Suryanto, 2007 c. Elektroda Merkuri/Merkuro Klorida (Calomel) SCE Ini merupakan elektroda referensi dengan sistem logam / garam tak larut. Elektroda ini digemari karena kemudahan dan kehandalannya. Elektroda ini lebih dikenal dengan sebutan kalomel. Reaksi keseimbangan yang terjadi dapat ditulis sebagai berikut: HgCl + e 0 = Hg + Cl - (2.18) Fasa-fasa yang ada dapat dinyatakan sebagai berikut: Hg (l) HgCl (s) Cl (aq) (2.19) Potensial elektrodanya dapat dinyatakan sebagai berikut: E Hg/HgCl = E 0 Hg/HgCl (RT/F) In ([HgCl]/([Hg][Cl - ]) (2.20)

9 13 Dimana E 0 Hg/HgCl = 0,268 V vs SHE pada 25 C dengan koefisien temperatur 0,29 mv/ 0 C. karena merkuri dalam bentuk cair dan merkuro klorida dalam bentuk padat maka [HgCI]=[Hg]=1. Dengan ini maka persamaan 2.20 berubah menjadi: E Hg/HgCl = E 0 Hg/HgCl (RT/F) In ([Cl - ]) (2.21) Persamaan ini menunjukkan bahwa potensial elektroda tergantung pada aktifitas ion klorida didalam larutan pengisi. Konsentrasi ion klorida dapat divariasi. Untuk 0.1 M, 1.0 M dan 3.8 M Jenuh), potensial elektroda pada temperatur 25 C adalah V, V dan V vs SHE. Umumnya elektroda ini mempunyai larutan pengisi yang mengandung garam kalium klorida jenuh. Konsentrasi kalium klorida yang jenuh dapat dilihat pada bagian bawah elektroda yang umumnya didapatkan kalium klorida padat (tidak larut). Elektroda ini mempunyai 2 kendala, pertama, temperatur maksimum dimana elektroda ini bekerja stabil adalah 70 C, kedua, pembuatan elektroda ini lebih sulit dibandingkan dengan elektroda Ag/AgCl. Selain elektroda kalomel, ada 2 elektroda referensi lain yang menggunakan merkuri. Gambar 2.3 Elektroda referensi Calomel (SCE) Sumber : Suryanto, 2007 Elektroda Merkuri / Merkuro Sulfat Ini merupakan elektroda referensi dengan sistem logam / garam tak larut. Reaksi keseimbangan yang terjadi dapat ditulis sebagai berikut: Hg 2 SO 4 + e - 2- = Hg + SO 4 (2.22) Fasa-fasa yang ada dapat dinyatakan sebagai berikut: Hg (l) Hg 2 SO 4 (s) SO 2-4 (aq) (2.23) Potensial elektrodanya dapat dinyatakan sebagai berikut:

10 14 E Hg2SO4 = E 0 Hg2SO4 (RT/F) ln [SO 2-4 ] (2.24) Persamaan ini menunjukkan bahwa potensial elektroda tergantung pada aktifitas ion sulfat didalam larutan pengisi. Jika elektroda diisi dengan kalium sulfat jenuh, maka potensialnya sebesar 0,644 V vs SHE pada temperatur 27 C. Elektroda ini juga dapat diisi dengan natrium sulfat dengan karakteristik yang hampir sarna. Elektroda Merkuri / Merkuro Oksida Ini merupakan elektroda referensi dengan sistem logam / garam tak larut. Reaksi keseimbangan yang terjadi dapat ditulis sebagai berikut: HgO + H 2 O + 2e - = Hg + 2OH - (2.25) Fasa- fasa yang ada dapat dinyatakan sebagai berikut: Hg (l) HgO (s) OH - (aq) (2.26) Potensial elektrodanya dapat dinyatakan sebagai berikut: E Hg/HgO = E 0 Hg/HgO - (RT/2F) In [OH - ] (2.27) Jika elektroda ini diisi dengan natrium hidroksida 0.1 M, maka potensialnya menjadi 0,926 V vs SHE pada temperature 25 C Elektroda kounter (Counter Electrode) Counter elektrode adalah konduktor yang melengkapi sel. Counter elektode biasanya digunakan konduktor yang bersifat inert seperti platina dan grafit, tapi dapat digunakan logam yang sama dengan elektroda kerjanya. Arus yang mengalir menuju larutan melalui elektroda kerja selanjutnya akan meninggalkan larutan melalui elektroda kounter. Elektroda kounter dapat sekaligus digunakan sebagai elektroda kerja pada saat arus yang mengalir dalam sel adalah kecil. Elektroda pembantu yang digunakan adalah platina (Pt). Elektroda padat Pt ini memiliki kelebihan yaitu dapat digunakan pada daerah potensial yang lebih luas. Pt dapat digunakan pada +1,2 V (- 0,2) V (vs EKJ) dalam suasana asam dan +0,7 V 0,1 V dalam suasana basa.

11 VOLTAMETRI Voltammetri merupakan salah satu metode elektroanalisis skala mikro yang mengkaji informasi tentang analit berdasar pengukuran arus (I) sebagai fungsi potensial (V) pada kondisi dimana elektroda indikator atau elektroda kerja mengalami polarisasi. Arus yang diukur adalah arus difusi yaitu arus yang timbul karena adanya proses oksidasi atau reduksi analit elektroaktif pada permukaan elektroda (Skoog, 1992). Voltammetri dikembangkan berdasarkan prinsip polarografi yang dikenal menggunakan tetesan air raksa (Dropping Mercury Electrode, DME) sebagai elektroda kerja, mikro elektroda lebih banyak digunakan dalam teknik voltammetri sebagai elektroda kerja. Elektroda yang terpolarisasi adalah elektroda kerja (WE) pasangannya adalah elektroda pembanding (RE) yang bisa berupa kalomel (Saturated Calomel Electrode, SCE) atau Ag/AgCl. Elektroda kounter (CE) juga digunakan untuk ikut mendukung proses-proses pertukaran elektron atau aliran arus dalam sel terutama untuk sistem yang menghasilkan arus yang cukup besar. Teknik voltammetri merupakan teknik elektrokimia dinamik (tidak pada arus nol). Proses oksidasi dan reduksi yang terjadi pada permukaan elektroda pada dasarnya merupakan transfer elektron atau transfer muatan. Arus yang diukur dalam ampere atau coulomb/detik dari kecepatan alir muatan. Reaksi elektrokimia pada permukaan elektroda dikendalikan dengan mengaplikasikan potensial pada elektroda. Potensial yang diaplikasikan disebut sinyal eksitasi dan arus yang diukur disebut sinyal hasil (Fifield and Haines, 1995). Respon dari sel elektrokimia sebagai arus direkam dan ditunjukkan dalam kurva arus-potensial disebut voltamogram. Sumbu horizontal sebagai potensial dalam volt sedangkan sumbu vertikal sebagai arus dalam μa. arus konstan yang diperoleh setelah peningkatan arus secara tajam adalah arus batas (limiting current) sedangkan arus konstan yang diperoleh sebelum peningkatan arus secara tajam (pengukuran larutan blanko sebelum analit ditambahkan) disebut arus residu (residual current). Beberapa teknik yang umum di gunakan untuk polarisasi potensial elektroda dalam voltammetri yaitu: Linear Sweep Voltammetry (LSV), Voltammetri siklik (CV), Normal Pulse Voltammetry (NPV), Square Wave Voltammetry (SWV), Differential

12 16 Pulse Voltammetry (DPV) dapat dilihat pada gambar 2.4. Linear Sweep Voltametry menunjukkan sinyal eksitasi voltammetri klasik, dimana potensial DC yang diaplikasikan ke dalam sel bertambah secara linier (biasanya dengan range 2-3 V) sebagai fungsi waktu. Arus yang dihasilkan selanjutnya dicatat sebagai fungsi waktu dan juga sebagai fungsi potensial yang digunakan. Differential pulse voltammetry dan square wave voltammetry sinyal eksitasi ditunjukkan dengan tipe pulsa. Arus diukur pada variasi waktu selama life time dari pulsa. Voltammetri siklik ditunjukkan dalam bentuk gelombang triangular. Potensial disikluskan antara dua nilai, pertama penambahan secara linier hingga maksimum kemudian berkurang secara linier dengan slope urutan angka yang sama. Proses ini dapat dilakukan dengan banyak pengulangan siklik dengan arus akan direkam sebagai fungsi waktu. Gambar 2.4 Variasi metode eksitasi potensial pada teknik voltammetri (Skoog, et al., 1992) Voltammetri Siklik (CV) Voltammetri Siklik merupakan metode yang umum digunakan dalam teknik elektroanalisis dan merupakan metode yang bagus, dapat memungkinkan melakukan karakterisasi pada sistem elektrokimia, digunakan untuk mempelajari proses reduksi dan oksidasi (redoks), dan untuk memahami intermidiet reaksi dan untuk mendapatkan stabilitas dari produk reaksi. Voltammetri siklik didasarkan pada variasi potensial yang digunakan pada elektroda kerja (Wang, 1994). Pengukuran

13 17 menggunakan voltammetri siklik, potensiostat mengontrol potensial yang melewati elektroda kerja untuk mengubah potensial secara perlahan kembali ke potensial awal. Potensial awal bergerak ke arah negatif menuju ke potensial akhir yang dicapai dan terbentuk ½ siklus yang menyatakan sebagai O direduksi menjadi R. Arus yang dihasilkan pada proses ini disebut arus katodik, kemudian scan akan kembali berbalik ke arah positif dan R akan dioksidasi kembali menjadi O. Arus yang dihasilkan disebut arus anodik (Reiger, 1994). Aliran potensial yang dialirkan menuju elektroda, selanjutnya respon arus dapat diamati. Analisis dari respon arus dapat memberikan informasi mengenai termodinamika dan kinetika dari transfer elektron pada permukaan elektroda-larutan, kinetika dan mekanisme reaksi dari berbagai transfer elektron (Gosser, 1993). (a) (b) Gambar 2.5. Voltamogram siklik (a) Arus sebagai fungsi potensial (b) Potensial sebagai fungsi waktu

14 18 Bentuk dari gelombang ini adalah triangular yang menyatakan potensial sebagai fungsi waktu. Larutan yang digunakan tidak perlu dilakukan pengadukan, sehingga transport massa yang dikontrol adalah proses secara difusi (Fifield and Haines, 1995). Parameter yang penting dalam voltammetri siklik adalah arus puncak dan potensial puncak yaitu keduanya berasal dari puncak katoda dan anoda. Reaksi dapat dikatakan reversibel, jika proses transfer elektron lebih cepat dibandingkan dengan proses lainnya misalnya difusi, sehingga selisih antara potensial puncak dituliskan : Ep = Ep anoda Ep katoda (2.28) = = V pada 25 o (2.29) dengan n jumlah elektron. Jika reaksi irreversible maka Ep > V potensial reduksi formal (E) untuk pasangan reversibel : (2.30) Arus puncak dapat dihitung dengan persamaan Rancles-Sevcik: i p = 2,686x10 5 n 3/2 ACD 1/2 v 1/2 (2.31) dimana ip adalah arus puncak (A), A luas elektroda (cm 2 ), D koefisien difusi (cm 2 /s), C konsentrasi (mol/cm 3 ), v kecepatan scan (v/s) (Wang, 2006). 2.5 POTENSIOSTAT Teknik elektrokimia untuk keperluan analisis kuantitatif instrumental membutuhkan pengetahuan dan alat-alat tambahan untuk pengolahan data. Hal ini berkenaan dengan kenyataan bahwa pembangkit sinyal analitik yang dihasilkan dalam komponen instrumen memerlukan pengolahan agar dapat memberikan data yang mudah dibaca dan diolah untuk bahan informasi. Potensiostat merupakan instrumen yang dapat digunakan untuk mengukur arus yang melewati pasangan elektroda kerja dan elektroda kounter dan selalu menjaga keseimbangan beda potensial antara elektroda kerja dan elektroda pembanding (Bard and Faulker, 1980). Potensiostat mengukur arus yang mengalir antara elektroda kerja dan elektroda pembanding. Variabel yang dikontrol oleh potensiostat adalah potensial sel, sedangkan variabel yang diukur adalah arus sel. Bentuk dari potensiostat dapat

15 19 dilihat pada gambar 2.6 yang terdiri dari lima komponen yaitu: sinyal generator, power amplifier, elektrometer, I/E converter dan perekam. a. Signal Generator (Pembangkit Sinyal) Pembangkit sinyal ini menghasilkan perbedaan potensial antara elektroda kerja dengan elektroda pembanding. Perbedaan potensial dibentuk dari potensial tunggal atau potensial yang dikontrol oleh komputer. Output digital ke analog (D/A) mengubah bilangan yang dihasilkan komputer kedalam potensial. Pemilihan yang tepat dari urutan bilangan memungkinkan computer menghasilkan potensial yang konstan, potensial yang linier dan gelombang sinusdatar (sinusoidal). Bilangan dari eksitasi potensial menghasilkan variasi yang berbeda dari voltammetri. Gambar 2.6 Susunan dasar dari potensiostat Sumber : Andriani, 2007 b. Elektrometer Rangkaian elektrometer mengukur beda potensial antara elektroda kerja dengan elektroda pembanding. Outputnya memiliki dua fungsi yaitu feedback signal pada rangkaian potensiostat dan sinyal diukur sewaktu-waktu potensial sel dibutuhkan. Elektrometer yang ideal memiliki arus input nol dan memiliki impedansi input yang tidak terbatas.

16 20 c. The I/E conventer (pengubah arus ke potensial) Pengubah arus ke potensial merupakan rangkaian pengikut arus untuk mengukur arus sel dan menampilkan sebagai potensil. Potensial output, Eout diperoleh dari arus sel X resistor feedback. d. The Power Amplifier (Daya Amplifier) Daya amplifier atau pengontrol amplifier dari potensiostat berfungsi mengatur potensial pada elektroda kounter elektroda kerja untuk mencapai selisih yang tepat pada elektroda pembanding-elektroda kerja. Pengontrol amplifier membandingkan potensial sel yang diukur dengan potensial yang diharapkan dan mengendalikan arus yang masuk kedalam sel untuk memaksa potensialnya menjadi sama. Potensial yang diukur adalah input yang masuk ke dalam input negatif dari pengontrol amplifier. e. Perekam Data/ The Recorder Merupakan peralatan sederhana untuk menampilkan dan merekam output potensiostat dalam bentuk chart recorder atau voltmeter digital (Siswoyo, et al., 2000). 2.6 SEM (Scanning Electron Microscopy) SEM terdiri dari sebuah senapan elektron yang memproduksi berkas elektron pada tegangan dipercepat sebesar 2 30 kv. Berkas elektron tersebut dilewatkan pada beberapa lensa elektromagnetik untuk menghasilkan image berukuran <~10nm pada sampel yang ditampilkan dalam bentuk film fotografi atau ke dalam tabung layar. Diagram skematik dan cara kerja SEM digambarkan sebagai berikut:

17 21 Gambar 2.7 Diagram skematik fungsi dasar dan cara kerja SEM (Sumber: Anggraini, 2008) SEM sangat cocok digunakan dalam situasi yang membutuhkan pengamatan permukaan kasar dengan pembesaran berkisar antara 20 kali sampai kali. Sebelum melalui lensa elektromagnetik terakhir scanning raster mendeflesikan berkas elektron untuk men-scan permukaan sampel. Hasil scan ini tersinkronisasi dengan tabung sinar katoda dan gambar sampel akan tampak pada area yang di-scan. Tingkat kontras yang tampak pada tabung sinar katoda timbul karena hasil refleksi yang berbeda-beda dari sampel. Sewaktu berkas elektron menumbuk permukaan sampel sejumlah elektron direfleksikan sebagai backscattered electron (BSE) dan yang lain membebaskan energi rendah secondary electron (SE). Emisi radiasi elektromagnetik dari sampel timbul pada panjang gelombang yang bervariasi tapi pada dasarnya panjang gelombang yang lebih menarik untuk digunakan adalah daerah panjang gelombang cahaya tampak (cathodoluminescence) dan sinar-x. Elektron-elektron BSE dan SE yang direfleksikan dan dipancarkan sampel dikumpulkan oleh sebuah scintillator yang memancarkan sebuah pulsa cahaya pada elektron yang datang. Cahaya yang dipancarkan kemudian diubah menjadi sinyal listrik dan diperbesar oleh photomultiplier. Setelah melalui proses pembesaran sinyal tersebut dikirim ke bagian grid tabung sinar katoda. Scintillator biasanya memiliki

18 22 potensial positif sebesar 5 10 kv untuk mempercepat energi rendah yang dipancarkan elektron agar cukup untuk mengemisikan cahaya tampak ketika menumbuk scintillator. Scintillator harus dilindungi agar tidak terkena defleksi berkas elektron utama yang memiliki potensial tinggi. Pelindung metal yang mengandung metal gauze terbuka yang menghadap sampel memungkinkan hampir seluruh elektron melalui permukaan scintillato (Anggraini, 2008).

2 TINJAUAN PUSTAKA. 2.1 Voltametri

2 TINJAUAN PUSTAKA. 2.1 Voltametri 2 TINJAUAN PUSTAKA 2.1 Voltametri Voltametri merupakan salah satu teknik elektroanalitik dengan prinsip dasar elektrolisis. Elektroanalisis merupakan suatu teknik yang berfokus pada hubungan antara besaran

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 33 BAB IV HASIL DAN PEMBAHASAN 4.1 PENDAHULUAN Pada bab ini akan dijelaskan mengenai hasil pengujian dari elektroda Ag/AgCl yang telah dibuat dengan memvariasikan konsentrasi larutan dan waktu pembuatan.

Lebih terperinci

TINJAUAN PUSTAKA. uap yang rendah bersifat racun dengan rumus (C 6 H 5 ) 3 SnCl. Senyawa ini mudah

TINJAUAN PUSTAKA. uap yang rendah bersifat racun dengan rumus (C 6 H 5 ) 3 SnCl. Senyawa ini mudah II. TINJAUAN PUSTAKA A. Trifeniltimah(IV) Klorida Trifeniltimah(IV) klorida merupakan senyawa padatan berwarna dengan tekanan uap yang rendah bersifat racun dengan rumus (C 6 H 5 ) 3 SnCl. Senyawa ini

Lebih terperinci

Elektrokimia. Sel Volta

Elektrokimia. Sel Volta TI222 Kimia lanjut 09 / 01 47 Sel Volta Elektrokimia Sel Volta adalah sel elektrokimia yang menghasilkan arus listrik sebagai akibat terjadinya reaksi pada kedua elektroda secara spontan Misalnya : sebatang

Lebih terperinci

2 Tinjauan Pustaka. 2.1 Teknik Voltametri dan Modifikasi Elektroda

2 Tinjauan Pustaka. 2.1 Teknik Voltametri dan Modifikasi Elektroda 2 Tinjauan Pustaka 2.1 Teknik Voltametri dan Modifikasi Elektroda Teknik elektrometri telah dikenal luas sebagai salah satu jenis teknik analisis. Jenis teknik elektrometri yang sering digunakan untuk

Lebih terperinci

Sulistyani, M.Si.

Sulistyani, M.Si. Sulistyani, M.Si. sulistyani@uny.ac.id Reaksi oksidasi: perubahan kimia suatu spesies (atom, unsur, molekul) melepaskan elektron. Cu Cu 2+ + 2e Reaksi reduksi: perubahan kimia suatu spesies (atom, unsur,

Lebih terperinci

SKRIPSI. Oleh : Vivi Andriani NIM Dosen Pembimbing Utama : Drs. SISWOYO, M.Sc., PhD. Dosen Pembimbing Anggota : Drs. ZULFIKAR, PhD.

SKRIPSI. Oleh : Vivi Andriani NIM Dosen Pembimbing Utama : Drs. SISWOYO, M.Sc., PhD. Dosen Pembimbing Anggota : Drs. ZULFIKAR, PhD. SKRIPSI PENGEMBANGAN SENSOR VOLTAMETRI N 2 O DENGAN OPTIMALISASI POLARISASI ELEKTRODA DAN KONSENTRASI ELEKTROLIT MENGGUNAKAN ELEKTRODA KERJA PERAK (Ag) Oleh : Vivi Andriani NIM 031810301047 Dosen Pembimbing

Lebih terperinci

PEMBUATAN DAN KARAKTERISASI ELEKTRODA Ag/AgCl MENGGUNAKAN LARUTAN KCl

PEMBUATAN DAN KARAKTERISASI ELEKTRODA Ag/AgCl MENGGUNAKAN LARUTAN KCl PEMBUATAN DAN KARAKTERISASI ELEKTRODA Ag/AgCl MENGGUNAKAN LARUTAN KCl FAISAL RAHMAN NIM : 41312120083 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA JAKARTA 2017 LAPORAN TUGAS AKHIR

Lebih terperinci

Elektrokimia. Tim Kimia FTP

Elektrokimia. Tim Kimia FTP Elektrokimia Tim Kimia FTP KONSEP ELEKTROKIMIA Dalam arti yang sempit elektrokimia adalah ilmu pengetahuan yang mempelajari peristiwa-peristiwa yang terjadi di dalam sel elektrokimia. Sel jenis ini merupakan

Lebih terperinci

ELEKTROKIMIA Dr. Ivandini Tribidasari A.

ELEKTROKIMIA Dr. Ivandini Tribidasari A. kimiapararel2009@gmail.com ELEKTROKIMIA Dr. Ivandini Tribidasari A. Bab Minggu ke- Judul 1 1 Pendahuluan dan Overview of Electrode Process 2 2 Potential dan Termodinamika Sel 3 3 Kinetika Reaksi Elektroda

Lebih terperinci

Suryanto PRPN BAT AN

Suryanto PRPN BAT AN Prosiding Pertemuan I1miah Nasional Rekayasa Perangkat Nuklir KARAKTERISASI ELEKTRODA REFERENSI Suryanto PRPN BAT AN Kawasan Puspiptek Serpong, Tangerang 15413, Tangerang ABSTRAK Satu dari berbagai cara

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Teknik Voltametri Teknik voltametri digunakan untuk menganalisis analit berdasarkan pengukuran arus sebagai fungsi potensial. Hubungan antara arus terhadap potensial divisualisasikan

Lebih terperinci

Sel Volta (Bagian I) dan elektroda Cu yang dicelupkan ke dalam larutan CuSO 4

Sel Volta (Bagian I) dan elektroda Cu yang dicelupkan ke dalam larutan CuSO 4 KIMIA KELAS XII IPA - KURIKULUM GABUNGAN 04 Sesi NGAN Sel Volta (Bagian I) Pada sesi 3 sebelumnya, kita telah mempelajari reaksi redoks. Kita telah memahami bahwa reaksi redoks adalah gabungan dari reaksi

Lebih terperinci

2 Tinjauan Pustaka. 2.1 Teknik Voltametri

2 Tinjauan Pustaka. 2.1 Teknik Voltametri 2 Tinjauan Pustaka 2.1 Teknik Voltametri Teknik voltametri adalah salah satu teknik analisis yang sering digunakan di bidang kimia analitik. Pada teknik ini, arus dari elektroda kerja diukur sebagai fungsi

Lebih terperinci

BAB III DASAR TEORI. mengalami pengkristalan dan dapat menimbulkan gout. Asam urat mempunyai peran

BAB III DASAR TEORI. mengalami pengkristalan dan dapat menimbulkan gout. Asam urat mempunyai peran 9 BAB III DASAR TEORI 3.1 Asam Urat Asam urat (uric acid) adalah senyawa turunan purina dengan rumus kimia C5H4N4O3 dan rasio plasma antara 3,6 mg/dl (~214 µmol/l) dan 8,3 mg/dl (~494 µmol/l) (1 mg/dl

Lebih terperinci

TITRASI POTENSIOMETRI

TITRASI POTENSIOMETRI TITRASI PTENSIMETRI TITRASI PTENSIMETRI I. TUJUAN PERCBAAN Menentukan titik ekivalen secara potensiometri. II. DASAR TERI Suatu eksperimen dapat diukur dengan menggunakan dua metode yaitu, pertama (potensiometri

Lebih terperinci

BAB 8. ELEKTROKIMIA 8.1 REAKSI REDUKSI OKSIDASI 8.2 SEL ELEKTROKIMIA 8.3 POTENSIAL SEL, ENERGI BEBAS, DAN KESETIMBANGAN 8.4 PERSAMAAN NERNST 8

BAB 8. ELEKTROKIMIA 8.1 REAKSI REDUKSI OKSIDASI 8.2 SEL ELEKTROKIMIA 8.3 POTENSIAL SEL, ENERGI BEBAS, DAN KESETIMBANGAN 8.4 PERSAMAAN NERNST 8 BAB 8 BAB 8. ELEKTROKIMIA 8.1 REAKSI REDUKSI OKSIDASI 8.2 SEL ELEKTROKIMIA 8.3 POTENSIAL SEL, ENERGI BEBAS, DAN KESETIMBANGAN 8.4 PERSAMAAN NERNST 8.5 SEL ACCU DAN BAHAN BAKAR 8.6 KOROSI DAN PENCEGAHANNYA

Lebih terperinci

VOLTAMETRI. Disampaikan pada Kuliah Metode Pemisahan dan Analisis Kimia Pertemuan Ke 7.

VOLTAMETRI. Disampaikan pada Kuliah Metode Pemisahan dan Analisis Kimia Pertemuan Ke 7. VOLTAMETRI Disampaikan pada Kuliah Metode Pemisahan dan Analisis Kimia Pertemuan Ke 7 siti_marwati@uny.ac.id Definisi Pengembangan metode Polarografi Pengukuran yang dilakukan adalah pengukuran arus sebagai

Lebih terperinci

Redoks dan Elektrokimia Tim Kimia FTP

Redoks dan Elektrokimia Tim Kimia FTP Redoks dan Elektrokimia Tim Kimia FTP KONSEP ELEKTROKIMIA Dalam arti yang sempit elektrokimia adalah ilmu pengetahuan yang mempelajari peristiwa-peristiwa yang terjadi di dalam sel elektrokimia. Sel jenis

Lebih terperinci

BAB II KAJIAN PUSTAKA. Voltametri adalah metode elektrokimia dimana arus diamati pada

BAB II KAJIAN PUSTAKA. Voltametri adalah metode elektrokimia dimana arus diamati pada BAB II KAJIAN PUSTAKA 2.1 Voltametri 2.1.1 Analisis Voltametri Voltametri adalah metode elektrokimia dimana arus diamati pada pemberian potensial tertentu. Voltametri berasal dari kata volt ampero metry.

Lebih terperinci

POLAROGRAFI. Pertemuan Ke 5 & 6 Kuliah Metode Pemisahan dan Analisis Kimia.

POLAROGRAFI. Pertemuan Ke 5 & 6 Kuliah Metode Pemisahan dan Analisis Kimia. POLAROGRAFI Pertemuan Ke 5 & 6 Kuliah Metode Pemisahan dan Analisis Kimia siti_marwati@uny.ac.id Definisi Polarografi Polarografi adalah metode analisis yang didasarkan pada kurva arus tegangan yang diperoleh

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN. dengan mengukur potensial campuran elektrolit K 3 Fe(CN) 6 dan K 4 Fe(CN) 6

BAB V HASIL DAN PEMBAHASAN. dengan mengukur potensial campuran elektrolit K 3 Fe(CN) 6 dan K 4 Fe(CN) 6 45 BAB V HASIL DAN PEMBAHASAN 5.1 Karakterisasi Elektroda Ag/AgCl Karakterisasi elektroda Ag/AgCl dilakukan untuk mengetahui apakah elektroda yang akan digunakan layak untuk pengukuran. Pengukuran dilakukan

Lebih terperinci

REDOKS dan ELEKTROKIMIA

REDOKS dan ELEKTROKIMIA REDOKS dan ELEKTROKIMIA Overview Konsep termodinamika tidak hanya berhubungan dengan mesin uap, atau transfer energi berupa kalor dan kerja Dalam konteks kehidupan sehari-hari aplikasinya sangat luas mulai

Lebih terperinci

PERCOBAAN POTENSIOMETRI (PENGUKURAN ph)

PERCOBAAN POTENSIOMETRI (PENGUKURAN ph) PERCOBAAN POTENSIOMETRI (PENGUKURAN ph) I. Tujuan. Membuat kurva hubungan ph - volume pentiter 2. Menentukan titik akhir titrasi 3. Menghitung kadar zat II. Prinsip Prinsip potensiometri didasarkan pada

Lebih terperinci

Kegiatan Belajar 3: Sel Elektrolisis. 1. Mengamati reaksi yang terjadi di anoda dan katoda pada reaksi elektrolisis

Kegiatan Belajar 3: Sel Elektrolisis. 1. Mengamati reaksi yang terjadi di anoda dan katoda pada reaksi elektrolisis 1 Kegiatan Belajar 3: Sel Elektrolisis Capaian Pembelajaran Menguasai teori aplikasi materipelajaran yang diampu secara mendalam pada sel elektrolisis Subcapaian pembelajaran: 1. Mengamati reaksi yang

Lebih terperinci

SATUAN ACARA PERKULIAHAN

SATUAN ACARA PERKULIAHAN SATUAN ACARA PERKULIAHAN Mata Kuliah : Metode Pemisahan dan Analisis Kimia (2 sks) Kode Mata Kuliah : SKM 205 Waktu Pertemuan : 2 50 menit Pertemuan ke : 1 A. Kompetensi Dasar : Memahami berbagai metode

Lebih terperinci

Tinjauan Pustaka. II.1 Praktikum Skala-Kecil

Tinjauan Pustaka. II.1 Praktikum Skala-Kecil Bab II Tinjauan Pustaka II.1 Praktikum Skala-Kecil Ilmu kimia adalah ilmu yang berlandaskan eksperimen sehingga sebagian besar pokok bahasan dalam pelajaran kimia dilakukan dengan metode praktikum. Praktikum

Lebih terperinci

II. TINJAUAN PUSTAKA. memiliki sifat antikanker karena efek sitotoksiknya terhadap sel kanker. Zat

II. TINJAUAN PUSTAKA. memiliki sifat antikanker karena efek sitotoksiknya terhadap sel kanker. Zat II. TINJAUAN PUSTAKA A. Senyawa Klorambusil Klorambusil merupakan salah satu zat pengalkil, yaitu kelompok senyawa yang memiliki sifat antikanker karena efek sitotoksiknya terhadap sel kanker. Zat pengalkil

Lebih terperinci

Hasil Penelitian dan Pembahasan

Hasil Penelitian dan Pembahasan Bab IV Hasil Penelitian dan Pembahasan IV.1 Pengaruh Arus Listrik Terhadap Hasil Elektrolisis Elektrolisis merupakan reaksi yang tidak spontan. Untuk dapat berlangsungnya reaksi elektrolisis digunakan

Lebih terperinci

ELEKTROKIMIA Konsep Dasar Reaksi Elektrokimia

ELEKTROKIMIA Konsep Dasar Reaksi Elektrokimia Departemen Kimia - FMIPA Universitas Gadjah Mada (UGM) ELEKTROKIMIA Konsep Dasar Reaksi Elektrokimia Drs. Iqmal Tahir, M.Si. Laboratorium Kimia Fisika, Departemen Kimia Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. perairan seperti sedimen. Pada umumnya logam berat yang terakumulasi di dalam

BAB II TINJAUAN PUSTAKA. perairan seperti sedimen. Pada umumnya logam berat yang terakumulasi di dalam BAB II TINJAUAN PUSTAKA 2.1 Pencemaran Logam Berat dalam Perairan Logam berat dalam perairan dapat terakumulasi pada padatan di dalam perairan seperti sedimen. Pada umumnya logam berat yang terakumulasi

Lebih terperinci

BAB I PENDAHULUAN A. Latar Belakang Masalah

BAB I PENDAHULUAN A. Latar Belakang Masalah BAB I PENDAHULUAN A. Latar Belakang Masalah Voltametri adalah salah satu metode elektroanalitik dimana informasi mengenai analit diperoleh dari pengukuran arus sebagai fungsi dari potensial yang diterapkan.

Lebih terperinci

KIMIA ELEKTROLISIS

KIMIA ELEKTROLISIS KIMIA ELEKTROLISIS A. Tujuan Pembelajaran Mempelajari perubahan-perubahan yang terjadi pada reaksi elektrolisis larutan garam tembaga sulfat dan kalium iodida. Menuliskan reaksi reduksi yang terjadi di

Lebih terperinci

BAB IV METODE PENELITIAN. Penelitian dilaksanakan di Laboratorium Penelitian Program Studi

BAB IV METODE PENELITIAN. Penelitian dilaksanakan di Laboratorium Penelitian Program Studi 34 BAB IV METODE PENELITIAN 4.1 Lokasi dan Waktu Penelitian 4.1.1 Lokasi Penelitian dilaksanakan di Laboratorium Penelitian Program Studi Magister Kimia Terapan Universitas Udayana. 4.1.2 Waktu Penelitian

Lebih terperinci

BAB I PENDAHULUAN. penting bagi tubuh (Campbell et al, 2000). Pada saat ini. kosmetik (Motlagh dan Noroozifar, 2003). Oleh karena itu metode analisis

BAB I PENDAHULUAN. penting bagi tubuh (Campbell et al, 2000). Pada saat ini. kosmetik (Motlagh dan Noroozifar, 2003). Oleh karena itu metode analisis BAB I PENDAHULUAN 1.1. Latar Belakang Asam askorbat atau lebih dikenal dengan nama vitamin C merupakan nutrisi yang penting bagi tubuh (Campbell et al, 2000). Pada saat ini penggunaannya sangat luas terutama

Lebih terperinci

ELEKTROKIMIA. VURI AYU SETYOWATI, S.T., M.Sc TEKNIK MESIN - ITATS

ELEKTROKIMIA. VURI AYU SETYOWATI, S.T., M.Sc TEKNIK MESIN - ITATS ELEKTROKIMIA VURI AYU SETYOWATI, S.T., M.Sc TEKNIK MESIN - ITATS ELEKTROKIMIA Elektrokimia merupakan ilmu yang mempelajari hubungan antara perubahan (reaksi) kimia dengan kerja listrik, biasanya melibatkan

Lebih terperinci

1 PENDAHULUAN Perkembangan ilmu pengetahuan dan teknologi mulai abad 20, memberikan dampak positif dalam hal kemudahan akses disegala bidang serta dampak negatif berkaitan dengan menurunnya kualitas lingkungan

Lebih terperinci

Hand Out HUKUM FARADAY. PPG (Pendidikan Profesi Guru) yang dibina oleh Pak I Wayan Dasna. Oleh: LAURENSIUS E. SERAN.

Hand Out HUKUM FARADAY. PPG (Pendidikan Profesi Guru) yang dibina oleh Pak I Wayan Dasna. Oleh: LAURENSIUS E. SERAN. Hand Out HUKUM FARADAY Disusun untuk memenuhi tugas work shop PPG (Pendidikan Profesi Guru) yang dibina oleh Pak I Wayan Dasna Oleh: LAURENSIUS E. SERAN 607332411998 Emel.seran@yahoo.com UNIVERSITAS NEGERI

Lebih terperinci

MODUL I SIFAT KOLIGATIF LARUTAN Penurunan Titik Beku Larutan

MODUL I SIFAT KOLIGATIF LARUTAN Penurunan Titik Beku Larutan MODUL I SIFAT KOLIGATIF LARUTAN Penurunan Titik Beku Larutan - Siswa mampu membuktikan penurunan titik beku larutan akibat penambahan zat terlarut. - Siswa mampu membedakan titik beku larutan elektrolit

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Hidrogen (bahasa Latin: hidrogenium, dari bahasa Yunani: hydro: air, genes:

BAB II TINJAUAN PUSTAKA. Hidrogen (bahasa Latin: hidrogenium, dari bahasa Yunani: hydro: air, genes: BAB II TINJAUAN PUSTAKA 2.1.Hidrogen Hidrogen (bahasa Latin: hidrogenium, dari bahasa Yunani: hydro: air, genes: membentuk) adalah unsur kimia pada tabel periodik yang memiliki simbol H dan nomor atom

Lebih terperinci

Prosiding Seminar Nasional Kimia Unesa 2012 ISBN : Surabaya, 25 Pebruari PEMBUATAN ELEKTRODA PEMBANDING Ag/AgCl

Prosiding Seminar Nasional Kimia Unesa 2012 ISBN : Surabaya, 25 Pebruari PEMBUATAN ELEKTRODA PEMBANDING Ag/AgCl PEMBUATAN ELEKTRODA PEMBANDING Ag/AgCl Pirim Setiarso Jurusan Kimia FMIPA Universitas Negeri Surabaya ABSTRAK Telah dibuat elektroda pembanding Ag/AgCl dari kawat Ag diameter 0.4 mm dan panjang 4 cm. Elektrodeposisi

Lebih terperinci

SOAL SELEKSI NASIONAL TAHUN 2006

SOAL SELEKSI NASIONAL TAHUN 2006 SOAL SELEKSI NASIONAL TAHUN 2006 Soal 1 ( 13 poin ) KOEFISIEN REAKSI DAN LARUTAN ELEKTROLIT Koefisien reaksi merupakan langkah penting untuk mengamati proses berlangsungnya reaksi. Lengkapi koefisien reaksi-reaksi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Voltametri Voltametri merupakan salah satu teknik analisis yang didasarkan pada pengukuran arus sebagai fungsi dari potensial. Timbulnya arus disebabkan oleh adanya reaksi oksidasi

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan 4.1 Sintesis Padatan TiO 2 Amorf Proses sintesis padatan TiO 2 amorf ini dimulai dengan melarutkan titanium isopropoksida (TTIP) ke dalam pelarut etanol. Pelarut etanol yang digunakan

Lebih terperinci

Mengubah energi kimia menjadi energi listrik Mengubah energi listrik menjadi energi kimia Katoda sebagi kutub positif, anoda sebagai kutub negatif

Mengubah energi kimia menjadi energi listrik Mengubah energi listrik menjadi energi kimia Katoda sebagi kutub positif, anoda sebagai kutub negatif TUGAS 1 ELEKTROKIMIA Di kelas X, anda telah mempelajari bilangan oksidasi dan reaksi redoks. Reaksi redoks adalah reaksi reduksi dan oksidasi. Reaksi reduksi adalah reaksi penangkapan elektron atau reaksi

Lebih terperinci

SKRIPSI. Oleh : Vivi Andriani NIM Dosen Pembimbing Utama : Drs. SISWOYO, M.Sc., PhD. Dosen Pembimbing Anggota : Drs. ZULFIKAR, PhD.

SKRIPSI. Oleh : Vivi Andriani NIM Dosen Pembimbing Utama : Drs. SISWOYO, M.Sc., PhD. Dosen Pembimbing Anggota : Drs. ZULFIKAR, PhD. SKRIPSI PENGEMBANGAN SENSOR VOLTAMETRI N 2 O DENGAN Vivi Andriani NIM 031810301047 Dosen Pembimbing Utama : Drs. SISWOYO, M.Sc., PhD. Dosen Pembimbing Anggota : Drs. ZULFIKAR, PhD. PENGEMBANGAN SENSOR

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal. Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal. Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 16-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 16 Oksidasi dan Korosi Dalam reaksi kimia di mana oksigen tertambahkan

Lebih terperinci

Bab IV Hasil dan Pembahasan

Bab IV Hasil dan Pembahasan 32 Bab IV Hasil dan Pembahasan IV.1 Data Eksperimen dan Perhitungan Eksperimen dilakukan di laboratorium penelitian Kimia Analitik, Program Studi Kimia, ITB. Eksperimen dilakukan dalam rentang waktu antara

Lebih terperinci

Handout. Bahan Ajar Korosi

Handout. Bahan Ajar Korosi Handout Bahan Ajar Korosi PENDAHULUAN Aplikasi lain dari prinsip elektrokimia adalah pemahaman terhadap gejala korosi pada logam dan pengendaliannya. Berdasarkan data potensial reduksi standar, diketahui

Lebih terperinci

3. ELEKTROKIMIA. Contoh elektrolisis: a. Elektrolisis larutan HCl dengan elektroda Pt, reaksinya: 2HCl (aq)

3. ELEKTROKIMIA. Contoh elektrolisis: a. Elektrolisis larutan HCl dengan elektroda Pt, reaksinya: 2HCl (aq) 3. ELEKTROKIMIA 1. Elektrolisis Elektrolisis adalah peristiwa penguraian elektrolit oleh arus listrik searah dengan menggunakan dua macam elektroda. Elektroda tersebut adalah katoda (elektroda yang dihubungkan

Lebih terperinci

berat yang terkandung dalam larutan secara elektrokimia atau elektrolisis; (2). membekali mahasiswa dalam hal mengkaji mekanisme reaksi reduksi dan

berat yang terkandung dalam larutan secara elektrokimia atau elektrolisis; (2). membekali mahasiswa dalam hal mengkaji mekanisme reaksi reduksi dan BAB 1. PENDAHULUAN Kegiatan pelapisan logam akan menghasilkan limbah yang berbahaya dan dapat menjadi permasalahan yang kompleks bagi lingkungan sekitarnya. Limbah industri pelapisan logam yang tidak dikelola

Lebih terperinci

1. Bilangan Oksidasi (b.o)

1. Bilangan Oksidasi (b.o) Reaksi Redoks dan Elektrokimia 1. Bilangan Oksidasi (b.o) 1.1 Pengertian Secara sederhana, bilangan oksidasi sering disebut sebagai tingkat muatan suatu atom dalam molekul atau ion. Bilangan oksidasi bukanlah

Lebih terperinci

Soal ini terdiri dari 10 soal Essay (153 poin)

Soal ini terdiri dari 10 soal Essay (153 poin) Bidang Studi Kode Berkas : Kimia : KI-L01 (soal) Soal ini terdiri dari 10 soal Essay (153 poin) Tetapan Avogadro N A = 6,022 10 23 partikel.mol 1 Tetapan Gas Universal R = 8,3145 J.mol -1.K -1 = 0,08206

Lebih terperinci

`BAB II TINJAUAN PUSTAKA

`BAB II TINJAUAN PUSTAKA 5 `BAB II TINJAUAN PUSTAKA 2.1 PENDAHULUAN Gunung Sinabung merupakan salah satu gunung di dataran tinggi Kabupaten Karo, Sumatera Utara, Indonesia. Koordinat puncak Gunung Sinabung adalah 03 o 10 LU dan

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN 4.1 Karakterisasi Elektroda di Larutan Elektrolit Pendukung Elektroda pasta karbon lapis tipis bismut yang dimodifikasi dengan silika dikarakterisasi di larutan elektrolit pendukung

Lebih terperinci

Persamaan Redoks. Cu(s) + 2Ag + (aq) -> Cu 2+ (aq) + 2Ag(s)

Persamaan Redoks. Cu(s) + 2Ag + (aq) -> Cu 2+ (aq) + 2Ag(s) Persamaan Redoks Dalam reaksi redoks, satu zat akan teroksidasi dan yang lainnya tereduksi. Proses ini terkadang mudah untuk dilihat; untuk contoh ketika balok logam tembaga ditempatkan dalam larutan perak

Lebih terperinci

SKRIPSI. Oleh Harum Sekar Andini NIM

SKRIPSI. Oleh Harum Sekar Andini NIM PENGEMBANGAN SENSOR VOLTAMMETRI N2O DENGAN ELEKTRODA KERJA PLATINA MELALUI OPTIMASI LARUTAN ELEKTROLIT DAN POTENSIAL SCAN RATE SERTA KARAKTERISASI KINERJANYA SKRIPSI Oleh Harum Sekar Andini NIM 071810301105

Lebih terperinci

ELEKTROKIMIA DAN APLIKASINYA

ELEKTROKIMIA DAN APLIKASINYA ELEKTROKIMIA DAN APLIKASINYA Penulis: : Riyanto, Ph.D. Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak atau memindahkan sebagian

Lebih terperinci

Laporan Kimia Analitik KI-3121

Laporan Kimia Analitik KI-3121 Laporan Kimia Analitik KI-3121 PERCOBAAN 5 SPEKTROFOTOMETRI SERAPAN ATOM Nama : Kartika Trianita NIM : 10510007 Kelompok : 1 Tanggal Percobaan : 19 Oktober 2012 Tanggal Laporan : 2 November 2012 Asisten

Lebih terperinci

MODUL SEL ELEKTROLISIS

MODUL SEL ELEKTROLISIS MODUL SEL ELEKTROLISIS Standar Kompetensi : 2. Menerapkan konsep reaksi oksidasi-reduksi dan elektrokimia dalam teknologi dan kehidupan sehari-hari. Kompetensi dasar : 2.2. Menjelaskan reaksi oksidasi-reduksi

Lebih terperinci

BAB I PENDAHULUAN. dalam memainkan peranan sebagai neurotransmiter yang dapat mempengaruhi

BAB I PENDAHULUAN. dalam memainkan peranan sebagai neurotransmiter yang dapat mempengaruhi 1 BAB I PENDAHULUAN 1.1 Latar Belakang Dopamin adalah salah satu senyawa katekolamin yang paling signifikan dalam memainkan peranan sebagai neurotransmiter yang dapat mempengaruhi fungsi otak (Deng, 2011).

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN Penelitian studi voltametri siklik asam urat dengan menggunakan elektroda nikel sebagai elektroda kerja ini bertujuan untuk mengetahui berbagai pengaruh dari parameter yang ada

Lebih terperinci

Nama Kelompok : Adik kurniyawati putri Annisa halimatus syadi ah Alfie putri rachmasari Aprita silka harmi Arief isnanto.

Nama Kelompok : Adik kurniyawati putri Annisa halimatus syadi ah Alfie putri rachmasari Aprita silka harmi Arief isnanto. Nama Kelompok : Adik kurniyawati putri Annisa halimatus syadi ah Alfie putri rachmasari Aprita silka harmi Arief isnanto III Non Reguler JURUSAN ANALISA FARMASI DAN MAKANAN POLTEKKES KEMENKES JAKARTA II

Lebih terperinci

HASIL DAN PEMBAHASAN. Gambar 2 Skema Pembuatan elektrode pasta karbon.

HASIL DAN PEMBAHASAN. Gambar 2 Skema Pembuatan elektrode pasta karbon. 3 Pasta dimasukkan ke ujung tabung hingga penuh dan padat. Permukaan elektrode dihaluskan menggunakan ampelas halus dan kertas minyak hingga licin dan berkilau (Gambar 2). Gambar 2 Skema Pembuatan elektrode

Lebih terperinci

Sel Volta KIM 2 A. PENDAHULUAN B. SEL VOLTA ELEKTROKIMIA. materi78.co.nr

Sel Volta KIM 2 A. PENDAHULUAN B. SEL VOLTA ELEKTROKIMIA. materi78.co.nr Sel Volta A. PENDAHULUAN Elektrokimia adalah cabang ilmu kimia yang mempelajari aspek elektronik dari reaksi kimia. Sel elektrokimia adalah suatu sel yang disusun untuk mengubah energi kimia menjadi energi

Lebih terperinci

REDOKS DAN SEL ELEKTROKIMIA. Putri Anjarsari, S.Si., M.Pd

REDOKS DAN SEL ELEKTROKIMIA. Putri Anjarsari, S.Si., M.Pd REDOKS DAN SEL ELEKTROKIMIA Putri Anjarsari, S.Si., M.Pd putri_anjarsari@uny.ac.id PENYETARAN REAKSI REDOKS Dalam menyetarakan reaksi redoks JUMLAH ATOM dan MUATAN harus sama Metode ½ Reaksi Langkah-langkah:

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. A. Analisis Voltammogram Siklik Senyawa Klorambusil

IV. HASIL DAN PEMBAHASAN. A. Analisis Voltammogram Siklik Senyawa Klorambusil 24 IV. HASIL DAN PEMBAHASAN A. Analisis Voltammogram Siklik Senyawa Klorambusil 1. Pembuatan voltammogram siklik senyawa klorambusil menggunakan perangkat lunak Polar 4.2 Voltammogram siklik senyawa klorambusil

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Korosi Baja Karbon dalam Lingkungan Elektrolit Jenuh Udara

BAB IV HASIL DAN PEMBAHASAN. 4.1 Korosi Baja Karbon dalam Lingkungan Elektrolit Jenuh Udara BAB IV HASIL DAN PEMBAHASAN 4.1 Korosi Baja Karbon dalam Lingkungan Elektrolit Jenuh Udara Untuk mengetahui laju korosi baja karbon dalam lingkungan elektrolit jenuh udara, maka dilakukan uji korosi dengan

Lebih terperinci

9/30/2015 ELEKTROKIMIA ELEKTROKIMIA ELEKTROKIMIA. Elektrokimia? Elektrokimia?

9/30/2015 ELEKTROKIMIA ELEKTROKIMIA ELEKTROKIMIA. Elektrokimia? Elektrokimia? Elektrokimia? Elektrokimia? Hukum Faraday : The amount of a substance produced or consumed in an electrolysis reaction is directly proportional to the quantity of electricity that flows through the circuit.

Lebih terperinci

Elektroda Cu (katoda): o 2. o 2

Elektroda Cu (katoda): o 2. o 2 Bab IV Pembahasan Atom seng (Zn) memiliki kemampuan memberi elektron lebih besar dibandingkan atom tembaga (Cu). Jika menempatkan lempeng tembaga dan lempeng seng pada larutan elektrolit kemudian dihubungkan

Lebih terperinci

BAB II KOROSI dan MICHAELIS MENTEN

BAB II KOROSI dan MICHAELIS MENTEN BAB II : MEKANISME KOROSI dan MICHAELIS MENTEN 4 BAB II KOROSI dan MICHAELIS MENTEN Di alam bebas, kebanyakan logam ditemukan dalam keadaan tergabung secara kimia dan disebut bijih. Oleh karena keberadaan

Lebih terperinci

BAHAN BAKAR KIMIA. Ramadoni Syahputra

BAHAN BAKAR KIMIA. Ramadoni Syahputra BAHAN BAKAR KIMIA Ramadoni Syahputra 6.1 HIDROGEN 6.1.1 Pendahuluan Pada pembakaran hidrokarbon, maka unsur zat arang (Carbon, C) bersenyawa dengan unsur zat asam (Oksigen, O) membentuk karbondioksida

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN Karakterisasi Elektroda Pembanding Ag/AgCl

BAB V HASIL DAN PEMBAHASAN Karakterisasi Elektroda Pembanding Ag/AgCl BAB V HASIL DAN PEMBAHASAN 5.1. Karakterisasi Elektroda Pembanding Ag/AgCl Elektroda pembanding Ag/AgCl yang telah dibuat ditampilkan seperti pada Gambar 5.1. Gambar 5.1 Elektroda pembanding Ag/AgCl Voltamogram

Lebih terperinci

Contoh Soal & Pembahasan Sel Volta Bag. I

Contoh Soal & Pembahasan Sel Volta Bag. I Contoh Soal & Pembahasan Sel Volta Bag. I Soal No.1 Diketahui potensial elektrode perak dan tembaga sebagai berikut Ag + + e Ag E o = +0.80 V a. Tulislah diagram sel volta yang dapat disusun dari kedua

Lebih terperinci

Potensiometri. Bab 1. Prinsip-Prinsip Dasar Elektrokimia

Potensiometri. Bab 1. Prinsip-Prinsip Dasar Elektrokimia 1 2 1. PRINSIP-PRINSIP DASAR ELEKTROKIMIA Pada bagian pertama dari topik tentang potensiometri ini akan dijelaskan tentang prinsip-prinsip dasar tentang elektrokimia yang akan memberikan pengetahuan dasar

Lebih terperinci

BAB IV METODE PENELITIAN. karakterisasi elektroda pembanding Ag/AgCl. 2) Pembuatan EPK tanpa

BAB IV METODE PENELITIAN. karakterisasi elektroda pembanding Ag/AgCl. 2) Pembuatan EPK tanpa BAB IV METODE PENELITIAN 4.1. Rancangan Penelitian Penelitian ini dibagi empat tahap yang meliputi: 1) Pembuatan dan karakterisasi elektroda pembanding Ag/AgCl. 2) Pembuatan EPK tanpa modifikasi dan optimasi

Lebih terperinci

Diagram Latimer (Diagram Potensial Reduksi)

Diagram Latimer (Diagram Potensial Reduksi) Diagram Latimer (Diagram Potensial Reduksi) Ini sangat mudah untuk menginterpresikan data ketika ditampilkan dalam bentuk diagram. Potensial reduksi standar untuk set sepsis yang berhubungan dapat ditampilkan

Lebih terperinci

Bab I Pendahuluan I.1 Deskripsi Topik Penelitian dan Latar Belakang

Bab I Pendahuluan I.1 Deskripsi Topik Penelitian dan Latar Belakang Bab I Pendahuluan I.1 Deskripsi Topik Penelitian dan Latar Belakang Setiap tahun produksi dan penggunaan surfaktan di dunia mencapai beberapa juta ton, 70% di antaranya adalah surfaktan anionik yang digunakan

Lebih terperinci

Pembuatan Larutan CuSO 4. Widya Kusumaningrum ( ), Ipa Ida Rosita, Nurul Mu nisah Awaliyah, Ummu Kalsum A.L, Amelia Rachmawati.

Pembuatan Larutan CuSO 4. Widya Kusumaningrum ( ), Ipa Ida Rosita, Nurul Mu nisah Awaliyah, Ummu Kalsum A.L, Amelia Rachmawati. Pembuatan Larutan CuSO 4 Widya Kusumaningrum (1112016200005), Ipa Ida Rosita, Nurul Mu nisah Awaliyah, Ummu Kalsum A.L, Amelia Rachmawati. Program Studi Pendidikan Kimia Jurusan Pendidikan Ilmu Pengetahuan

Lebih terperinci

ChOx. Cholesterol + O 2 3one. 4-cholesten- + H 2 O 2. H 2 O 2 O 2 + 2H + + 2e - Gambar 14 Mekanisme reaksi katalisis enzimtik pada kolesterol [37]

ChOx. Cholesterol + O 2 3one. 4-cholesten- + H 2 O 2. H 2 O 2 O 2 + 2H + + 2e - Gambar 14 Mekanisme reaksi katalisis enzimtik pada kolesterol [37] Cholesterol + O 2 3one ChOx H 2 O 2 O 2 + 2H + + 2e - + H 2 O 2 4-cholesten- Gambar 14 Mekanisme reaksi katalisis enzimtik pada kolesterol [37] Karakterisasi SEM Morfologi permukaan elektroda kerja diobservasi

Lebih terperinci

APLIKASI REAKSI REDOKS DALAM KEHIDUPAN SEHARI HARI Oleh : Wiwik Suhartiningsih Kelas : X-4

APLIKASI REAKSI REDOKS DALAM KEHIDUPAN SEHARI HARI Oleh : Wiwik Suhartiningsih Kelas : X-4 APLIKASI REAKSI REDOKS DALAM KEHIDUPAN SEHARI HARI Oleh : Wiwik Suhartiningsih Kelas : X-4 A. DESKRIPSI Anda tentu pernah mengalami kekecewaan, karena barang yang anda miliki rusak karena berkarat. Sepeda,

Lebih terperinci

PENGARUH VARIASI ph DAN ASAM ASETAT TERHADAP KARAKTERISTIK KOROSI CO 2 BAJA BS 970

PENGARUH VARIASI ph DAN ASAM ASETAT TERHADAP KARAKTERISTIK KOROSI CO 2 BAJA BS 970 TUGAS AKHIR MM091381 PENGARUH VARIASI ph DAN ASAM ASETAT TERHADAP KARAKTERISTIK KOROSI CO 2 BAJA BS 970 Dosen Pembimbing : Budi Agung Kurniawan, ST., M.Sc Oleh : Inti Sari Puspita Dewi (2707 100 052) Latar

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA FISIKA

LAPORAN PRAKTIKUM KIMIA FISIKA LAPORAN PRAKTIKUM KIMIA FISIKA SEL ELEKTROKIMIA (Disusun untuk memenuhi salah satu tugas Mata Kuliah Prak.Kimia Fisika) NAMA PEMBIMBING : Ir Yunus Tonapa NAMA MAHASISWA : Astri Fera Kusumah (131411004)

Lebih terperinci

Bab IV Hasil Penelitian dan Pembahasan

Bab IV Hasil Penelitian dan Pembahasan Bab IV asil Penelitian dan Pembahasan IV.1 Pelapisan Elektrode dengan Polipirol Dalam penelitian ini dibuat elektrode kawat emas terlapis polipirol dengan tiga jenis ionofor untuk penentuan surfaktan ads,

Lebih terperinci

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) 39 HASIL DAN PEMBAHASAN Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC) Hasil karakterisasi dengan Difraksi Sinar-X (XRD) dilakukan untuk mengetahui jenis material yang dihasilkan disamping menentukan

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan Reaktor-separator terintegraasi yang dikembangkan dan dikombinasikan dengan teknik analisis injeksi alir dan spektrofotometri serapan atom uap dingin (FIA-CV-AAS) telah dikaji untuk

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan 4.1 Karakterisasi Elektroda Berdasarkan penelitian sebelumnya, komposisi optimum untuk elektroda pasta karbon yaitu grafit:parafin adalah 7:3 dan komposisi ini juga yang digunakan

Lebih terperinci

BAB II DASAR TEORI 2.1 PENDAHULUAN

BAB II DASAR TEORI 2.1 PENDAHULUAN 6 BAB II DASAR TEORI 2.1 PENDAHULUAN Pada bab ini akan menjelaskan teori tentang baja tahan karat (Stainless steel), jenisjenis stainless steel, stainless steel 304, pengertian stainless steel, faktor-faktor

Lebih terperinci

BAB IV TEMUAN DAN PEMBAHASAN

BAB IV TEMUAN DAN PEMBAHASAN BAB IV TEMUAN DAN PEMBAHASAN Pada penelitian ini, buku teks pelajaran yang dianalisis adalah buku teks pelajaran Kimia untuk SMA/MA kelas XII penulis A, penerbit B. Buku ini merupakan buku teks yang digunakan

Lebih terperinci

BAB II KAJIAN PUSTAKA. Asam askorbat atau vitamin C memiliki nama sistematis IUPAC (5R)-

BAB II KAJIAN PUSTAKA. Asam askorbat atau vitamin C memiliki nama sistematis IUPAC (5R)- BAB II KAJIAN PUSTAKA 2.1. Asam Askorbat Asam askorbat atau vitamin C memiliki nama sistematis IUPAC (5R)- [(1S)-1,2-dihidroksetil]-3,dihidroksifuran-2(5)-on. Rumus kimia vitamin C adalah C 6 8 6 dengan

Lebih terperinci

Metodologi Penelitian

Metodologi Penelitian Bab III Metodologi Penelitian III.1. Tahapan Penelitian Penelitian ini dibagi menjadi 3 tahapan. Pertama adalah pembuatan elektroda pasta karbon termodifikasi diikuti dengan karakterisasi elektroda yang

Lebih terperinci

LAPORAN RESMI PRAKTIKUM KIMIA BEDA POTENSIAL SEL VOLTA

LAPORAN RESMI PRAKTIKUM KIMIA BEDA POTENSIAL SEL VOLTA LAPORAN RESMI PRAKTIKUM KIMIA BEDA POTENSIAL SEL VOLTA Disusun oleh : Faiz Afnan N 07 / XII IPA 4 SMA NEGERI 1 KLATEN TAHUN PELAJARAN 2013/2014 I. Praktikum ke : II ( Kedua ) II. Judul Praktikum : Beda

Lebih terperinci

1. Tragedi Minamata di Jepang disebabkan pencemaran logam berat... A. Hg B. Ag C. Pb Kunci : A. D. Cu E. Zn

1. Tragedi Minamata di Jepang disebabkan pencemaran logam berat... A. Hg B. Ag C. Pb Kunci : A. D. Cu E. Zn 1. Tragedi Minamata di Jepang disebabkan pencemaran logam berat... A. Hg B. Ag C. Pb Kunci : A D. Cu E. Zn 2. Nomor atom belerang adalah 16. Dalam anion sulfida, S 2-, konfigurasi elektronnya adalah...

Lebih terperinci

KONDUKTOMETRI OLEH : AMANAH FIRDAUSA NOFITASARI KIMIA A

KONDUKTOMETRI OLEH : AMANAH FIRDAUSA NOFITASARI KIMIA A KONDUKTOMETRI OLEH : AMANAH FIRDAUSA NOFITASARI KIMIA A 2011 11030234016 Pengertia n Konduktometri Metode analisis yang memanfaatkan pengukuran daya hantar listrik, yang dihasilkan dari sepasang elektroda

Lebih terperinci

BAHAN BAKAR KIMIA (Continued) Ramadoni Syahputra

BAHAN BAKAR KIMIA (Continued) Ramadoni Syahputra BAHAN BAKAR KIMIA (Continued) Ramadoni Syahputra 6.2 SEL BAHAN BAKAR Pada dasarnya sel bahan bakar (fuel cell) adalah sebuah baterai ukuran besar. Prinsip kerja sel ini berlandaskan reaksi kimia, bahwa

Lebih terperinci

PEMBUKTIAN PERSAMAAN NERNST

PEMBUKTIAN PERSAMAAN NERNST PEMBUKTIAN PERSAMAAN NERNST 1. PELAKSANAAN PRAKTIKUM 2. Tujuan : Membuktikan persamaan nernst pada sistem Cu-Zn dan menentukan tetapan persamaan nernst. 1. LANDASAN TEORI Reaksi oksidasi reduksi banyak

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan Hasil dan pembahasan dari penelitian ini terdiri dari tiga bagian, yaitu karakterisasi elektroda, tahap pengukuran, dan uji keakuratan analisis. Karakterisasi elektroda terdiri dari

Lebih terperinci

Oleh Sumarni Setiasih, S.Si., M.PKim.

Oleh Sumarni Setiasih, S.Si., M.PKim. SE L EL EK TR O LI SI S Oleh Sumarni Setiasih, S.Si., M.PKim. Email enni_p3gipa@yahoo.co.id A. Pendahuluan 1. Pengantar Beberapa reaksi kimia dalam kehidupan sehari-hari merupakan reaksi reduksi-oksidasi

Lebih terperinci

LAPORAN PRAKTIKUM KIMIA FISIKA ELEKTROKIMIA

LAPORAN PRAKTIKUM KIMIA FISIKA ELEKTROKIMIA LAPORAN PRAKTIKUM KIMIA FISIKA ELEKTROKIMIA Disusun Oleh : Kelompok 3 Kelas C Affananda Taufik (1307122779) Yunus Olivia Novanto (1307113226) Adela Shofia Addabsi (1307114569) PROGRAM STUDI SARJANA TEKNIK

Lebih terperinci

METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan November 2011 sampai dengan Maret 2012 di

METODOLOGI PENELITIAN. Penelitian ini dilakukan pada bulan November 2011 sampai dengan Maret 2012 di 23 III. METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan pada bulan November 2011 sampai dengan Maret 2012 di Laboratorium Kimia Analitik dan Laboratorium Kimia Anorganik Jurusan

Lebih terperinci